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Abstract
This paper investigates the fixed time synchronization issue for a class of
quaternion-valued memristor-based neural networks (QVMNN) at the presence of
time varying delays. Differential inclusion and fixed time stability theory are used, and
new synchronization conditions are formulated to achieve the synchronization of
delayed QVMNN within a fixed time based on a Lyapunov function and a suitable
controller. The feasibility of the proposed method is shown through numerical
simulations.
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1 Introduction
Synchronization control is the hot topic of research into nonlinear systems, which is
widely applied in various areas. Different synchronization schemes have been presented,
including exponential synchronization, complete synchronization, projective synchro-
nization, lag synchronization, and adaptive synchronization [1–5]. It is worthy to point
out that these kinds of synchronization strategies considered an infinite time. Therefore,
the method which can realize the synchronization within a finite time has important prac-
tical application values. The finite time synchronization was first introduced by Kamenkov
in [6].

As we all know, neural networks (NN) own numerous specialties, including powerful
self-learning and tolerance ability, parallel computing, which have been applied in pattern
recognition, signal processing, optimal, and so on. In recent years, the study of its dynami-
cal characteristic, such as finite time stability and synchronization, has gained tremendous
attention, and considerable works have been done [7–13].

Finite time synchronization relies on its setting time, which depends on its initial er-
ror. To resolve this issue, the concept of fixed time synchronization (FTS) is introduced
in [14], implying that the setting time has a convergence upper bound which is indepen-
dent of the initial values. Because of this merit, FTS has attracted great attention in lots
of fields, including power system [15], traffic [16], and consensus [17]. So far, some inter-

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-02560-w
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-02560-w&domain=pdf
http://orcid.org/0000-0001-5316-9721
mailto:wwzhahu@aliyun.com


Chen et al. Advances in Difference Equations         (2020) 2020:92 Page 2 of 16

esting results on FTS of NN have been presented [18–24]. Based on Lyapunov function-
als, FTS for recurrent memristive NN (MNN) with time delay was presented in [21]. In
[22], authors studied the FTS of complex-valued NN (CVNN) with discontinuous activa-
tion functions and parameter uncertainties by decomposing CVNN into two real-valued
NN (RVNN). By applying the Lyapunov stability theorem, Ref. [23] considered the FTS
of uncertain Cohen–Grossberg NN with time varying delay. In [24], the FTS for a class
of impulsive MNN with time varying delay was discussed through designing a suitable
controller.

Recently, some scholars introduced quaternion algebra into NN to form quaternion-
valued NN (QVNN). Compared with RVNN and CVNN, QVNN can be applied to deal
with multidimensional problems, such as image processing, 3-D wind processing, color
night vision [25–27]. Moreover, QVNN possess superiority in dealing with optimization
and estimation problems and they have widely potential application in engineering field
[28, 29]. Thereupon, it is necessary to consider QVNN. In recent years, a few results on
dynamical properties of QVNN, including stability, periodicity, dissipativity, and passivity,
have appeared [30–33]. Moreover, the memristor, as a fourth fundamental circuit element,
was reported in Nature. The memristor exhibits numerous superiority such as high den-
sity, good scalability. Therefore, many scholars constructed the memristor-based neural
networks (MNN) by replacing the traditional resistor with memristor. However, there are
few results considering FTS for QVNN [34], not mentioning quaternion-valued MNN
(QVMNN). On the other hand, due to the finite switching speed of amplifiers, time de-
lays inevitable exist in NN, which may become a key source of instability, oscillation or
chaos in the neural system. Furthermore, the delays are time varying in nature. Conse-
quently, it is necessary to consider QVMNN at the presence of time varying delays in our
study.

Motivated by the above discussions, this paper focuses on studying the FTS of QVMNN
with time varying delays. The three distinctive advantages are listed below. First, taking
time delays and memristor into consideration, the model of QVMNN with time varying
delays is established, which is more complex and more general. Second, the issue of FTS in
delayed QVMNN is discussed. By applying the fixed time control and inequalities skills,
some novel conclusions are developed in this paper. Third, the obtained results in this
paper can be applied to handle the RVNN, CVNN, and QVNN with or without delays.

Notations. In this paper, R, C, Q refer to the real numbers, complex numbers, and
quaternion numbers, respectively. C([–τ , 0],Qn) denotes the continuous functions from
[–τ , 0] to Q

n.

