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Abstract

We study the inhomogeneous nonlinear time-fractional Schrédinger equation for
linear potential, where the order of fractional time derivative parameter o varies
between 0 < & < 1. First, we begin from the original Schrédinger equation, and then
by the Caputo fractional derivative method in natural units, we introduce the
fractional time-derivative Schrédinger equation. Moreover, by applying a
finite-difference formula to time discretization and cubic B-splines for the spatial
variable, we approximate the inhomogeneous nonlinear time-fractional Schrodinger
equation; the simplicity of implementation and less computational cost can be
mentioned as the main advantages of this method. In addition, we prove the
convergence of the method and compute the order of the mentioned equations by
getting an upper bound and using some theorems. Finally, having solved some
examples by using the cubic B-splines for the spatial variable, we show the plots of
approximate and exact solutions with the noisy data in figures.

Keywords: Schrodinger equation; Cubic B-spline; Collocation method; Tikhonov
regularization method

1 Introduction

The most famous equation in quantum mechanics that can explain the behavior of par-
ticles in Hilbert spaces is the Schrodinger equation. This equation is obtained in a dif-
ferent form in quantum physics, for example, in canonical quantization of the quantum
mechanics, time evolution of the wave function leads to the Schrodinger equation. Also,
Feynman [1] applied a path integral approach for a Gaussian probability distribution func-
tion to achieve the Schrodinger equation. The mathematical appearance of this equation
is similar to a diffusion equation that can be derived by taking into account probability
distributions.

Recently, the word fractional has been widely used in various sciences, especially, physics
and mathematics. This concept for the first time was introduced by Mandelbrot [2] in
many research items. Feynman’s path integral first introduced the concept of fractal into
quantum mechanics.

The fractional derivative Schrodinger equation was generalized by Laskin [3-7] two
decades ago. It is an extension of the Feynman path integral formalism. This prominent
formalism of quantum mechanics is a basis for the fractional quantum mechanics. As we
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know, the Schrédinger equation has two parts: the first part contains the first-order time
derivative, and the second part has the second-order space derivative. Laskin [3-7] used
the time-fractional derivative Schrédinger equation and showed that the connection be-
tween the statistical form of the quantum path was of the same nature as basic equations
of quantum mechanics. In the Laskin scenario, the time-fractional derivative Schrédinger
equation correlates with consideration of the non-Markovian evolutions. Also, he intro-
duced the space-fractional derivative by the Levy distributions for all the possible paths.
Furthermore, it has been shown that the fractional Hamiltonian and parity remain con-
served, and by the time-fractional derivative the spectrum of energy levels of the hydrogen
atom and the harmonic oscillator are computed. He, in his paper, investigated the energy
levels for the fractional three-dimensional Coulomb potential Bohr atom; see [3-7]. The
fractional Laplacian—Schrédinger equation for initial value problems was investigated by
Hu and Kallianpur [8], in which the solutions are represented as probability. Also, the
Green function in quantum scattering and the barrier influence were computed by Guo
and Xu [9].

Some of the properties of time-fractional derivation nonlinear Schrédinger equation,
such as fractal oscillator, were investigated by Naber [10]. This process was done by re-
placing the first order of time derivatives with a Caputo fractional derivative [11]; mean-
while, the second-order space derivatives remained unchanged. In [10], the order of the
time-fractional Schrodinger derivative is 0 < & < 1, and with this order, the Schrodinger
equation for a free particle in box and a finite potential well was solved. After that, the
Schrodinger equation with both space and time-fractional derivatives was developed and
computed by Wang and Xu [12] for free particle and an infinite rectangular potential
well. The solution of Coulomb potential, linear potential, and §-potential for the fractional
Schrédinger equation were investigated in [13].

