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Abstract
We study the inhomogeneous nonlinear time-fractional Schrödinger equation for
linear potential, where the order of fractional time derivative parameter α varies
between 0 < α < 1. First, we begin from the original Schrödinger equation, and then
by the Caputo fractional derivative method in natural units, we introduce the
fractional time-derivative Schrödinger equation. Moreover, by applying a
finite-difference formula to time discretization and cubic B-splines for the spatial
variable, we approximate the inhomogeneous nonlinear time-fractional Schrödinger
equation; the simplicity of implementation and less computational cost can be
mentioned as the main advantages of this method. In addition, we prove the
convergence of the method and compute the order of the mentioned equations by
getting an upper bound and using some theorems. Finally, having solved some
examples by using the cubic B-splines for the spatial variable, we show the plots of
approximate and exact solutions with the noisy data in figures.

Keywords: Schrödinger equation; Cubic B-spline; Collocation method; Tikhonov
regularization method

1 Introduction
The most famous equation in quantum mechanics that can explain the behavior of par-
ticles in Hilbert spaces is the Schrödinger equation. This equation is obtained in a dif-
ferent form in quantum physics, for example, in canonical quantization of the quantum
mechanics, time evolution of the wave function leads to the Schrödinger equation. Also,
Feynman [1] applied a path integral approach for a Gaussian probability distribution func-
tion to achieve the Schrödinger equation. The mathematical appearance of this equation
is similar to a diffusion equation that can be derived by taking into account probability
distributions.

Recently, the word fractional has been widely used in various sciences, especially, physics
and mathematics. This concept for the first time was introduced by Mandelbrot [2] in
many research items. Feynman’s path integral first introduced the concept of fractal into
quantum mechanics.

The fractional derivative Schrödinger equation was generalized by Laskin [3–7] two
decades ago. It is an extension of the Feynman path integral formalism. This prominent
formalism of quantum mechanics is a basis for the fractional quantum mechanics. As we
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know, the Schrödinger equation has two parts: the first part contains the first-order time
derivative, and the second part has the second-order space derivative. Laskin [3–7] used
the time-fractional derivative Schrödinger equation and showed that the connection be-
tween the statistical form of the quantum path was of the same nature as basic equations
of quantum mechanics. In the Laskin scenario, the time-fractional derivative Schrödinger
equation correlates with consideration of the non-Markovian evolutions. Also, he intro-
duced the space-fractional derivative by the Levy distributions for all the possible paths.
Furthermore, it has been shown that the fractional Hamiltonian and parity remain con-
served, and by the time-fractional derivative the spectrum of energy levels of the hydrogen
atom and the harmonic oscillator are computed. He, in his paper, investigated the energy
levels for the fractional three-dimensional Coulomb potential Bohr atom; see [3–7]. The
fractional Laplacian–Schrödinger equation for initial value problems was investigated by
Hu and Kallianpur [8], in which the solutions are represented as probability. Also, the
Green function in quantum scattering and the barrier influence were computed by Guo
and Xu [9].

Some of the properties of time-fractional derivation nonlinear Schrödinger equation,
such as fractal oscillator, were investigated by Naber [10]. This process was done by re-
placing the first order of time derivatives with a Caputo fractional derivative [11]; mean-
while, the second-order space derivatives remained unchanged. In [10], the order of the
time-fractional Schrödinger derivative is 0 < α < 1, and with this order, the Schrödinger
equation for a free particle in box and a finite potential well was solved. After that, the
Schrödinger equation with both space and time-fractional derivatives was developed and
computed by Wang and Xu [12] for free particle and an infinite rectangular potential
well. The solution of Coulomb potential, linear potential, and δ-potential for the fractional
Schrödinger equation were investigated in [13].

In this paper, we study the Schrödinger equation based on fractal time. This equation
was discussed in [3–7, 10, 14–21]. In paper [14], according to Caputo’s fractional deriva-
tives, Planck mass and constant were represented by fractal equations whose dimensions
are also fractal quantities. By this technique, they have shown that the time-dependent
fractal Schrödinger differential equation for a particle in the potential field exactly matches
the standard form of the equation. In [10], the Schrödinger fractal time wave function for
free particle and wells was obtained by using the Mittag-Leffler function with the com-
plex argument, and the eigenvalues corresponding to this function were also shown. In
paper [3–7] also presented by Laskin, a Schrödinger time-independent fractal equation
was considered and applications of this equation such as determining the shape of the
Schrödinger wave function and its exact solution, the wave function and the eigenvalues
for infinite potential wells, and in particular the values for a linear potential field, were
obtained for 0 < α < 1. In all of these papers, the Schrödinger fractional time differen-
tial equation was investigated, and for different potentials, the wave function and specific
differential equation values were specified. In this paper, we solve the general form of a
heterogeneous fractal time differential equation corresponding to a heterogeneous frac-
tal time Schrödinger equation using the B-spline method [22] and obtain numerical an-
swers for such a function. To make this more concrete, we solve the fractal time-dependent
Schrödinger equation for a linear potential field with this method and present the exact
solutions.
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2 The inhomogeneous nonlinear time-fractional Schrödinger equation
One way to do a fractal form of the time-fractional derivation of nonlinear Schrödinger
equation is to apply the natural units � = c = 1 for a wave function. Some people such
as [10] used Planck’s units for our models, both of which are the same. The definition of
Plank’s units [23] in terms of three theoretical physics constants G,�, c, where G states for
gravitational constant, � is Planck’s constant, and c denotes the speed of light, is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Lpl =
√

G�

c3 ,

Tpl =
√

G�

c5 ,

Mpl =
√

�c
G ,

Epl = Mplc2,

(1)

where the last equation denotes the energy in Planck’s scale. Indeed, in natural units, Lpl =
Tpl = 1

Mpl
= 1

Epl
.

