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Abstract
In this paper, we consider a predator–prey model with Allee effect, fear effect and
prey refuge. By considering the prey refuge as a parameter, we give the threshold
condition for the stability of the system, and prove that the system undergoes a
supercritical Hopf bifurcation. We show that increasing the prey refuge or Allee effect
can make the dynamical behavior of the system more complicated; the fear effect or
Allee effect has no influence on the prey density, but can lead to a decrease of the
predator population at positive equilibrium.
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1 Introduction
The predator–prey model is one of the basic models in the theoretical studies of ecology,
and it has been studied extensively (see [1–14] and the references cited therein). On the
other hand, prey species usually make use of refuges to decrease predation risk. Chen et
al. [15] investigated the stable property of a predator–prey system with a constant num-
ber of prey refuges. The authors [16] showed that prey refuge has no influence on the
stability of the system. Khajanchi and Banerjee [17] studied the uniform persistence and
global asymptotic stability of a stage structured predator–prey model with prey refuge.
Xiao et al. [18] considered the global stability of a stage structure predator–prey system
with prey refuge, and pointed out that the model undergoes a Hopf bifurcation when the
delay crosses some critical values. Xie et al. [19] studied the persistence and stability of a
modified Leslie–Gower predator–prey model with prey refuge, and showed that the prey
refuge has a positive effect on the persistence property. For more details in this direction,
see [20–23].

Most studies of predator systems only consider direct killing by predators, because
such predation can be easily observed in nature. However, prey respond to predation
risk and exhibit different types of anti-predator responses, including habitat change,
foraging, alertness, and different physiological changes. Apart from the direct killing,
based on many experiments, Zanette et al. [24] showed that the song sparrows reduce
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by 40% the offspring by predation fears. Motivated by this, Wang et al. [25] considered
the cost of fear into prey reproduction and investigated the following predator–prey sys-
tem

u′(t) = auF(f , v) – du – bu2 – muv,

v′(t) = nmuv – ev,
(1)

where a is the birth rate of prey; d is the natural death rate of prey; b is the den-
sity dependent coefficient; m is the capture rate; n is the conversion efficiency; e is
the death rate of predator; f is the level of fear; F(f , v) is the cost of anti-predator de-
fence due to fear. From a biological point of view, F(f , v) can be reasonably assumed to
obey

F(0, v) = 1, F(f , 0) = 1, lim
f →+∞

F(f , v) = 0,

lim
v→+∞ F(f , v) = 0,

∂F(f , v)
∂f

< 0,
∂F(f , v)

∂v
< 0.

(2)

They showed the cost of fear has no influence on the stability of the system (1). Consid-
ering the Holling type II functional response for system (1), [25] studied the stability of
equilibria, and showed that a high amount of fear can stabilize the predator–prey system.
Zhang et al. [26] investigated a Holling-II predator–prey model incorporating the fear ef-
fect and a prey refuge. They found that the fear effect cannot only reduce the population
density of the predator at the positive equilibrium, but also stabilize the system. Kumar
and Dubey [27] studied the stability of a delay prey-predator model with prey refuge and
fear effect, and showed that the refuge below the threshold level is conducive to the sys-
tem. Xiao and Li [28] considered a mutual interference predator–prey model with fear
effect. Comparing with the corresponding predator–prey model without mutual interfer-
ence, they concluded that the mutual interference can stabilize the predator–prey system.
Sasmal and Takeuchi [29] studied a predator–prey system with fear effect, and discussed
the multi-stability and Hopf bifurcation of the system. For more details in this direction,
see [30–33].

On the other hand, the Allee effect can lead to the decrease of the intrinsic growth at
low population densities, and make the system become unstable. Lin [34] studied the sta-
bility of a single species logistic model with Allee effect and feedback control, and showed
the Allee effect makes the system become unstable. Ibarra and Flores [35] discussed the
bifurcation of a Holling–Tanner predator–prey model with Allee effect. Wu et al. [36] con-
cluded that the unique positive equilibrium is globally stable, and the Allee effect has no
impact on the final density of the species. Guan and Chen [37] studied the bifurcation
and stability of an amensalism with Allee effect, considering the growth reduction due to
predator fear consider, Sasmal [38] studied a predator model with Allee effect in prey as
follows:

⎧
⎨

⎩

u′(t) = ru(1 – u
k )(u – θ ) 1

1+fv – auv,

v′(t) = aαuv – mv,
(3)
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where all the coefficients are positive constants; r is the intrinsic growth rate; k is the
carrying capacity of the environment; a represents predation rate; α is the conversion ef-
ficiency of predator by consuming prey; m is the predator’s natural mortality rate; 0 < θ < k
is expressed by a strong Allee effect; F(f , v) = 1

1+fv is the same meaning as (1). In the pres-
ence of fear, they showed that the fear effect can lead to the decrease of the per-capita
growth rate, pointed out that fear does not affect the equilibrium stability, and the system
has bi-stability among different equilibria.