In this paper, we study the Schrédinger equation based on fractal time. This equation
was discussed in [3-7, 10, 14—21]. In paper [14], according to Caputo’s fractional deriva-
tives, Planck mass and constant were represented by fractal equations whose dimensions
are also fractal quantities. By this technique, they have shown that the time-dependent
fractal Schrodinger differential equation for a particle in the potential field exactly matches
the standard form of the equation. In [10], the Schrédinger fractal time wave function for
free particle and wells was obtained by using the Mittag-Leffler function with the com-
plex argument, and the eigenvalues corresponding to this function were also shown. In
paper [3-7] also presented by Laskin, a Schrodinger time-independent fractal equation
was considered and applications of this equation such as determining the shape of the
Schrodinger wave function and its exact solution, the wave function and the eigenvalues
for infinite potential wells, and in particular the values for a linear potential field, were
obtained for 0 < « < 1. In all of these papers, the Schrodinger fractional time differen-
tial equation was investigated, and for different potentials, the wave function and specific
differential equation values were specified. In this paper, we solve the general form of a
heterogeneous fractal time differential equation corresponding to a heterogeneous frac-
tal time Schrodinger equation using the B-spline method [22] and obtain numerical an-
swers for such a function. To make this more concrete, we solve the fractal time-dependent
Schrodinger equation for a linear potential field with this method and present the exact

solutions.
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2 The inhomogeneous nonlinear time-fractional Schrédinger equation

One way to do a fractal form of the time-fractional derivation of nonlinear Schrédinger
equation is to apply the natural units / = ¢ = 1 for a wave function. Some people such
as [10] used Planck’s units for our models, both of which are the same. The definition of
Plank’s units [23] in terms of three theoretical physics constants G, i, ¢, where G states for
gravitational constant, /i is Planck’s constant, and ¢ denotes the speed of light, is as follows:

LPL =4/ f_gh,

_ |/Gh
TPL - 6_5; (1)
MPL =4/ @;

2
EPL = MPLC ’

where the last equation denotes the energy in Planck’s scale. Indeed, in natural units, Ly, =
_ 1 _ 1
TPL = M—PL - E_PL
In our model, for the construction of the time-fractional derivative for a nonlinear
Schrédinger equation in natural units, we start from the primary definition of this equa-
tion. The Schrodinger equation in one-dimensional space-time was introduced in [24] as
follows:
v n* 9w
ih— = — + V(x)¥, (2)
ot 2m ox
where V(x) indicates the potential of the system. In quantum mechanics literature, various
potential functions are usually chosen to describe the models. In this work, to construct
a nonlinear time-derivative fractional Schrodinger equation, we consider Eq. (2) in terms
of natural units as follows:

oY1 Y

o LYY v, 3
o T Tam a2 V@ ®)

Now, we apply the Caputo fractional derivation method to introduce nonlinear

Schrédinger equation in one-dimensional spaces as follows:

1 3%

In Eq. (4), D] denotes the Caputo fractional time derivative of order 0 < v < 1. The main
intention of this paper is to consider the abstract time-fractional evolution equation (4)
a;t'f denotes the Caputo fractional derivative.

Now, we consider the motion of a particle in a linear potential field [25] which is gener-

on a potential well, where

ated by an external field. The potential arising from this field reads as follows:

Fx, x>0,(F>0),
Vix) = (5)
oo, x<0,

where F is the force that affects the particle in the external field. Thus one can apply an
example of inhomogeneous nonlinear time-fractional Schrédinger equation for a linear
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potential given by

W (x,t) %W (x,0)
i

T V(@)W (x,£) — (1 - cos(rx)) = 0. (6)

The Schrodinger equation is the basic equation in quantum mechanics. This equation
is the generator of probability function producing the temporal and local evaluation of a

mechanical system. In this article, we consider the time-fractional Schrodinger equation

W (x,t) PP (x,t)
1 +

o7 2 +V|W(x,t)|2l1/(x,t)—8R(x,t) =0, O<uac<l, (7)
o X

where § has a real constant. Also, the initial, boundary, and overspecified conditions, re-

spectively, read as follows:

¥(x,0)=f(x), O<x<l,
"I/(Or t) :p(t), l]l(l, t) = Q(t): 0<t=<T, (8)

lI/(x*,t) =g(t), O0<x*<1,0=<t<T.
Therefore, we have

Wx, 1) = ulx, £) + ivx, ), ulx0),vxt) € C([0,1] x [0, T],R),
R(x,0) =f(x,0) + ig(x, 1),  f(x,1),g(x,t) € C([0,1] x [0, T], R),
p(t) =pr(8) +ipa(t),  pr(8),pa(t) € C([0, TL, R),

q(t) = q1(t) + iq2(t),  q1(2),q2(2) € C([0, T], R),

f@) =filx) +ih&), A@),.LE) e C(0, TLR),

€O =a0 +ip®, @0).ge0 eC((0,TLR).