2 Preliminaries
A quaternion-valued y is described as y = yR + ıyI + jyJ + κyK , where yR, yI , yJ , yK ∈ R, the
imaginary units ı , j , κ can satisfy the Hamilton rules:

1 ı j κ

1 1 ı j κ

ı ı –1 κ –j

j j –κ –1 ı

κ κ j –ı –1
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Remark 1 Unlike real value and complex value, the commutative law is not true for quater-
nion according to Hamilton rules.

The model of delayed QVMNN is described as follows:

żp(t) = –dpzp(t) +
n∑

q=1

apq
(
zp(t)

)
fq

(
zq(t)

)

+
n∑

q=1

bpq
(
zp(t)

)
gq

(
zq

(
t – τ (t)

))

+ lp(t), t ≥ 0, p = 1, 2, . . . , n, (1)

where zp(t) ∈ Q denotes the state vector of the pth neuron. dp > 0 stands for the self-
feedback coefficient, apq(zp(t)), bpq(zp(t)) ∈ Q are the memristive connection weight ma-
trices, fq(·) ∈ Q stands for the neuron activation function. τ (t) represents time vary-
ing delays, lp ∈ Q denotes the external input vector. The initial condition is given
by z(s) = ψ(s) ∈ C([–τ , 0],Qn), –τ ≤ s ≤ 0. System (1) is considered as a drive sys-
tem.

The memristor connection weights apq(zp(t)) and bpq(zp(t)) satisfy the following condi-
tions:

apq
(
zp(t)

)
=

⎧
⎨

⎩
ápq, |zp(t)| ≤ Tp;

àpq, |zp(t)| > Tp,

bpq
(
zp(t)

)
=

⎧
⎨

⎩
b́pq, |zp(t)| ≤ Tp;

b̀pq, |zp(t)| > Tp,

(2)

where Tp > 0 is the switching jumps, ápq, àpq, b́pq, b̀pq ∈Q are constants.

Remark 2 The considered system (1) takes into account quaternion values, time-varying
delays, and memristors. Compared with [33, 34], the system in [33, 34] is just a particular
case of this paper.

To carry forward the main results, some necessary assumptions are presented.

Assumption 1 Suppose zp = zR
p + ızI

p + jzJ
p + κzK

p , the activation function

fq(zq) = f R
q
(
zR

q
)

+ ıf I
q
(
zI

q
)

+ j f J
q
(
zJ

q
)

+ κf K
q

(
zK

q
)
.

Assumption 2 For p = 1, 2, . . . , n, ∀zμ
p , z̃μ

p ∈ R (μ = R, I, J , K ), there exist lμp , hμ
p > 0 such that

∣∣f μ
p

(
zμ

p
)

– f μ
p

(
z̃μ

p
)∣∣ ≤ lμp

∣∣zμ
p – z̃μ

p
∣∣,

∣∣gμ
p
(
zμ

p
)

– gμ
p
(
z̃μ

p
)∣∣ ≤ hμ

p
∣∣zμ

p – z̃μ
p
∣∣.

Assumption 3 τ (t) is differentiable and satisfies 0 ≤ τ (t) ≤ τ and τ̇ (t) ≤ σ < 1, where σ

and τ are constants.
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By employing quaternion multiplication with the non-commutativity, system (1) can be
represented as the following four parts:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

żR
p (t) = –dpzR

p (t) +
∑n

q=1[aR
pq(zR

p (t))f R
q (zR

q (t))

– aI
pq(zI

p(t))f I
q (zI

q(t))

– aJ
pq(zJ

p(t))f J
q (zJ

q(t)) – aK
pq(zK

p (t))f K
q (zK

q (t))]

+
∑n

q=1[bR
pq(zR

p (t))gR
q (zR

q (t – τ (t)))

– bI
pq(zI

p(t))gI
q(zI

q(t – τ (t)))

– bJ
pq(zJ

p(t))gJ
q(zJ

q(t – τ (t)))

– bK
pq(zK

p (t))gK
q (zK

q (t – τ (t)))],

żI
p(t) = –dpzI

p(t) +
∑n

q=1[aI
pq(zI

p(t))f R
q (zR

q (t))

+ aR
pq(zR

p (t))f I
q (zI

q(t))