Motivated by the above papers, the main purpose of this paper is to study the influence
of the prey refuge on the stability of the system (3) as follows:

⎧
⎨

⎩

u′(t) = ru(1 – u
k )(u – θ0) 1

1+f0v – a(1 – η)uv,

v′(t) = aα(1 – η)uv – m0v,
(4)

where 0 < η < 1 is the prey refuge constant; ηu(t) is the capacity of a refuge at time t; the
rest of the parameters have the same meaning as system (3).

For simplicity, let

N =
u
k

, P =
av
rk

, τ = aαkt,

ε =
aα

r
, θ =

θ0

k
, f =

rkf0

a
, m =

m0

aαk
.

Rewriting τ as t, system (4) is reduced to

⎧
⎨

⎩

N ′(t) = N
ε

( (1–N)(N–θ )
1+fP – (1 – η)P),

P′(t) = P((1 – η)N – m),
(5)

where 0 < θ < 1 and 0 < η < 1, the remaining parameters are positive constants.
The organization of this paper is as follows. In Sect. 2, the stability of the equilibria of

the system (5) is investigated. In Sect. 3, the impacts of the fear effect, Allee effect and prey
refuge on the species are discussed. Finally, a brief conclusion is drawn.

2 Main results
In this section, we study the existence and stability of the equilibria point of the system (5).
Obviously, system (5) always has a trivial equilibrium E0(0, 0) and two boundary equilibria
E1(1, 0) and E2(θ , 0). The positive equilibrium point of the system (5) is determined by the
following equation:

⎧
⎨

⎩

(1–N)(N–θ )
1+fP – (1 – η)P = 0,

(1 – η)N – m = 0.
(6)

Substituting N = m
1–η

into the first equation of (6), we have

fP2 + P – H = 0, (7)
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where H = (1–η–m)(m–θ (1–η))
(1–η)3 . If m ≥ 1, that is H < 0, then there does not exist a positive

equilibrium. If 1 – m
θ

< η < 1 – m, then H > 0. Hence, Eq. (7) has a positive solution,

P∗ =
–1 +

√
1 + 4fH

2f
.

Let N∗ = m
1–η

, then system (5) has a positive equilibrium E∗(N∗, P∗).
Now we discuss the stability of equilibria, and we obtain the following lemmas.

Lemma 1 The trivial equilibrium E0(0, 0) of the system (5) is always a stable node.

Proof The Jacobian matrix of the system (5) at E0 is calculated as

JE0 =

[
– θ

ε
0

0 –m

]

.

We obtain Tr JE0 = – θ
ε

– m < 0 and Det JE0 = mθ
ε

> 0, thus the equilibrium E0 is a stable
node. This completes the proof of Lemma 1. �

Lemma 2
(1) If 0 < η < 1 – m, E1(1, 0) of the system (5) is a saddle point.
(2) If η = 1 – m, E1(1, 0) of the system (5) is an attracting saddle node, which includes a

stable parabolic sector.
(3) If 1 – m < η < 1, E1(1, 0) of the system (5) is locally asymptotically stable.

Proof The Jacobian matrix of the system (5) at E1 is calculated as

JE1 =

[
θ–1
ε

η–1
ε

0 1 – η – m

]

.

Then the eigenvalues λ1 = θ–1
ε

< 0 and λ2 = 1 – η – m. If 0 < η < 1 – m, that is λ2 > 0, the
boundary equilibrium E1 is a saddle point. If 1 – m < η < 1, that is λ2 < 0, the boundary
equilibrium E1 is stable.

When η = 1 – m, we have λ2 = 0. Then system (5) can be rewritten as

⎧
⎨

⎩

N ′(t) = N
ε

( (1–N)(N–θ )
1+fP – mP),

P′(t) = mP(N – 1).
(8)

We transform the equilibrium E1 to the origin by making a transformation that X =
N – 1, Y = P. Then we have a Taylor expansion at the origin as follows:

⎧
⎨

⎩

X ′(t) = θ–1
ε

X – m
ε

Y + θ–2
ε

X2 – (θ–1)f +m
ε

XY + Q1(X, Y ),

Y ′(t) = mXY ,
(9)

where Q1(X, Y ) is C∞ functions of at least the third order in terms of (X, Y ).
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Let X1 = θ–1
ε