)

By substitution of (9) into (7), the coupled real differential equations are obtained as fol-

lows:

o 2
B lol) | 0D 4 k(2 (x, £) + V2 (%, 2))V(x, ) — 8g(x, ) = O,

) It [2896 (10)
W) _ SUED (2 (x, t) + V(% £))u(x, £) + 8F (x,8) = 0.

For any positive integer 1, the Caputo fractional derivatives of order « read as follows:

ou®(x,t) %fg(t—s)m‘“*%ds, m—-1<a<m,
e 3”;52"”, a=meN.

If h= % is a step size in the x-axis and Af = 1\1/1 is a step size in the ¢-axis, then, for any

point of (x;, ), we have

xi=ith, i=0,1,...,N, tk=kt, k=0,1,...,M.
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By using the discretization of the time-fractional derivative term in [26], we have

o (At) k+1 k+1 r_ k]
Dfu(xi, tes1) ® ——— re—a) u; " —u; +Zﬂ ) | (11)

where ¥ has a numerical approximation of u(x;, ;) and

a; =(+ Dt — (). (12)

3 Implementation of the cubic B-spline functions
In this section, we introduce a set of nodes over [0, 1] such as

O=xp<x1<---<an=1,

and i =x;,1 —x;,i=0,1,...,N — 1, is a step length. We extend the sets as
X_3<X 9<x_1<x0 and Xy <XN+1 <XN42 < XN43-

Definition 3.1 Let

A1(x) =1 + 31 (x — xi-1) + 3h(x — x11)* = 3(x — x;-1)°,

Ax(x) = B® + 30 (%141 — %) + 3h(xi1 — %)% = 31 — x)°.
Then the cubic B-spline is defined as

(x—xi9)*, x € [xigxi],

. Ay (x), x € [xi1, %],

Bix) = 15 1 Aa(), x € [x;, %], (13)
(%2 — %)%, % € [wi1,%00),

0, otherwise

fori=-1,0,...,N + 1.

Also, by using Definition 3.1, the value and derivatives of B;(x) at the nodes x; s are given
by

0 ifm=1i,
4 ifm=i
‘ ‘ ) -3 ifm=i-1,
Bu(x)=131 if|lm—-il=1, B, (x;) = 3
7 ifm=i+1,
0 iflm-il>2,
0 iflm-1/>2, (14)
—% ifm=i,
B,(x)=1% iflm-1=1,
0 if |m| > 2.

Page 5 of 20
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If ¢; and d; are unknown time-dependent quantities, which should be determined, then

N+1 N+1
Unet)= ) OB,  Valwt)= ) di(O)Bi). (15)
i=-1 i=—1

By discretizing the time derivative of Eq. (10) and using the finite difference, we have

FA(;); (uk+1 —uk s ]»(, a;x(ukﬂ—j _ uk—j))
+ (V)" + 1V (u? + V)" = 8g(t, ty11) = O, 16)
o k _ _
I(“Aé)fa) (Vk+1 Y S ol 1“; ( k+l-j _ 4k 1))

— (tr)" = 70" (* +V*)" + 8f (¢, b411) = 0,

where At is the time step. By applying (15) and (16) at the point x = x,,, and using (14), we

have

( n+1 +4cn+1 nm++11) + Vah62(d 2dn +d:ln+1)
+ yar(di_y +4d), + djy 1 ) ((ch_y +4c), + cm+1)2
+ Yo (d,_, +4d)), + dfml) )

= Yu0g(t, tyy1) + (1 —a‘i‘)( ch_q +4ch + Cm+1)

n-1

k—j k—j 0
+E al — a1 ) (¢, +4c, v ) +atuld,
j=1

6

(dn+11+4dn+1+dn+1)_ya_2(cnm L
h

m+1 - 2C + Cm+1)