In our model, for the construction of the time-fractional derivative for a nonlinear
Schrödinger equation in natural units, we start from the primary definition of this equa-
tion. The Schrödinger equation in one-dimensional space-time was introduced in [24] as
follows:

i�
∂Ψ

∂t
= –

�
2

2m
∂2Ψ

∂x2 + V (x)Ψ , (2)

where V (x) indicates the potential of the system. In quantum mechanics literature, various
potential functions are usually chosen to describe the models. In this work, to construct
a nonlinear time-derivative fractional Schrödinger equation, we consider Eq. (2) in terms
of natural units as follows:

i
∂Ψ

∂t
= –

1
2m

∂2Ψ

∂x2 + V (x)Ψ . (3)

Now, we apply the Caputo fractional derivation method to introduce nonlinear
Schrödinger equation in one-dimensional spaces as follows:

iDν
t Ψ = –

1
2m

∂2Ψ

∂x2 + V (x)Ψ . (4)

In Eq. (4), Dν
t denotes the Caputo fractional time derivative of order 0 < ν < 1. The main

intention of this paper is to consider the abstract time-fractional evolution equation (4)
on a potential well, where ∂νΨ

∂tν denotes the Caputo fractional derivative.
Now, we consider the motion of a particle in a linear potential field [25] which is gener-

ated by an external field. The potential arising from this field reads as follows:

V (x) =

⎧
⎨

⎩

Fx, x ≥ 0, (F > 0),

∞, x < 0,
(5)

where F is the force that affects the particle in the external field. Thus one can apply an
example of inhomogeneous nonlinear time-fractional Schrödinger equation for a linear
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potential given by

i
∂αΨ (x, t)

∂tα +
∂2Ψ (x, t)

∂x2 – V (x)Ψ (x, t) –
(
1 – cos(πx)

)
= 0. (6)

The Schrödinger equation is the basic equation in quantum mechanics. This equation
is the generator of probability function producing the temporal and local evaluation of a
mechanical system. In this article, we consider the time-fractional Schrödinger equation

i
∂αΨ (x, t)

∂tα
+

∂2Ψ (x, t)
∂x2 + r

∣
∣Ψ (x, t)

∣
∣2Ψ (x, t) – δR(x, t) = 0, 0 < α < 1, (7)

where δ has a real constant. Also, the initial, boundary, and overspecified conditions, re-
spectively, read as follows:

Ψ (x, 0) = f (x), 0 < x < 1,

Ψ (0, t) = p(t), Ψ (1, t) = q(t), 0 ≤ t ≤ T ,

Ψ
(
x∗, t

)
= g(t), 0 < x∗ < 1, 0 ≤ t ≤ T .

(8)

Therefore, we have

Ψ (x, t) = u(x, t) + iv(x, t), u(x, t), v(x, t) ∈ C
(
[0, 1] × [0, T],R

)
,

R(x, t) = f (x, t) + ig(x, t), f (x, t), g(x, t) ∈ C
(
[0, 1] × [0, T],R

)
,

p(t) = p1(t) + ip2(t), p1(t), p2(t) ∈ C
(
[0, T],R

)
,

q(t) = q1(t) + iq2(t), q1(t), q2(t) ∈ C
(
[0, T],R

)
,

f (x) = f1(x) + if2(x), f1(t), f2(t) ∈ C
(
[0, T],R

)
,

g(t) = g1(t) + ig2(t), g1(t), g2(t) ∈ C
(
[0, T],R

)
.

(9)

By substitution of (9) into (7), the coupled real differential equations are obtained as fol-
lows:

⎧
⎨

⎩

∂uα (x,t)
∂tα + ∂2v(x,t)

∂x2 + r(u2(x, t) + v2(x, t))v(x, t) – δg(x, t) = 0,
∂vα (x,t)

∂tα – ∂2u(x,t)
∂x2 – r(u2(x, t) + v2(x, t))u(x, t) + δf (x, t) = 0.

(10)

For any positive integer m, the Caputo fractional derivatives of order α read as follows:

∂uα(x, t)
∂tα

=

⎧
⎨

⎩

1
Γ (m–α)

∫ t
0 (t – s)m–α–1 ∂um(x,s)

∂sm ds, m – 1 < α < m,
∂um(x,t)

∂tm , α = m ∈N.

If h = 1
N is a step size in the x-axis and 	t = T

M is a step size in the t-axis, then, for any
point of (xi, tk), we have

xi = ih, i = 0, 1, . . . , N , tk = kτ , k = 0, 1, . . . , M.
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By using the discretization of the time-fractional derivative term in [26], we have

Dα
t u(xi, tk+1) ≈ (	t)–α

Γ (2 – α)

[

uk+1
i – uk

i +
k∑

r=1

aα
r
(
uk+1–r

i – uk–j
i
)
]

, (11)

where uk
i has a numerical approximation of u(xi, tk) and

aα
j = (j + 1)1–α – (j)1–α . (12)

3 Implementation of the cubic B-spline functions
In this section, we introduce a set of nodes over [0, 1] such as

0 = x0 < x1 < · · · < xN = 1,

and h = xi+1 – xi, i = 0, 1, . . . , N – 1, is a step length. We extend the sets as

x–3 < x–2 < x–1 < x0 and xN < xN+1 < xN+2 < xN+3.