X – m
ε

Y , Y1 = Y . Introducing a new time variable τ by τ = – 1–θ
ε

t, rewriting
τ as t, we have

⎧
⎪⎪⎨

⎪⎪⎩

X ′
1(t) = X1 + (–2+θ )ε

(θ–1)2 X2
1 – εm2+f θ2–2f θ–mθ+f +3m

(θ–1)2 X1Y1

– (εm2+f θ2–2f θ+f +m)m
ε(θ–1)2 Y 2

1 + Q2(X1, Y1),

Y ′
1(t) = ε2m

(θ–1)2 X1Y1 + εm2

(θ–1)2 Y 2
1 ,

(10)

where Q2(X1, Y1) is a C∞ function of at least the third order in terms of (X1, Y1).
Therefore, the coefficient of Y 2

1 is εm2

(θ–1)2 > 0. According to Theorem 7.1 in Zhang et al.
[39], we can conclude that E1(1, 0) is an attracting saddle node, which includes a stable
parabolic sector. This completes the proof of Lemma 2. �

Lemma 3
(1) If 0 < η < 1 – m

θ
, E2(θ , 0) of the system (5) is unstable.

(2) If η = 1 – m
θ

, E2(θ , 0) of the system (5) is a repelling saddle node, which includes a
unstable parabolic sector.

(3) If 1 – m
θ

< η < 1, E2(θ , 0) of the system (5) is a saddle point.

Proof The Jacobian matrix of the system (5) at E2 is calculated as

JE2 =

[
θ (1–θ )

ε

θ (η–1)
ε

0 θ (1 – η) – m

]

.

Then the eigenvalues λ1 = θ (1–θ )
ε

> 0 and λ2 = θ (1 – η) – m. If 0 < η < 1 – m
θ

, that is, λ2 > 0,
the boundary equilibrium E2 is unstable. If 1 – m

θ
< η < 1, that is, λ2 < 0, the boundary

equilibrium E2 is a saddle point.
When η = 1 – m

θ
, we obtain λ2 = 0. Then system (5) can be rewritten as

⎧
⎨

⎩

N ′(t) = N
ε

( (1–N)(N–θ )
1+fP – m

θ
P),

P′(t) = mP( N
θ

– 1).
(11)

We transform the equilibrium E2 to the origin by making a transformation that X =
N – θ , Y = P. Then we have a Taylor expansion at the origin as follows:

⎧
⎨

⎩

X ′(t) = θ (1–θ )
ε

X – m
ε

Y + 1–2θ
ε

X2 – θ2(θ–1)f +m
εθ

XY + Q3(X, Y ),

Y ′(t) = m
θ

XY ,
(12)

where Q3(X, Y ) is a C∞ function of at least the third order in terms of (X, Y ).
Let X1 = θ (1–θ )

ε
X – m

ε
Y , Y1 = Y . Introducing a new time variable τ by τ = θ (1–θ )

ε
t, rewriting

τ as t, we have
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

X ′
1(t) = X1 – f θ5–2f θ4+f θ3+εm2+3mθ2–mθ

(θ–1)2θ3 Y1 – (2θ–1)ε
θ2(θ–1)2 X2

1

– f θ5–2f θ4+f θ3+εm2+3mθ2–mθ

θ3(θ–1)2 X1Y1

– (f θ5–2f θ4+f θ3+εm2+mθ2)m
ε(θ–1)2θ3 Y 2

1 + Q4(X1, Y1),

Y ′
1(t) = ε2m

θ3(θ–1)2 X1Y1 + εm2

θ3(θ–1)2 Y 2
1 ,

(13)

where Q4(X1, Y1) is a C∞ function of at least the third order in terms of (X1, Y1).
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Therefore, the coefficient of Y 2
1 is εm2

θ3(θ–1)2 > 0. According to Theorem 7.1 in Zhang et al.
[39], we can conclude that E2(θ , 0) is a repelling saddle node, which includes an unstable
parabolic sector. This completes the proof of Lemma 3. �

Lemma 4
(1) If 1 – m

θ
< η < 1 – 2m

θ+1 , E∗(N∗, P∗) of the system (5) is stable.
(2) If 1 – 2m

θ+1 < η < 1 – m, E∗(N∗, P∗) of the system (5) is unstable.

Proof The Jacobian matrix of the system (5) at E∗ is calculated as

JE∗ =

[
m((1+θ )(1–η)–2m)

ε(1–η)2(1+fP∗) – m
ε(1–η) ( (1–m–η)(m–θ (1–η))f

(1–η)2(1+fP∗)2 + (1 – η))
P∗(1 – η) 0

]

.