_Var( Z 1 +4C +Cm+1)((c —1 +4C -l'chrl)2
+ Va(d:ln 1+4d + m+1)2)

-6 ) + (1= ) (e, + 4+ )

o, 0
m+1) + Lani,

n-1

k/ k—j k—j
+Za—a1+1 1 +4d,7 +d
j=1

where y, = (A£)*I' (2 — «). For simplicity, we set

6
an = h2 (d Zd" + dm+1) + yaag(t tn+l)
+(L—af)(ch_y +4c) + )
n-1
+Za —“;+1 +4c_’+cl,(nil)+a u?
j=1

—rAt(d),_, +4d), +d),,,)

x ((ch_y +4c), + cm+1) +(d)y_y +4d), + dfml) )
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and

6
R = y"‘tﬁ (chy =2+ Cpyat) = YaOf (& tas1)

+ (1 _a?)(dn 1t 4d” + dm+1)
+ Z 1+1 1t 4dk_] + dm+l) V

+rAt(c)_) +4c), + )

x ((cph_y +4c), +cm+1) +(d),_, +4d), +d,';+1) )-

Then we have

( n+1 +4Cn+1 fn++11) Xn (dz;ill +4d:1n+1 +dn+1) — Rn (17)

m+1 m*

System (17) consists of 2(N + 1) equations in 2(N + 3) unknown coefficients. In addition,
by imposing the boundary conditions (8), we complete the following equations:

u(x*, tn+1) = Uy () = Cn + 4cn+1 oy gl(tn+1)

Cor1 =

V(x*vtn+1) = Vn+l(xs) = d;qjll + 4dsn+1 df:ll —gZ( n+1)

u(L, b)) = Upsr(n) = Sy + 45 + el = qu (),

V(L tn+1) = Vn+1(xN) = n+1 1t 4dn+1 + djy\l]ill = qz(tn+1)y

where x; = x*,1 <s < N — 1. This system can be rewritten as

AX =B, (18)
where
M; | O
Asnedpon+ny=| - - - |- (19)
0] | M;

The matrices M; and O have the same size (N + 3) x (N + 3), where O is the zero matrix

and
0o ... O 1 4 1 0 0
4 1
0 1 4 1
M, =
1 4 1

Page 7 of 20
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and
T
X=[h et et A dg Ayt AL
T
B= [Xprg,X’f,...,X]’(M,R'fl,RS,RZ’,...,RXm] ,
where
Xﬁl = pi(tus1), XK[H = po(tus1),
RY =qi(tu1), Ry, = qa(tun).
Also,

M;[1,s+1] =1, M;[1,s+2] =4, M;[1,s+3] =1.

By solving (18), the coefficients c; and d; are obtained.
Hence, forj=0,1,...,N, we have

U (), tyin) :c(" + 4-c (1) 1)

j-1 j+1 2
V() tuer) = +4d" + a0,

By using the boundary conditions in (8), the initial vector C° can be obtained as

U(x,,0) = c((i)l + 4c§0) + ci(i)l =g1(0),

V(x,,0) = ) +4d +d) = g(0),
U(xj,O):cj_1+4-cj 1+1 —ﬁ(x, 0<j<N,
V(x;,0)=d?) +4d” +d) = fi(x), 0<j<N,
U(xy,0) = CN_1 + 4cN + c§3+1 = ¢q1(0),

Vixn,0)=dQ | +4dQ +d0 | = 4:(0),

or

AX° =B, (20)
where

X = [an{l,C(y)ﬁrl,C;lﬂl’ ’CK;Jrll’anl,dgu’d;Hl’m,d}\q[tll]T’

B = [g1(0),/i(x0), .. fi (xx), 41(0), £2(0), o), ... fo(xn), 42(0) ]

Since the matrix A is singular and ill-posed, the estimate of X° by (20) will be unstable. In
this work, we adapt the Tikhonov regularization method (TRM) to solve matrix equations
(18) and (20), which are given by

F,(X) = |AX - BIl} + o | R9X]),

Page 8 of 20
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Ey (X°) = [AX° - B*[; + o [ROX°].