Definition 3.1 Let

A1(x) = h3 + 3h2(x – xi–1) + 3h(x – xi–1)2 – 3(x – xi–1)3,

A2(x) = h3 + 3h2(xi+1 – x) + 3h(xi+1 – x)2 – 3(xi+1 – x)3.

Then the cubic B-spline is defined as

Bi(x) =
1
h3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x – xi–2)3, x ∈ [xi–2, xi–1],

A1(x), x ∈ [xi–1, xi],

A2(x), x ∈ [xi, xi+1],

(xi+2 – x)3, x ∈ [xi+1, xi+2],

0, otherwise

(13)

for i = –1, 0, . . . , N + 1.

Also, by using Definition 3.1, the value and derivatives of Bi(x) at the nodes xi s are given
by

Bm(xi) =

⎧
⎪⎪⎨

⎪⎪⎩

4 if m = i,

1 if |m – i| = 1,

0 if |m – i| ≥ 2,

B′
m(xi) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if m = i,

– 3
h if m = i – 1,

3
h if m = i + 1,

0 if |m – 1| ≥ 2,

B′′
m(xi) =

⎧
⎪⎪⎨

⎪⎪⎩

– 12
h2 if m = i,

6
h2 if |m – 1| = 1,

0 if |m| ≥ 2.

(14)
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If ci and di are unknown time-dependent quantities, which should be determined, then

Un(x, t) =
N+1∑

i=–1

cn
i (t)Bi(x), Vn(x, t) =

N+1∑

i=–1

dn
i (t)Bi(x). (15)

By discretizing the time derivative of Eq. (10) and using the finite difference, we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(	t)–α

Γ (2–α) (uk+1 – uk +
∑k

j=1 aα
j (uk+1–j – uk–j))

+ (vxx)n + rvn(u2 + v2)n – δg(t, tn+1) = 0,
(	t)–α

Γ (2–α) (vk+1 – vk +
∑k

j=1 aα
j (vk+1–j – vk–j))

– (uxx)n – run(u2 + v2)n + δf (t, tn+1) = 0,

(16)

where 	t is the time step. By applying (15) and (16) at the point x = xm and using (14), we
have

(
cn+1

m–1 + 4cn+1
m + cn+1

m+1
)

+ γα

6
h2

(
dn

m–1 – 2dn
m + dn

m+1
)

+ γαr
(
dn

m–1 + 4dn
m + dn

m+1
)((

cn
m–1 + 4cn

m + cn
m+1

)2

+ γα

(
dn

m–1 + 4dn
m + dn

m+1
)2)

= γαδg(t, tn+1) +
(
1 – aα

1
)(

cn
m–1 + 4cn

m + cn
m+1

)

+
n–1∑

j=1

(
aα

j – aα
j+1
)(

ck–j
m–1 + 4ck–j

m + ck–j
m+1

)
+ aα

nu0
i ,

(
dn+1

m–1 + 4dn+1
m + dn+1

m+1
)

– γα

6
h2

(
cn

m–1 – 2cn
m + cn

m+1
)

– γαr
(
cn

m–1 + 4cn
m + cn

m+1
)((

cn
m–1 + 4cn

m + cn
m+1

)2

+ γα

(
dn

m–1 + 4dn
m + dn

m+1
)2)

= –γαδf (t, tn+1) +
(
1 – aα

1
)(

dn
m–1 + 4dn

m + dn
m+1

)

+
n–1∑

j=1

(
aα

j – aα
j+1
)(

dk–j
m–1 + 4dk–j

m + dk–j
m+1

)
+ aα

nv0
i ,

where γα = (	t)αΓ (2 – α). For simplicity, we set

Xn
m = –γα

6
h2

(
dn

m–1 – 2dn
m + dn

m+1
)

+ γαδg(t, tn+1)

+
(
1 – aα

1
)(

cn
m–1 + 4cn

m + cn
m+1

)

+
n–1∑

j=1

(
aα

j – aα
j+1
)(

ck–j
m–1 + 4ck–j

m + ck–j
m+1

)
+ aα

nu0
i

– r	t
(
dn

m–1 + 4dn
m + dn

m+1
)

× ((
cn

m–1 + 4cn
m + cn

m+1
)2 +

(
dn

m–1 + 4dn
m + dn

m+1
)2)
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and

Rn
m = γαt

6
h2

(
cn

m–1 – 2cn
m + cn

m+1
)

– γαδf (t, tn+1)

+
(
1 – aα

1
)(

dn
m–1 + 4dn

m + dn
m+1

)

+
n–1∑

j=1

(
aα

j – aα
j+1
)(

dk–j
m–1 + 4dk–j

m + dk–j
m+1

)
+ aα

nv0
i

+ r	t
(
cn

m–1 + 4cn
m + cn

m+1
)

× ((
cn

m–1 + 4cn
m + cn

m+1
)2 +

(
dn

m–1 + 4dn
m + dn

m+1
)2).