By calculation, we obtain Det JE∗ = mP∗
ε

( (1–m–η)(m–θ (1–η))f
(1–η)2(1+fP∗)2 + (1 – η)) > 0 and Tr JE∗ =

m((1+θ )(1–η)–2m)
ε(1–η)2(1+fP∗) .
Therefore, if 1 – m

θ
< η < 1 – 2m

θ+1 , that is Tr JE∗ > 0, then the boundary equilibrium E∗

of the system (5) is unstable. If 1 – 2m
θ+1 < η < 1 – m, that is Tr JE∗ < 0, then the boundary

equilibrium E∗ of the system (5) is stable. This completes the proof of Lemma 4. �

Lemma 5 If η = 1 – 2m
θ+1 , system (5) undergoes a supercritical Hopf bifurcation at positive

equilibrium E∗ and there exists a stable limit cycle around E∗.

Proof Form the proof of Lemma 4, when η = 1– 2m
θ+1 , we have Det JE∗ > 0 and Tr JE∗ = 0. The

positive equilibrium E∗ becomes a non-hyperbolic equilibrium, and the Jacobian matrix at
E∗ has a pair of imaginary roots. In order to ensure the occurrence of the Hopf bifurcation,
the transverse conditions of Hopf bifurcation should be checked. By a straightforward
computation, we have

d
dη

Tr[JE∗ ]
∣
∣
∣
∣
η=1– 2m

θ+1

= –
(θ + 1)3

ε(
√

2m(f (1 + θ )(1 – θ )2 + 2m) + 2m)
�= 0.

Hence, the positive equilibrium E∗ loses its stability through a non-degenerate Hopf bi-
furcation.

Now we will calculate the Lyapunov number l1 at E∗ to determine the stability of the limit
cycle. We first translate the equilibrium E∗ of the system (5) to the origin by employing
the transformations N = x̂ – N∗ and P = ŷ – P∗. Note that N∗ = 1+θ

2 and η = 1 – (1–θ )2

4P∗(f P∗+1) .
Thus, system (5) in a neighborhood of the origin can be written as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ = a10x + a01ŷ + a20x̂2 + a11x̂ŷ + a02ŷ2 + a30x̂3

+ a21x̂2ŷ + a12x̂ŷ2 + a03ŷ3,
˙̂y = b10x̂ + b01ŷ + b20x̂2 + b11x̂ŷ + b02ŷ2 + b30x̂3

+ b21x̂2ŷ + b12x̂ŷ2 + b03ŷ3,

(14)

where a10 = 0, a01 = – (1+θ )(1–θ )2(2fP∗+1)
8εP∗(fP∗+1)2 , a20 = – 1+θ

2ε(fP∗+1) , a11 = – (1–θ )2(2fP∗+1)
4εP∗(fP∗+1)2 , a02 = (1+θ )(1–θ )2f 2

8ε(fP∗+1)3 ,

a30 = – 1
ε(fP∗+1) , a12 = (1–θ )2f 2

4ε(fP∗+1)3 , a21 = (1+θ )(fP∗+1)2f
2ε(fP∗+1)4 , a03 = – (1+θ )(1–θ )2f 3

8ε(fP∗+1)4 , b10 = (1–θ )2

4(fP∗+1) , b01 =
(1–θ )2(1+θ )
8P∗(fP∗+1) – m, b11 = (1–θ )2

4P∗(fP∗+1) , b20 = b02 = b30 = b21 = b12 = b03 = 0.
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The first Lyapunov number l1 [40] to determine the stability of limit cycle for a planar
system (14) is given by the following formula:

l1 =
–3π

2a01Φ3/2

{[
a10b10

(
a2

11 + a11b02 + a02b11
)

+ a10a01
(
b2

11 + a20b11 + a11b02
)

+ b2
10(a11a02 + 2a02b02) – 2a10b10

(
b2

02 – a20a02
)

– 2a10a01
(
a2

20 – b20b02
)

– a2
01(2a20b20 + b11b20) +

(
a01b10 – 2a2

10
)
(b11b02 – a11a20)

]

–
(
a2

10 + a01b10
)[

3(b10b03 – a01a30) + 2a10(a21 + b12) + (b10a12 – a01b21)
]}

= –
3π (1 + θ )(1 – θ )4(2fP∗ + 1)

32ε2Φ3/2(fP∗ + 1)4P∗ ,

where Φ =
√

(1+θ )(1–θ )4(2fP∗+1)
32ε(fP∗+1)3P∗ .

Obviously l1 < 0, the system (5) undergoes a supercritical Hopf bifurcation at positive
equilibrium E∗ and there exists a stable limit cycle around E∗. This completes the proof of
Lemma 5.

It follows from Lemma 6 that the trivial equilibrium point E0 is always a stable node.
Hence, in the rest of this section, we only consider the stability of the boundary equilibria
E1, E2 and the positive equilibrium E∗ of the system with the prey refuge and Allee effect
varies. When m ≥ 1, there does not exist a positive equilibrium point of the system (5).
According to Lemmas 2 and 3, we have the following theorem. �

Theorem 1 When m ≥ 1 and 0 < η < 1, the boundary equilibrium E1 is stable and the
boundary equilibrium E2 is a saddle point.