By using the first- and second-order TRM, the matrices RV and R® are given by [27]

-1 1 o ... O 0 O
0 -1 1 0 0 0
RO« =+ = | eRM-DXOD,
0 o .. 0 -1 1 0
0 0 O 0O -1 1
-2 1 0 0 O
o 1 -2 1 0 O
R(Z) . . . . . . . e ]R(Miz)X(M)’
o o0 .. 1 -2 1 O
0 O o ... 1 =21

where M = 2(N + 3). Therefore for equations (18) and (20), by using TRM, we have

X, =[ATA+0(R9) RP]ATB, (21)

X0 = [ATA +0(R®) R@] AT B". (22)

To compute the equation and to determine a suitable value of o, we use the generalized
cross-validation (GCV) scheme (see [28—30]).

4 Convergence analysis
In this section, we discuss the convergence of scheme (7). For this purpose, we introduce

A on the interval [a, b] as
A={a=xy<x1<--<x,=hb}.

Also, the spline function is interpolated, the values of the function u € C*[a, b] named S.

First we begin with a useful theorem that was proved by Stoer and Bulirsch [31].
Theorem 4.1 Suppose that u € C*[a,b] and that |f¥(x)| < L for x € [a,b]. Then there

exist constants \; < 2, which do not depend on the partition A, such that for x € [a,b] it
follows that

|uf @) - D), < HLH*T, j=0,1,2,3. (23)

Theorem 4.2 The collocation approximations U, (x) and V,(x) for the solutions u,(x) and

vu(x) of problem (7) for any constant of i > 0 satisfy the following error estimate:

|Gt = Uy v = Vi) ||, < mhe®. (24)
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Proof Let I, (x, t) and let V,,(x, £) be the computed splines for U,(x, t) and V,(x, £) defined
in (15) such that

R N+1
Uxt)= ) & (OB;()
j=—1
and
R N+1 .
Vilx,0) =Y d(6)By(x).
j=-1

Following (18), for (I, and V,,, we have
AX =B, (25)
where

> ant+l an+l an+l an+l Tn+l Jn+l n+l 1 1T
X [c_l,c0 B Y PN A7 A ,...,dN+1] ,

A A A A A A A T
— n n n n n n n n n n
B=[X", X0, X, X3 X, RELRG,RY, LR RY ]

and
X}il =g1(t")’ XXHI = ql(tﬂ)’ Rfl =g2(tn)t RX[+1 = qZ(tn)-

By subtracting (18) and (25), we have

AX-X)=(B-B), (26)
where
B-B=[0,X}-Xg, (27)

X7 -X7,..., X% - X%,0,0,R: — R RY - RY,..., R - RY, 0],

and for every 0 < m < N, we have

X! = (ya (= Vi om) = Vi) (U2 ) + V2 (%)) + 88 (8 L))

n-1

+ (1= ) Uy o) + @l U () + Y (a2 - ﬂﬁl)ukj(xm)),

Jj=1

X!, = (Va (=V @) = 1V ) (U2 () + V() + 88 (8 L))

n-1

+(1- a‘{‘)lf[n(xm) +a®Uy(x,,) + Z(a}” - a}il)[[kj(xm)),

-1
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R} = (Va(u,;’(xm) + Uy () (U () + V2 () = 8 (&, 1))
n-1

+ (1= af) Vi) + agVolwm) + Y _(a - afiy) vk_,(xm)>,

j=1

ﬁnm = (Va (l:[;/«,/(xm) + rl:[n(xm)([:[;%(xm) + Vs(xm)) - Sf(t: tn+1))

n-1
+ (1= af) Vi) + ag Vo) + Y (a - afiy) Vk_,(xm)),
j=1
Therefore
X2 =X = e (= (V) @) = V(%))

- rVn(xm)(u;%(xm) + Vnz(xm)) + V‘A/n(xm)(i[,f(xm) + ‘A/;f(xm)))
+ (1 - ﬂ?)(un(xm) - I:[n(xm)) + dz(uo(xm) - I:[O(xm))

—

n—

+ (@ = ) Uicim) = Uiy )|
j

I
—

By using the Cauchy—Schwarz inequality, we have
x5, - X5,
=V | Vy:/(xm) - ‘A/;;/(xm)| + |(1 - (l‘f) | |un(xm) - [jn(xm)|
+ |a| |Uo(em) = Uo(x) |