Then we have

(
cn+1

m–1 + 4cn+1
m + cn+1

m+1
)

= Xn
m,

(
dn+1

m–1 + 4dn+1
m + dn+1

m+1
)

= Rn
m. (17)

System (17) consists of 2(N + 1) equations in 2(N + 3) unknown coefficients. In addition,
by imposing the boundary conditions (8), we complete the following equations:

u
(
x∗, tn+1

)
= Un+1(xs) = cn+1

s–1 + 4cn+1
s + cn+1

s+1 = g1(tn+1),

v
(
x∗, tn+1

)
= Vn+1(xs) = dn+1

s–1 + 4dn+1
s + dn+1

s+1 = g2(tn+1),

u(1, tn+1) = Un+1(xN ) = cn+1
N–1 + 4cn+1

N + cn+1
N+1 = q1(tn+1),

v(1, tn+1) = Vn+1(xN ) = dn+1
N–1 + 4dn+1

N + dn+1
N+1 = q2(tn+1),

where xs = x∗, 1 ≤ s ≤ N – 1. This system can be rewritten as

AX = B, (18)

where

A2(N+3)×2(N+3) =

⎛

⎜
⎝

M1 | O
– – –
O | M1

⎞

⎟
⎠ . (19)

The matrices M1 and O have the same size (N + 3) × (N + 3), where O is the zero matrix
and

M1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 . . . 0 1 4 1 0 . . . 0
1 4 1
0 1 4 1

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

... 1 4 1
0 . . . 1 4 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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and

X =
[
cn+1

–1 , cn+1
0 , cn+1

1 , . . . , cn+1
N+1, dn+1

–1 , dn+1
0 , dn+1

1 , . . . , dn+1
N+1

]T ,

B =
[
Xn

–1, Xn
0, Xn

1, . . . , Xn
N+1, Rn

–1, Rn
0, Rn

1, . . . , Rn
N+1

]T ,

where

Xn
–1 = p1(tn+1), Xn

N+1 = p2(tn+1),

Rn
–1 = q1(tn+1), Rn

N+1 = q2(tn+1).

Also,

M1[1, s + 1] = 1, M1[1, s + 2] = 4, M1[1, s + 3] = 1.

By solving (18), the coefficients cj and dj are obtained.
Hence, for j = 0, 1, . . . , N , we have

U(xj, tn+1) =c(n+1)
j–1 + 4c(n+1)

j + c(n+1)
j+1 ,

V (xj, tn+1) =d(n+1)
j–1 + 4d(n+1)

j + d(n+1)
j+1 .

By using the boundary conditions in (8), the initial vector C0 can be obtained as

U(xs, 0) = c(0)
s–1 + 4c(0)

s + c(0)
s+1 = g1(0),

V (xs, 0) = d(0)
s–1 + 4d(0)

s + d(0)
s+1 = g2(0),

U(xj, 0) = c(0)
j–1 + 4c(0)

j + c(0)
j+1 = f1(xj), 0 ≤ j ≤ N ,

V (xj, 0) = d(0)
j–1 + 4d(0)

j + d(0)
j+1 = f2(xj), 0 ≤ j ≤ N ,

U(xN , 0) = c(0)
N–1 + 4c(0)

N + c(0)
N+1 = q1(0),

V (xN , 0) = d(0)
N–1 + 4d(0)

N + d(0)
N+1 = q2(0),

or

AX0 = B∗, (20)

where

X =
[
cn+1

–1 , cn+1
0 , cn+1

1 , . . . , cn+1
N+1, dn+1

–1 , dn+1
0 , dn+1

1 , . . . , dn+1
N+1

]T ,

B =
[
g1(0), f1(x0), . . . , f1(xN ), q1(0), g2(0), f2(x0), . . . , f2(xN ), q2(0)

]T .

Since the matrix A is singular and ill-posed, the estimate of X0 by (20) will be unstable. In
this work, we adapt the Tikhonov regularization method (TRM) to solve matrix equations
(18) and (20), which are given by

Fσ (X) = ‖AX – B‖2
2 + σ

∥
∥R(z)X

∥
∥2

2,
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Fσ

(
X0) =

∥
∥AX0 – B∗∥∥2

2 + σ
∥
∥R(z)X0∥∥2

2.

By using the first- and second-order TRM, the matrices R(1) and R(2) are given by [27]

R(1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

–1 1 0 . . . 0 0 0
0 –1 1 0 . . . 0 0
...

...
...

...
...

...
...

0 0 . . . 0 –1 1 0
0 0 0 . . . 0 –1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ R
(M–1)×(M),

R(2) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 –2 1 . . . 0 0 0
0 1 –2 1 . . . 0 0
...

...
...

...
...

...
...

0 0 . . . 1 –2 1 0
0 0 0 . . . 1 –2 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈R
(M–2)×(M),

where M = 2(N + 3). Therefore for equations (18) and (20), by using TRM, we have

Xσ =
[
AT A + σ

(
R(z))T R(z)]–1AT B, (21)

X0
σ =

[
AT A + σ

(
R(z))T R(z)]–1AT B∗. (22)

To compute the equation and to determine a suitable value of σ , we use the generalized
cross-validation (GCV) scheme (see [28–30]).

4 Convergence analysis
In this section, we discuss the convergence of scheme (7). For this purpose, we introduce
	 on the interval [a, b] as

	 = {a = x0 < x1 < · · · < xn = b}.

Also, the spline function is interpolated, the values of the function u ∈ C4[a, b] named S	.
First we begin with a useful theorem that was proved by Stoer and Bulirsch [31].