From Theorem 1, if the death rate of the predator is large enough, then the predator will
be extinct, and the prey will tend to extinction or the carrying capacity of the environment
depending on the choices of the initial density of prey.

In the following, we only discuss 0 < m < 1. According to Lemmas 2–4 and considering
the prey refuge as a parameter, we have the following theorems.

Theorem 2 When θ ≤ 2m – 1 and m < 1, we have:
(1) If 0 < η < 1 – m, E1 and E2 are saddle points, E∗ is stable.
(2) If η = 1 – m, E1 is an attracting saddle node, including a stable parabolic sector, and

E2 is a saddle point.
(3) If 1 – m < η < 1, E1 is stable and E2 is a saddle point.

Theorem 3 When 2m – 1 < θ ≤ m < 1, we have:
(1) If 0 < η < 1 – 2m

1+θ
, E1 and E2 are saddle points, E∗ is unstable.

(2) If η = 1 – 2m
1+θ

, E1 and E2 are saddle points, and a Hopf bifurcation exists at E∗.
(3) If 1 – 2m

1+θ
< η < 1 – m, E1 and E2 are saddle points and E∗ is stable.

(4) If η = 1 – m, E1 is an attracting saddle node, including a stable parabolic sector and
E2 is a saddle point.

(5) If 1 – m < η < 1, E1 is stable and E2 is a saddle point.

Theorem 4 When m < θ < 1, we get:
(1) If 0 < η < 1 – m

θ
, E1 is a saddle point, E2 is unstable.
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(2) If η = 1 – m
θ

, E1 is a saddle point, and E2 is a repelling saddle node, which includes a
unstable parabolic sector.

(3) If 1 – m
θ

< η < 1 – 2m
1+θ

, E1 and E2 are saddle points and E∗ is unstable.
(4) If η = 1 – 2m

1+θ
, E1 and E2 are saddle points, and a Hopf bifurcation exists at E∗.

(5) If 1 – 2m
1+θ

< η < 1 – m, E1 and E2 are saddle points and E∗ is stable.
(6) If η = 1 – m, E1 is an attracting saddle node, which includes a stable parabolic sector,

and E2 is a saddle point.
(7) If 1 – m < η < 1, E1 is stable and E2 is a saddle point.

Note that the trivial equilibrium point E0 is always a stable node. If m < θ < 1 and 0 < η ≤
1 – m

θ
, it follows from Theorem 4 that E1 is a saddle point and E2 is unstable. Obviously, the

solutions of the system (5) are positive and bounded. Also, for system (1.5) there do not
exist limit cycles. Hence, E0 is globally asymptotically stable. Then we have the following
remark.

Remark 1 If m < θ < 1 and 0 < η ≤ 1 – m
θ

, the trivial equilibrium E0 is globally asymptoti-
cally stable.

If m ≤ θ , without the prey refuge, the author [38] pointed out that both prey and preda-
tor will be extinct. However, it follows from Theorems 3 and 4, the dynamics behavior of
the system (5) becomes more complicated. With increase of the prey refuge, the behavior
of the positive equilibrium E∗ changes from instability to stability. System (5) undergoes
a supercritical Hopf bifurcation and there exists a stable limit cycle around E∗. If the prey
refuge is large enough, the positive equilibrium E∗ disappears, that is, the predator will be
extinct.

3 Discussion and numerical simulations
In this section, we show the influence of the Allee effect, fear effect and prey refuge on the
dynamics behavior of the system (5).

Firstly, we study the impact of the fear effect on the dynamics behavior of the system (5).
Note that N∗ = m

1–η
, then the fear effect has no influence on the prey density. By calculating,

we have

∂P∗

∂f
= –

2H2
√

(1 + 4fH)(
√

1 + 4fH + 1 + 2fH)
< 0,

that is, the predator density is a strictly decreasing function with respect to fear effect.
Then we show that increasing the fear effect can decrease the predator density, that is,
fear effect can lead to the decrease of the predator population. It follows from Theorems
2–4 that the cost of the fear effect has no influence on the stability of the system (5), which
is in accord with that for the predator–prey model with the linear functional response
[25].