N Z| @ )| Uk Gom) = L)

+ Vo | Vi) (U2 Gm) + V2 m)) = Vi) (L2 () + V()|
1)

()= |V3(xm) - V:(xm) + Vn(xm)ug(xm) - ‘A/n(xm)ﬁg(xm)i
= [ (V) = Visoom))” = Vi on) (Vi) = Vo))
+ Vz(xm)(v (xm) - V (xm)) + uz(xm)( (xm) - (xm))

2

- U (6 Via o) (U ) = (%)) = Vi) (Unn() = L (6))
- Un(xm)(un(xm) - I:[n(xm))(v (xm) — V (xm))

+ (un(xm) - I:[n(xm)) (V (%) — (xm))i
Then, after simplification and differentiation, we have

X, - X5

= Ya | V;;/(xm) - ‘A/y/,/(xm){ + ’(1 - a(f) { |un(xm) - I:[n(xm){
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+ |a] |Uo(em) — Uo(x)|

+ Z| aj )| Uk Gem) = Uii(xm) |
Y (| (Valm) = Vi)’ |

| Vi) || (Vi) = Vo))’

+ | V2o || (Vi) = V()|

+ | U200 | | (Vi) = Vi) |

| U o) | | Vi o) || (U G) = T (0)) |

A

+ |Vn(xm)”(un(xm) - u (xm))2’
+ | UnGen)| | (UnCm) = L) | (Vi i) = V)|

+ |(un(xm u (xm ) ||( xm) - xm))‘)

By using Theorem 4.1, we have

X2 - X2 < Ve (Aszhz + (1 - a§)roL,h*

n—-1
+agroLyh* + (hoLyh*) Z{ @} )
j=1

+ Var((oLoh*)’ + M, (AL i*)* + M2 (2oL h%)
+ M2 (hoLyh*) + MM, (hoL,h*) + M, (AL, H*)

+ My, (ML i) (oL i) + (hoLuh*)? (RoLh%)).
After simplification, we get
X, - X5

<n |:7/a (Xsz + (1 - d‘f)koLuh2 +agioL, >

-1
+ (AoLuh?) Z a; —“]+1 )
j=1

+ Yur(RoLt 3 ) + M, (oL 3)* + M2 (hoL %) + M>(hoLyH?)

+ MM, (oL ) + M, (AoLh?)” + M, (roLuh*) (MoL 1)
+ (AoLuh4)2(A0Lvh2)):|. (28)

So we can rewrite (28) as follows:

X)X < #20,
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where

M, = |:J/a (ksz + (1= a$)AoLyh® + agroL,h*

n-1
w5}
j=1

+ Var(hoLoh?)® + My (oL %) + M2 (hoL,H?) + M2 (oL, H?)

+ MM, (oLuh?) + M, (hoLu®)? + My (oLuh?) (hoL 1)
+ (AoLuh3)2()\0Lvh2))}.
Similarly, we have
IR% —R" | < H*M,.
If M = max{M;, M,}, then
Xz -Xn| <MAK?,  |RI-R%| <MK (29)
From (27), Eq. (29) is deduced
1B - Blloo < M. (30)
By applying (26) and (21), we have
(X -%) =[ATA +a(R?) RO AT (B - B).
Using relation (30) and taking the infinity norm, we find

IX = Xlloo < [|(ATA + a(R<Z))TR<Z>)‘1AT | 1B =Bl

< [(ATA + «(RD)'RO) AT | MK < M2, (31)
where
M, = |(ATA +a(R?) RE)AT|_M.
Thus

”(un Uy, vn— V”)”oo = |ltty = Unlloo + IV = Viullo
< ltty = Unlloo + 1Un = Unlloo + IVi = Valloo

+ Vi = Vialloos



Erfanian et al. Advances in Difference Equations (2020) 2020:344 Page 14 of 20

such that
R N+1
U (%) = U () = Y (cf = &) By(x),
i=—1
R N+1
[Un) = Unloen)| = max {|e -]} g&(xm) , 0<m=N,
and
N+1 .
V() = V() = Y (df - d') Bilw),
i=—1
R . N+1
V@) = Valon)| = max {|d; -]} ;|Bi(xm> , 0=m=N.
We can easily see that
N+1
> |Bilxm)| <10, 0<m <N,
i=-1
S0
” Uy (xm) — I:[n(xm) ” < 10M,/*, “ Vi (%m) — ‘A/n(xm)” < 10My/”. (32)
o0 oo