Theorem 4.1 Suppose that u ∈ C4[a, b] and that |f (4)(x)| ≤ L for x ∈ [a, b]. Then there
exist constants λj ≤ 2, which do not depend on the partition 	, such that for x ∈ [a, b] it
follows that

∥
∥u(j)(x) – S(j)

	 (x)
∥
∥∞ ≤ λjLh4–j, j = 0, 1, 2, 3. (23)

Theorem 4.2 The collocation approximations Un(x) and Vn(x) for the solutions un(x) and
vn(x) of problem (7) for any constant of μ > 0 satisfy the following error estimate:

∥
∥(un – Un, vn – Vn)

∥
∥∞ ≤ μh2. (24)
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Proof Let Ûn(x, t) and let V̂n(x, t) be the computed splines for Un(x, t) and Vn(x, t) defined
in (15) such that

Ûn(x, t) =
N+1∑

j=–1

ĉn
j (t)Bj(x)

and

V̂n(x, t) =
N+1∑

j=–1

d̂n
j (t)Bj(x).

Following (18), for Ûn and V̂n, we have

AX̂ = B̂, (25)

where

X̂ =
[
ĉn+1

–1 , ĉn+1
0 , ĉn+1

1 , . . . , ĉn+1
N+1, d̂n+1

–1 , d̂n+1
0 , d̂n+1

1 , . . . , d̂n+1
N+1

]T ,

B̂ =
[
Xn

–1, X̂n
0, X̂n

1, . . . , X̂n
N , Xn

N+1, Rn
–1, R̂n

0, R̂n
1, . . . , R̂n

N , Rn
N+1

]T ,

and

Xn
–1 = g1(tn), Xn

N+1 = q1(tn), Rn
–1 = g2(tn), Rn

N+1 = q2(tn).

By subtracting (18) and (25), we have

A(X – X̂) = (B – B̂), (26)

where

B – B̂ =
[
0, Xn

0 – X̂n
0, (27)

Xn
1 – X̂n

1, . . . , Xn
N – X̂n

N , 0, 0, Rn
0 – R̂n

0, Rn
1 – R̂n

1, . . . , Rn
N – R̂n

N , 0
]
,

and for every 0 ≤ m ≤ N , we have

Xn
m =

(

γα

(
–V ′′

n (xm) – rVn(xm)
(
U2

n(xm) + V 2
n (xm)

)
+ δg(t, tn+1)

)

+
(
1 – aα

1
)
Un(xm) + aα

nU0(xm) +
n–1∑

j=1

(
aα

j – aα
j+1
)
Uk–j(xm)

)

,

X̂n
m =

(

γα

(
–V̂ ′′

n (xm) – rV̂n(xm)
(
Û2

n(xm) + V̂ 2
n (xm)

)
+ δg(t, tn+1)

)

+
(
1 – aα

1
)
Ûn(xm) + aα

nÛ0(xm) +
n–1∑

j=1

(
aα

j – aα
j+1
)
Ûk–j(xm)

)

,
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Rn
m =

(

γα

(
U ′′

n (xm) + rUn(xm)
(
U2

n(xm) + V 2
n (xm)

)
– δf (t, tn+1)

)

+
(
1 – aα

1
)
Vn(xm) + aα

nV0(xm) +
n–1∑

j=1

(
aα

j – aα
j+1
)
Vk–j(xm)

)

,

R̂n
m =

(

γα

(
Û ′′

n (xm) + rÛn(xm)
(
Û2

n(xm) + V̂ 2
n (xm)

)
– δf (t, tn+1)

)

+
(
1 – aα

1
)
V̂n(xm) + aα

nV̂0(xm) +
n–1∑

j=1

(
aα

j – aα
j+1
)
V̂k–j(xm)

)

.

Therefore

∣
∣Xn

m – X̂n
m
∣
∣ =

∣
∣
∣
∣
∣
γα

(
–
(
V ′′

n (xm) – V̂ ′′
n (xm)

)

– rVn(xm)
(
U2

n(xm) + V 2
n (xm)

)
+ rV̂n(xm)

(
Û2

n(xm) + V̂ 2
n (xm)

))

+
(
1 – aα

1
)(

Un(xm) – Ûn(xm)
)

+ aα
n
(
U0(xm) – Û0(xm)

)

+
n–1∑

j=1

(
aα

j – aα
j+1
)(

Uk–j(xm) – Ûk–j(xm)
)
∣
∣
∣
∣
∣
.

By using the Cauchy–Schwarz inequality, we have

∣
∣Xn

m – X̂n
m
∣
∣

≤ γα

∣
∣V ′′

n (xm) – V̂ ′′
n (xm)

∣
∣ +

∣
∣
(
1 – aα

1
)∣
∣
∣
∣Un(xm) – Ûn(xm)

∣
∣

+
∣
∣aα

n
∣
∣
∣
∣U0(xm) – Û0(xm)

∣
∣

+
n–1∑

j=1

∣
∣
(
aα

j – aα
j+1
)∣
∣
∣
∣Uk–j(xm) – Ûk–j(xm)

∣
∣

+ γαr
∣
∣Vn(xm)

(
U2

n(xm) + V 2
n (xm)

)
– V̂n(xm)

(
Û2

n(xm) + V̂ 2
n (xm)

)∣
∣

︸ ︷︷ ︸
(I )