Secondly, we study the impact of the Allee effect on the dynamics behavior of the system
(5). Obviously, the Allee effect has no impact on the prey density. The existence of the pos-
itive equilibrium point E∗(N∗, P∗) implies that 1 – m

θ
< η < 1 – m. By simple computation,

one has

∂P∗

∂θ
= –

1 – η – m
(1 – η)2

√
1 + 4fH

< 0,
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Figure 1 Dynamic behavior of the system (5) with η = 0.1,ε = 1, f = 0.2,m = 0.6

that is the predator density is a strictly decreasing function with respect to the Allee effect.
With the increase of Allee effect, the density of the predator population decreases, while
the density of the prey population does not change. From Theorem 2, if the Allee effect is
small enough, then the dynamics behavior of the system (5) is relatively simple, that is the
positive equilibrium E∗ is stable when it exists (see Fig. 1(a)). However, if the Allee effect is
large enough, the dynamics behavior of the system (5) becomes more complicated. From
Theorems 3 and 4, the behavior of the positive equilibrium E∗ changes from stability to
instability, and there exists a stable limit cycle around E∗ (see Fig. 1(b)). If the prey refuge
is small enough, the positive equilibrium E∗ can even disappear (see Fig. 1(c)). Hence,
increasing the amount of the Allee effect has a negative effect on the stability of the system
(5).

Thirdly, we investigate the impact of prey refuge on the dynamics behavior of the system
(5). By computing the derivative along the N∗ and P∗ with respect to η, respectively, we
obtain

∂N∗

∂η
=

m
(1 – η)2 > 0

and

∂P∗

∂η
=

–θ (1 – η)2 + 2m(1 + θ )(1 – η) – 3m2

(1 – η)4
√

1 + 4fH
.

The above inequality shows that N∗ is a strictly increasing function with respect to prey
refuge. That is, increasing the value of prey refuge can increase prey density.

Let F(z) = –θz2 + 2m(1 + θ )z – 3m2, where z = 1 – η. Then the sign of ∂P∗
∂η

is determined
by the sign of F(z). Note that the existence of the positive equilibrium point E∗(N∗, P∗)
implies that m < 1 and 1 – m

θ
< η < 1 – m. Hence, we only consider m < z < m

θ
.

By calculation, F(m) = –(1 –θ )m2 < 0 and F( m
θ

) = (1–θ )m2

θ
> 0. Solving the equation F(z) =

0, we have z1 = m(1+θ )–m
√

θ2–θ+1
θ

, where m < z1 < m
θ

. Then F(z) < 0 for m < z < z1 and F(z) > 0
for z1 < z < m

θ
. Hence, we have

∂P∗

∂η
< 0 for all 1 – z1 < η < 1 – m
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Figure 2 The relation between positive equilibrium E∗ with prey refuge η

Figure 3 The regions of the existence and stability of positive equilibrium E∗ in (η,θ ) plane whenm < θ < 1

and

∂P∗

∂η
> 0 for all 1 –

m
θ

< η < 1 – z1.

Therefore, when 1 – z1 < η < 1 – m or 1 – m
θ

< η < 1 – z1, the predator density is a strictly
decreasing or increasing function with respect to prey refuge, respectively (see Fig. 2).
With the increase of prey refuge, the density of the prey population increases. Then the
prey refuge is benefit to the density of the prey population. However, when 1 – z1 < η <
1 – m, increasing the amount of prey refuge can protect more prey from predation. Due to
lack of food resources, it leads to the decrease of the density of the predator population.
When 1 – m

θ
< η < 1 – z1, the predator density is an increasing function with respect to

prey refuge. Then with the increase of the prey population, more and more preys have
to leave the shelter. It leads to more food for the predator. Hence, the predator density is
increasing.

In the case without the prey refuge, that is η = 0, system (5) is reduced to the system in
[38]. The author [38] pointed out that both prey and predator converge to O for every ini-
tial conditions if m ≤ θ . However, with influence of prey refuge, it follows from Theorems
3 and 4 that the dynamics behavior of the system (5) becomes even more complicated than
that of the corresponding system in[38]. Figure 3 shows the dynamics behavior of positive
equilibrium E∗ in (η, θ ) plane when m < θ < 1.
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Figure 4 Dynamic behavior of the system (5) with θ = 0.6,ε = 1, f = 0.2,m = 0.4

Now, we consider the dynamics behavior of the system (5) when m < θ , that is the Allee
effect is large enough. More precisely, if prey refuge η is larger than 1 – m, there does
not exist the positive equilibrium E∗ (see Fig. 4(a)). That is, if the shelter is large enough,
then it leads to less food resources for the predator. Hence, the predator is extinct. With
the decrease of prey refuge, a stable positive equilibrium E∗ appears (see Fig. 4(b)). Then
both prey and predator can survive. When prey refuge passes through 1 – 2m

1+θ
, system (5)

undergoes a supercritical Hopf bifurcation at positive equilibrium E∗ and there exists a
stable limit cycle around E∗ (see Fig. 4(c)). When prey refuge is small enough, the positive
equilibrium E∗ becomes unstable. Then both prey and predator are extinct (see Fig. 4(d)).
Finally, if the prey refuge is less than 1 – m

θ
, the positive equilibrium E∗ disappears. Then

system (5) is still extinct (see Fig. 4(e)). In this situation, the shelter is not enough for
sustaining the prey and predator to survival.