Therefore, according to (23) and (32), we obtain

|Gt = Uy v = Vi) ||, < AoLh* + 10My/* + AoLh* + 10M, /i

= I (2hLh® + 20M,).
Setting y = 2XoLh* + 20M;, we have
“(un - Um Vn — Vn) “oo f )/hz (33)

In addition, we calculate the time discretization process of Eq. (17). For this purpose, we

discretize the system of (7) in the time variable:

1 b 9u(x;, s)
Du(x; t,) = t,—s)d
(s ) F(l—a)/o oy ) ds

j—1

1 LINRYUTN I o B
) mz./(] DA |: l Atl +O(At)i|(nAt_S)adS

j=1

L[
=F(1—a>ZH At +O(At)]

j=1

Atl—a
l-«

x [(n-j+ 1) - (n —j)l_a]}
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- r(Azt: o 2o =) (0= + ) = (=)'
j=1
o (= 1= =) 0(ar ) S
j=1

Hence, according to Theorem 4.2 and Eqs. (33) and (34), we have
|t = Uy v = Vi) |, < T(AE + 1),
where 7 is constant and the order of convergence is O(At>™® + h2). O
5 lllustrative examples
The results of the proposed method are compared with the RBF method (RBFM), and the

accuracy of the method is shown in all examples. Also, we define the root mean square

(RMS) or total error as follows:

1 M ‘ 5
_ JJexact __ .\numerical
RMS = ”4;1@“» p(t:) )%

where the total error is RMS and the total number of estimated values is M. Also, we

. _ _ 1 I
consider 7'=1, N = 55, and At = 1555+

Example 5.1 Let

W x,t) W (xt
i +
ot 0x2

), | (x, 0@ (%, 1)

2cos(x)t™

o 4 . ol 14 2sin(x) ™\
-t ((t - 1) sin(x) + m) —it ((t - 1) cos(x) + m) =0

with the initial and boundary condition as follows:

¥(x,0)=0, 0<x<1,

¥ (0.1,¢) = £(sin(0.1) + i cos(0.1)), W(1,t) = £*(sin(1) + icos(1))
and the exact solution is ¥ (x, £) = £2(sin(x) + i cos(x)).

The plots of approximation and exact solutions between of p; (£), p»(¢) and u(x, £), v(x, £)
for Example 5.1 with noisy data, are drawn in Fig. 1 and Fig. 2, respectively. Also, the plots
of error of u(x,t) and v(x,t) for Example 5.1 with the noisy data is drawn in Fig. 3. In

addition, the numerical solutions of Example 5.1 with « = 0.5, is shown in Table 1.
Example 5.2 Let

Wx,t) W (xt
i +
ot 0x2

), | (x,0) @ (x,2) - R(x, £) = 0,
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Figure 1 The plots of approximation and exact solutions of p; (t) and p,(t) for Example 5.1 with the noisy data

u(x.t)_Exact
|u(x,t)_Numerical

noisy data

v(x.t)_Exact
|v(x,t)_Numerical

Figure 2 The plots of approximate solutions and exact solutions of u(x, t) and v(x, t)for Example 5.1 with the

Error of real part

Error of imaginary part

Figure 3 The plots of error of u(x, t) and v(x, t) for Example 5.1 with the noisy data
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Table 1 Numerical solutions of Example 5.1 with o = 0.5