(I) =
∣
∣V 3

n (xm) – V̂ 3
n (xm) + Vn(xm)U2

n(xm) – V̂n(xm)Û2
n(xm)

∣
∣

=
∣
∣
(
Vn(xm) – V̂n(xm)

)3 – Vn(xm)
(
Vn(xm) – V̂n(xm)

)2

+ V 2
n (xm)

(
Vn(xm) – V̂n(xm)

)
+ U2

n(xm)
(
Vn(xm) – V̂n(xm)

)

+ Un(xm)Vn(xm)
(
Un(xm) – Ûn(xm)

)
– Vn(xm)

(
Un(xm) – Ûn(xm)

)2

– Un(xm)
(
Un(xm) – Ûn(xm)

)(
Vn(xm) – V̂n(xm)

)

+
(
Un(xm) – Ûn(xm)

)2(Vn(xm) – V̂n(xm)
)∣
∣.

Then, after simplification and differentiation, we have

∣
∣Xn

m – X̂n
m
∣
∣

≤ γα

∣
∣V ′′

n (xm) – V̂ ′′
n (xm)

∣
∣ +

∣
∣
(
1 – aα

1
)∣
∣
∣
∣Un(xm) – Ûn(xm)

∣
∣
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+
∣
∣aα

n
∣
∣
∣
∣U0(xm) – Û0(xm)

∣
∣

+
n–1∑

j=1

∣
∣
(
aα

j – aα
j+1
)∣
∣
∣
∣Uk–j(xm) – Ûk–j(xm)

∣
∣

+ γαr(
∣
∣
(
Vn(xm) – V̂n(xm)

)3∣∣

+
∣
∣Vn(xm)

∣
∣
∣
∣
(
Vn(xm) – V̂n(xm)

)2∣∣

+
∣
∣V 2

n (xm)
∣
∣
∣
∣
(
Vn(xm) – V̂n(xm)

)∣
∣

+
∣
∣U2

n(xm)
∣
∣
∣
∣
(
Vn(xm) – V̂n(xm)

)∣
∣

+
∣
∣Un(xm)

∣
∣
∣
∣Vn(xm)

∣
∣
∣
∣
(
Un(xm) – Ûn(xm)

)∣
∣

+
∣
∣Vn(xm)

∣
∣
∣
∣
(
Un(xm) – Ûn(xm)

)2∣∣

+
∣
∣Un(xm)

∣
∣
∣
∣
(
Un(xm) – Ûn(xm)

)∣
∣
∣
∣
(
Vn(xm) – V̂n(xm)

)∣
∣

+
∣
∣
(
Un(xm) – Ûn(xm)

)2∣∣
∣
∣
(
Vn(xm) – V̂n(xm)

)∣
∣).

By using Theorem 4.1, we have

∣
∣Xn

m – X̂n
m
∣
∣≤ γα

(

λ2Lvh2 +
(
1 – aα

1
)
λ0Luh4

+ aα
0 λ0Luh4 +

(
λ0Luh4)

n–1∑

j=1

∣
∣
(
aα

j – aα
j+1
)∣
∣

)

+ γαr
((

λ0Lvh4)3 + Mv
(
λ0Lvh4)2 + M2

v
(
λ0Lvh4)

+ M2
u
(
λ0Luh4) + MuMv

(
λ0Luh4) + Mv

(
λ0Luh4)2

+ Mu
(
λ0Luh4)(λ0Lvh4) +

(
λ0Luh4)2(

λ0Lvh4)).

After simplification, we get

∣
∣Xn

m – X̂n
m
∣
∣

≤ h2

[

γα

(

λ2Lv +
(
1 – aα

1
)
λ0Luh2 + aα

0 λ0Luh2

+
(
λ0Luh2)

n–1∑

j=1

∣
∣
(
aα

j – aα
j+1
)∣
∣

)

+ γαr
((

λ0Lvh
10
3
)3 + Mv

(
λ0Lvh3)2 + M2

v
(
λ0Lvh2) + M2

u
(
λ0Luh2)

+ MuMv
(
λ0Luh2) + Mv

(
λ0Luh3)2 + Mu

(
λ0Luh4)(λ0Lvh2)

+
(
λ0Luh4)2(

λ0Lvh2))
]

. (28)

So we can rewrite (28) as follows:

∣
∣Xn

m – X̂n
m
∣
∣≤ h2M1,
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where

M1 =

[

γα

(

λ2Lv +
(
1 – aα

1
)
λ0Luh2 + aα

0 λ0Luh2

+
(
λ0Luh2)

n–1∑

j=1

∣
∣
(
aα

j – aα
j+1
)∣
∣

)

+ γαr
((

λ0Lvh2)3 + Mv
(
λ0Lvh3)2 + M2

v
(
λ0Lvh2) + M2

u
(
λ0Luh2)

+ MuMv
(
λ0Luh2) + Mv

(
λ0Luh3)2 + Mu

(
λ0Luh2)(λ0Lvh2)

+
(
λ0Luh3)2(

λ0Lvh2))
]

.

Similarly, we have

∣
∣Rn

m – R̂n
m
∣
∣≤ h2M2.

If M = max{M1, M2}, then

∣
∣Xn

m – X̂n
m
∣
∣≤ Mh2,

∣
∣Rn

m – R̂n
m
∣
∣≤ Mh2. (29)

From (27), Eq. (29) is deduced

‖B – B̂‖∞ ≤ Mh2. (30)

By applying (26) and (21), we have

(X – X̂) =
[
AT A + α

(
R(z))T R(z)]–1AT (B – B̂).