4 Conclusion
In this paper, we consider a fear effect predator–prey model with the Allee effect and a
prey refuge. By analyzing the characteristic equation of the corresponding linearized sys-
tem and considering prey refuge as parameter, we obtain the threshold condition for the
stability of the system (5). We show that prey refuge plays an important role in the dy-
namics of the system (5). Comparing with the corresponding predator–prey model with-
out prey refuge [38], we find that the prey refuge can make the dynamics behavior of the
system (5) more complicated.

Acknowledgements
The authors would like to thank Dr. Hang Deng for bringing our attention to the paper of A. Basheer.

Funding
The research was supported by the Natural Science Foundation of Fujian Province (2019J01841).



Huang et al. Advances in Difference Equations        (2020) 2020:321 Page 12 of 13

Availability of data and materials
Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that there is no conflict of interests.

Consent for publication
Not applicable.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 13 March 2020 Accepted: 27 May 2020

References
1. Xiao, A., Lei, C.: Dynamic behaviors of a non-selective harvesting single species stage-structured system

incorporating partial closure for the populations. Adv. Differ. Equ. 2018(1), 245 (2018)
2. He, M., Chen, F.: Extinction and stability of an impulsive system with pure delays. Appl. Math. Lett. 91, 128–136 (2019)
3. Lin, Y., Xie, X., Chen, F., et al.: Convergences of a stage-structured predator–prey model with modified Leslie–Gower

and Holling-type II schemes. Adv. Differ. Equ. 2016(1), 1 (2016)
4. He, M., Chen, F., Li, Z.: Permanence and global attractivity of an impulsive delay logistic model. Appl. Math. Lett. 62,

92–100 (2016)
5. Xue, Y., Xie, X., Lin, Q.: Almost periodic solutions of a commensalism system with Michaelis–Menten type harvesting

on time scales. Open Math. 17(1), 1503–1514 (2019)
6. Guo, Z., Huo, H., Ren, Q., et al.: Bifurcation of a modified Leslie–Gower system with discrete and distributed delays.

J. Nonlinear Model. Anal. 1(1), 73–91 (2019)
7. Chen, B.: The influence of commensalism on a Lotka–Volterra commensal symbiosis model with Michaelis–Menten

type harvesting. Adv. Differ. Equ. 2019(1), 43 (2019)
8. Song, Y., Zhang, T.: Spatial pattern formations in diffusive predator–prey systems with non-homogeneous Dirichlet

boundary conditions. J. Appl. Anal. Comput. 10(1), 165–177 (2019)
9. Lei, C.: Dynamic behaviors of a stage-structured commensalism system. Adv. Differ. Equ. 2018(1), 301 (2018)
10. Lei, C.: Dynamic behaviors of a non-selective harvesting may cooperative system incorporating partial closure for the

populations. Commun. Math. Biol. Neurosci. 2018, Article ID 12 (2018)
11. An, Y., Luo, X.: Global stability of a stochastic Lotka–Volterra cooperative system with two feedback controls. J.

Nonlinear Model. Anal. 2(1), 131–142 (2020)
12. Song, Y., Jiang, H., Yuan, Y.: Turing–Hopf bifurcation in the reaction-diffusion system with delay and application to a

diffusive predator–prey model. J. Appl. Anal. Comput. 9(3), 1132–1164 (2019)
13. Lin, Q., Xie, X., Chen, F., et al.: Dynamical analysis of a logistic model with impulsive Holling type-II harvesting. Adv.

Differ. Equ. 2018(1), 112 (2018)
14. Dai, Y., Yang, P., Luo, Z., et al.: Bogdanov–Takens bifurcation in a delayed Michaelis–Menten type ratio-dependent

predator–prey system with prey harvesting. J. Appl. Anal. Comput. 9(4), 1333–1346 (2019)
15. Chen, F., Ma, Z., Zhang, H.: Global asymptotical stability of the positive equilibrium of the Lotka–Volterra prey-predator

model incorporating a constant number of prey refuges. Nonlinear Anal., Real World Appl. 13(6), 2790–2793 (2012)
16. Chen, F., Chen, L., Xie, X.: On a Leslie–Gower predator–prey model incorporating a prey refuge. Nonlinear Anal., Real