t Exact solution Numerical solution (CBSM) Numerical solution (RBFM)
p1(t) pa(t) p7 (@) p3 (@) Py () p3 ()
0.1 0.000000  0.010000  0.000111 0.009914 0.004131 0.011617
0.2 0.000000  0.040000  0.000470 0.040296 0.012340 0.047792
03 0.000000  0.090000  0.000963 0.091273 0.022762 0.107879
04 0.000000  0.160000  0.001525 0.162755 0.035030 0.191759
05 0.000000  0.250000  0.002211 0.254665 0.047470 0.299435
0.6 0.000000  0.360000  0.003083 0.367052 0.058489 0.429440
0.7 0.000000 0490000  0.004163 0.500006 0.065408 0.581127
0.8 0.000000  0.640000  0.005487 0.653599 0.069668 0.752353
0.9 0.000000  0.810000  0.007167 0.827945 0.058706 0.970170
1 0.000000 1.000000  0.009427 1.023274 0.042043 1.206334
RMS 3969 x 1072 9692 x 107 4700 x 102 862 x 1072
Execution time (second) 710.8 833.8
T
10 t:\”?g% 0.8
%% 0.7
0.9 b
0.6
_05
208 54
20.4
0.7 03
% 0
0.6 %. 0.1
o,

t

l *  Numerical Solution 8  Exact Solulionl

0.1 02 03 04 05 06 07 08 09

0.1 02 03 04 05 06 07 08 09

t

l *  Numerical Solution &  Exact Solution]

Figure 4 The plots of approximation and exact solutions of p; (t) and p,(t) for Example 5.2 with the noisy data

with the initial and boundary condition as follows:

¥ (x,0) = cos(x) + isin(x),

¥(0.1,2) = (cos(0.1 +£) +isin(0.1 + 1)),

The exact solution is

0<x<l1,

¥(x,t) = (cos(x +t) +isin(x + t)),

0<x<1,0<t<T.

Also, R(x) is obtained by the conditions of the problem.

w(l,t) = (cos(l +1t) +isin(1 + t)).

Similar to the previous examples, the plots of approximation and exact solutions be-

tween of p;(£), p2(¢) and u(x, t), v(x, t) for Example 5.2 with noisy data, are drawn in Fig. 4

and Fig. 5, respectively. Also, the plots of error of u(x,¢) and v(x,¢) for Example 5.2 with

the noisy data is drawn in Fig. 6. In addition, the numerical solutions of Example 5.2 with

o = 0.75, is shown in Table 2.
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noisy data

[v(x.t)_Exact

| |v(x.t) Numerical |

8 06
X

04 02

Figure 5 The plots of approximate solutions and exact solutions of u(x, t) and v(x, t) for Example 5.2 with the

04

0.6

Error of real part

0.047
0.037]
0.02
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04
06 g

Error of imaginary part

Figure 6 The plots of error of u(x, t) and v(x, t) for Example 5.2 with the noisy data

Table 2 Numerical solutions of Example 5.2 with o = 0.75

t

Exact solution

Numerical solution (CBSM)

Numerical solution (RBFM)

pi(0) pa() P P Pr® P

01 0995004 0099833  1.025001 0127985 1.137524 0.124301
02 0980067  0.198669  1.013504 0224161 1.088189 0143896
03 0955336 0295520  0.982968 0320768 1.049366 0279377
04 0921061 0389418  0.945771 0417098 1021368 0361741
05 0877583 0479426  0.900361 0508825 0.966005 0448973
06 0825336 0564642  0.845493 0595067 0905687 0534138
07 0764842 0644218  0.782633 0675325 0835528 0610549
038 0696707 0717356 0709399 0749195 0754661 0681966
09 0621609 0783327  0.628863 0817247 0667961 0.746485
1 0540302 0841471 0541769 0878423 0572605 0803677
RMS 2209 x 1072 2936 x 107 8639 x 107 3492 x 107
Execution time (second) 7829 890.2
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6 Conclusion

Itis a fact that the time evolution of the system or the wave function in quantum mechanics
is described by the Schrodinger equation. By applying a finite-difference formula to time
discretization and cubic B-splines for the spatial variable, we got a numerical method for
solving the Schrodinger equation, the simplification of implementation and lower compu-
tational cost can be mentioned as its main advantages. We proved the convergence of the
method by getting an upper bound and using some theorems. We also computed the order
of the mentioned equations in the convergence analysis section. Finally, in the illustrative
examples section, we showed two examples with the approximate solutions, which were
obtained by using the cubic B-splines for the spatial variable. The plots of approximate

and exact solutions with the noisy data are presented in figures.
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