Using relation (30) and taking the infinity norm, we find

‖X – X̂‖∞ ≤ ∥
∥
(
AT A + α

(
R(z))T R(z))–1AT∥∥∞‖B – B̂‖∞

≤ ∥
∥
(
AT A + α

(
R(z))T R(z))–1AT∥∥∞Mh2 ≤ M1h2, (31)

where

M1 =
∥
∥
(
AT A + α

(
R(z))T R(z))–1AT∥∥∞M.

Thus

∥
∥(un – Un, vn – Vn)

∥
∥∞ = ‖un – Un‖∞ + ‖vn – Vn‖∞

≤ ‖un – Ûn‖∞ + ‖Ûn – Un‖∞ + ‖vn – V̂n‖∞

+ ‖V̂n – Vn‖∞,
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such that

Un(x) – Ûn(x) =
N+1∑

i=–1

(
cn

i – ĉn
i
)
Bi(x),

∣
∣Un(xm) – Ûn(xm)

∣
∣≤ max

–1≤i≤N+1

{∣
∣cn

i – ĉn
i
∣
∣
}

N+1∑

i=–1

∣
∣Bi(xm)

∣
∣, 0 ≤ m ≤ N ,

and

Vn(x) – V̂n(x) =
N+1∑

i=–1

(
dn

i – d̂n
i
)
Bi(x),

∣
∣Vn(xm) – V̂n(xm)

∣
∣≤ max

–1≤i≤N+1

{∣
∣dn

i – d̂n
i
∣
∣
}

N+1∑

i=–1

∣
∣Bi(xm)

∣
∣, 0 ≤ m ≤ N .

We can easily see that

N+1∑

i=–1

∣
∣Bi(xm)

∣
∣≤ 10, 0 ≤ m ≤ N ,

so

∥
∥Un(xm) – Ûn(xm)

∥
∥∞ ≤ 10M1h2,

∥
∥Vn(xm) – V̂n(xm)

∥
∥∞ ≤ 10M1h2. (32)

Therefore, according to (23) and (32), we obtain

∥
∥(un – Un, vn – Vn)

∥
∥∞ ≤ λ0Lh4 + 10M1h2 + λ0Lh4 + 10M1h2

= h2(2λ0Lh2 + 20M1
)
.

Setting γ = 2λ0Lh2 + 20M1, we have

∥
∥(un – Un, vn – Vn)

∥
∥∞ ≤ γ h2. (33)

In addition, we calculate the time discretization process of Eq. (17). For this purpose, we
discretize the system of (7) in the time variable:

Dα
t u(xi, tn) =

1
Γ (1 – α)

∫ tn

0

∂u(xi, s)
∂t

(tn – s)–α ds

=
1

Γ (1 – α)

n∑

j=1

∫ j	t

(j–1)	t

[
uj

i – uj–1
i

	t
+ O(	t)

]

(n	t – s)–α ds

=
1

Γ (1 – α)

n∑

j=1

{[
uj

i – uj–1
i

	t
+ O(	t)

]

× [
(n – j + 1)1–α – (n – j)1–α

]
}

	t1–α

1 – α



Erfanian et al. Advances in Difference Equations        (2020) 2020:344 Page 15 of 20

=
	t–α

Γ (2 – α)

n∑

j=1

(
uj

i – uj–1
i
)(

(n – j + 1)1–α – (n – j)1–α
)

+
1

Γ (2 – α)

n∑

j=1

(
(n – j + 1)1–α – (n – j)1–α

)
O
(
	t2–α

)
. (34)

Hence, according to Theorem 4.2 and Eqs. (33) and (34), we have

∥
∥(un – Un, vn – Vn)

∥
∥∞ ≤ τ

(
	t2–α + h2),

where τ is constant and the order of convergence is O(	t2–α + h2). �

5 Illustrative examples
The results of the proposed method are compared with the RBF method (RBFM), and the
accuracy of the method is shown in all examples. Also, we define the root mean square
(RMS) or total error as follows:

RMS =

√
√
√
√ 1

M

M∑

i=1

(
p(ti)exact – p(ti)numerical

)2,

where the total error is RMS and the total number of estimated values is M. Also, we
consider T = 1, N = 1

10 , and 	t = 1
1000 .

Example 5.1 Let

i
∂Ψ α(x, t)

∂tα
+

∂2Ψ (x, t)
∂x2 +

∣
∣Ψ (x, t)

∣
∣2Ψ (x, t)

– t2
(
(
t4 – 1

)
sin(x) +

2 cos(x)t–α

Γ (3 – α)

)

– it2
(
(
t4 – 1

)
cos(x) +

2 sin(x)t–α

Γ (3 – α)

)

= 0

with the initial and boundary condition as follows:

Ψ (x, 0) = 0, 0 ≤ x ≤ 1,

Ψ (0.1, t) = t2(sin(0.1) + i cos(0.1)
)
, Ψ (1, t) = t2(sin(1) + i cos(1)

)

and the exact solution is Ψ (x, t) = t2(sin(x) + i cos(x)).

The plots of approximation and exact solutions between of p1(t), p2(t) and u(x, t), v(x, t)
for Example 5.1 with noisy data, are drawn in Fig. 1 and Fig. 2, respectively. Also, the plots
of error of u(x, t) and v(x, t) for Example 5.1 with the noisy data is drawn in Fig. 3. In
addition, the numerical solutions of Example 5.1 with α = 0.5, is shown in Table 1.