World Appl. 10(5), 2905–2908 (2009)
17. Khajanchi, S., Banerjee, S.: Role of constant prey refuge on stage structure predator–prey model with ratio dependent

functional response. Appl. Math. Comput. 314, 193–198 (2017)
18. Xiao, Z., Li, Z., Zhu, Z., et al.: Hopf bifurcation and stability in a Beddington–DeAngelis predator–prey model with

stage structure for predator and time delay incorporating prey refuge. Open Math. 17(1), 141–159 (2019)
19. Xie, X., Xue, Y., Chen, J., et al.: Permanence and global attractivity of a nonautonomous modified Leslie–Gower

predator–prey model with Holling-type II schemes and a prey refuge. Adv. Differ. Equ. 2016(1), 1 (2016)
20. Yang, P.: Hopf bifurcation of an age-structured prey-predator model with Holling type II functional response

incorporating a prey refuge. Nonlinear Anal., Real World Appl. 49, 368–385 (2019)
21. Yue, Q.: Dynamics of a modified Leslie–Gower predator–prey model with Holling-type II schemes and a prey refuge.

SpringerPlus 5(1), 1–12 (2016)
22. Dubey, B., Kumar, A., Maiti, A.P.: Global stability and Hopf-bifurcation of prey-predator system with two discrete delays

including habitat complexity and prey refuge. Commun. Nonlinear Sci. Numer. Simul. 67, 528–554 (2019)
23. Chakraborty, B., Bairagi, N.: Complexity in a prey-predator model with prey refuge and diffusion. Ecol. Complex. 37,

11–23 (2019)
24. Zanette, L.Y., White, A.F., Allen, M.C., et al.: Perceived predation risk reduces the number of offspring songbirds

produce per year. Science 334(6061), 1398–1401 (2011)
25. Wang, X., Zanette, L., Zou, X.: Modelling the fear effect in predator–prey interactions. J. Math. Biol. 73(5), 1179–1204

(2016)
26. Zhang, H., Cai, Y., Fu, S., et al.: Impact of the fear effect in a prey-predator model incorporating a prey refuge. Appl.

Math. Comput. 356, 328–337 (2019)



Huang et al. Advances in Difference Equations        (2020) 2020:321 Page 13 of 13

27. Kumar, A., Dubey, B.: Modeling the effect of fear in a prey-predator system with prey refuge and gestation delay. Int. J.
Bifurc. Chaos 29(14), 1950195 (2019)

28. Xiao, Z., Li, Z.: Stability analysis of a mutual interference predator–prey model with the fear effect. J. Appl. Sci. Eng.
22(2), 205–211 (2019)

29. Sasmal, S.K., Takeuchi, Y.: Dynamics of a predator–prey system with fear and group defense. J. Math. Anal. Appl.
481(1), 123471 (2020)

30. Pal, S., Pal, N., Samanta, S., et al.: Effect of hunting cooperation and fear in a predator–prey model. Ecol. Complex. 39,
100770 (2019)

31. Wang, X., Zou, X.: Modeling the fear effect in predator–prey interactions with adaptive avoidance of predators. Bull.
Math. Biol. 79(6), 1325–1359 (2017)

32. Wang, X., Zou, X.: Pattern formation of a predator–prey model with the cost of anti-predator behaviors. Math. Biosci.
Eng. 15(3), 775 (2017)

33. Pal, S., Pal, N., Samanta, S., et al.: Fear effect in prey and hunting cooperation among predators in a Leslie–Gower
model. Math. Biosci. Eng. 16(5), 5146–5179 (2019)

34. Lin, Q.: Stability analysis of a single species logistic model with Allee effect and feedback control. Adv. Differ. Equ.
2018(1), 190 (2018)

35. Arancibia-Ibarra, C., Flores, J.D., Pettet, G., et al.: A Holling–Tanner predator–prey model with strong Allee effect. Int. J.
Bifurc. Chaos 29(11), 1930032 (2019)

36. Wu, R., Li, L., Lin, Q.: A Holling type commensal symbiosis model involving Allee effect. Commun. Math. Biol. Neurosci.
2018, Article ID 6 (2018)

37. Guan, X., Chen, F.: Dynamical analysis of a two species amensalism model with Beddington–DeAngelis functional
response and Allee effect on the second species. Nonlinear Anal., Real World Appl. 48, 71–93 (2019)

38. Sasmal, S.K.: Population dynamics with multiple Allee effects induced by fear factors—a mathematical study on
prey-predator interactions. Appl. Math. Model. 64, 1–14 (2018)

39. Zhang, Z., Ding, T., Huang, W., Dong, Z.: Qualitative Theory of Differential Equation. Science Press, Beijing (1992)
40. Perko, L.: Differential equations and dynamical systems. In: Texts in Applied Mathematics, 3rd edn. vol. 7. Springer,

New York (2001)


	Modeling the Allee effect and fear effect in predator-prey system incorporating a prey refuge
	Abstract
	Keywords

	Introduction
	Main results
	Discussion and numerical simulations
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	Consent for publication
	Authors' contributions
	Publisher's Note
	References