Example 5.2 Let

i
∂Ψ α(x, t)

∂tα
+

∂2Ψ (x, t)
∂x2 +

∣
∣Ψ (x, t)

∣
∣2Ψ (x, t) – R(x, t) = 0,



Erfanian et al. Advances in Difference Equations        (2020) 2020:344 Page 16 of 20

Figure 1 The plots of approximation and exact solutions of p1(t) and p2(t) for Example 5.1 with the noisy data

Figure 2 The plots of approximate solutions and exact solutions of u(x, t) and v(x, t)for Example 5.1 with the
noisy data

Figure 3 The plots of error of u(x, t) and v(x, t) for Example 5.1 with the noisy data
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Table 1 Numerical solutions of Example 5.1 with α = 0.5

t Exact solution Numerical solution (CBSM) Numerical solution (RBFM)

p1(t) p2(t) p∗
1(t) p∗

2(t) p∗
1(t) p∗

2(t)

0.1 0.000000 0.010000 0.000111 0.009914 0.004131 0.011617
0.2 0.000000 0.040000 0.000470 0.040296 0.012340 0.047792
0.3 0.000000 0.090000 0.000963 0.091273 0.022762 0.107879
0.4 0.000000 0.160000 0.001525 0.162755 0.035030 0.191759
0.5 0.000000 0.250000 0.002211 0.254665 0.047470 0.299435
0.6 0.000000 0.360000 0.003083 0.367052 0.058489 0.429440
0.7 0.000000 0.490000 0.004163 0.500006 0.065408 0.581127
0.8 0.000000 0.640000 0.005487 0.653599 0.069668 0.752353
0.9 0.000000 0.810000 0.007167 0.827945 0.058706 0.970170
1 0.000000 1.000000 0.009427 1.023274 0.042043 1.206334

RMS 3.969× 10–3 9.692× 10–3 4.700× 10–2 8.62× 10–2

Execution time (second) 710.8 833.8

Figure 4 The plots of approximation and exact solutions of p1(t) and p2(t) for Example 5.2 with the noisy data

with the initial and boundary condition as follows:

Ψ (x, 0) = cos(x) + i sin(x), 0 ≤ x ≤ 1,

Ψ (0.1, t) =
(
cos(0.1 + t) + i sin(0.1 + t)

)
, w(1, t) =

(
cos(1 + t) + i sin(1 + t)

)
.

The exact solution is

Ψ (x, t) =
(
cos(x + t) + i sin(x + t)

)
, 0 ≤ x ≤ 1, 0 ≤ t ≤ T .

Also, R(x) is obtained by the conditions of the problem.

Similar to the previous examples, the plots of approximation and exact solutions be-
tween of p1(t), p2(t) and u(x, t), v(x, t) for Example 5.2 with noisy data, are drawn in Fig. 4
and Fig. 5, respectively. Also, the plots of error of u(x, t) and v(x, t) for Example 5.2 with
the noisy data is drawn in Fig. 6. In addition, the numerical solutions of Example 5.2 with
α = 0.75, is shown in Table 2.
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Figure 5 The plots of approximate solutions and exact solutions of u(x, t) and v(x, t) for Example 5.2 with the
noisy data

Figure 6 The plots of error of u(x, t) and v(x, t) for Example 5.2 with the noisy data

Table 2 Numerical solutions of Example 5.2 with α = 0.75

t Exact solution Numerical solution (CBSM) Numerical solution (RBFM)

p1(t) p2(t) p∗
1(t) p∗

2(t) p∗
1(t) p∗

2(t)

0.1 0.995004 0.099833 1.025001 0.127985 1.137524 0.124301
0.2 0.980067 0.198669 1.013504 0.224161 1.088189 0.143896
0.3 0.955336 0.295520 0.982968 0.320768 1.049366 0.279377
0.4 0.921061 0.389418 0.945771 0.417098 1.021368 0.361741
0.5 0.877583 0.479426 0.900361 0.508825 0.966005 0.448973
0.6 0.825336 0.564642 0.845493 0.595067 0.905687 0.534138
0.7 0.764842 0.644218 0.782633 0.675325 0.835528 0.610549
0.8 0.696707 0.717356 0.709399 0.749195 0.754661 0.681966
0.9 0.621609 0.783327 0.628863 0.817247 0.667961 0.746485
1 0.540302 0.841471 0.541769 0.878423 0.572605 0.803677

RMS 2.209× 10–2 2.936× 10–2 8.639× 10–2 3.492× 10–2

Execution time (second) 782.9 890.2
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6 Conclusion
It is a fact that the time evolution of the system or the wave function in quantum mechanics
is described by the Schrödinger equation. By applying a finite-difference formula to time
discretization and cubic B-splines for the spatial variable, we got a numerical method for
solving the Schrödinger equation, the simplification of implementation and lower compu-
tational cost can be mentioned as its main advantages. We proved the convergence of the
method by getting an upper bound and using some theorems. We also computed the order
of the mentioned equations in the convergence analysis section. Finally, in the illustrative
examples section, we showed two examples with the approximate solutions, which were
obtained by using the cubic B-splines for the spatial variable. The plots of approximate
and exact solutions with the noisy data are presented in figures.
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