+ aK
pq(zK

p (t))f J
q (zJ

q(t)) – aJ
pq(zJ

p(t))f K
q (zK

q (t))]

+
∑n

q=1[bI
pq(zI

p(t))gR
q (zR

q (t – τ (t)))

+ bR
pq(zR

p (t))gI
q(zI

q(t – τ (t)))

+ bK
pq(zK

p (t))gJ
q(zJ

q(t – τ (t)))

– bJ
pq(zJ

p(t))gK
q (zK

q (t – τ (t)))],

żJ
p(t) = –dpzJ

p(t) +
∑n

q=1[aJ
pq(zJ

p(t))f R
q (zR

q (t))

+ aK
pq(zK

p (t))f I
q (zI

q(t))

+ aR
pq(zR

p (t))f J
q (zJ

q(t)) – aI
pq(zI

p(t))f K
q (zK

q (t))]

+
∑n

q=1[bJ
pq(zJ

p(t))gR
q (zR

q (t – τ (t)))

+ bK
pq(zK

p (t))gI
q(zI

q(t – τ (t)))

+ bR
pq(zR

p (t))gJ
q(zJ

q(t – τ (t)))

– bI
pq(zI

p(t))gK
q (zK

q (t – τ (t)))],

żK
p (t) = –dpzK

p (t) +
∑n

q=1[aK
pq(zK

p (t))f R
q (zR

q (t))

– aJ
pq(zJ

p(t))f I
q (zI

q(t))

+ aI
pq(zI

p(t))f J
q (zJ

q(t)) + aR
pq(zR

p (t))f K
q (zK

q (t))]

+
∑n

q=1[bK
pq(zK

p (t))gR
q (zR

q (t – τ (t)))

– bJ
pq(zJ

p(t))gI
q(zI

q(t – τ (t)))

+ bI
pq(zI

p(t))gJ
q(zJ

q(t – τ (t)))

– bR
pq(zR

p (t))gK
q (zK

q (t – τ (t)))].

(3)

According to the characteristics of memristor and current voltage, we have

aμ
pq

(
zμ

p (t)
)

=

⎧
⎨

⎩
áμ

pq, |zμ
p (t)| ≤ Tp;

àμ
pq, |zμ

p (t)| > Tp,

bμ
pq

(
zμ

p (t)
)

=

⎧
⎨

⎩
b́μ

pq, |zμ
p (t)| ≤ Tp;

b̀μ
pq, |zμ

p (t)| > Tp,

(4)

where Tp > 0 is the switching jumps, áμ
pq, àμ

pq, b́μ
pq, b̀μ

pq are constants, μ = R, I, J , K .
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Applying the theory of differential inclusion and the definition of Filippov solution, sys-
tem (3) can be rewritten as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

żR
p (t) ∈ –dpzR

p (t) +
∑n

q=1[co{āR
pq, aR

pq}f R
q (zR

q (t)) – co{āI
pq, aI

pq}f I
q (zI

q(t))

– co{āJ
pq, aJ

pq}f J
q (zJ

q(t)) – co{āK
pq, aK

pq}f K
q (zK

q (t))]

+
∑n

q=1[co{b̄R
pq, bR

pq}gR
q (zR

q (t – τ (t))) – co{b̄I
pq, bI

pq}gI
q(zI

q(t – τ (t)))

– co{b̄J
pq, bJ

pq}gJ
q(zJ

q(t – τ (t))) – co{b̄K
pq, bK

pq}gK
q (zK

q (t – τ (t)))],

żI
p(t) ∈ –dpzI

p(t) +
∑n

q=1[co{āI
pq, aI

pq}f R
q (zR

q (t)) + co{āR
pq, aR

pq}f I
q (zI

q(t))

+ co{āK
pq, aK

pq}f J
q (zJ

q(t)) – co{āJ
pq, aJ

pq}f K
q (zK

q (t))]

+
∑n

q=1[co{b̄I
pq, bI

pq}gR
q (zR

q (t – τ (t))) + co{b̄R
pq, bR

pq}gI
q(zI

q(t – τ (t)))

+ co{b̄K
pq, bK

pq}gJ
q(zJ

q(t – τ (t))) – co{b̄J
pq, bJ

pq}gK
q (zK

q (t – τ (t)))],

żJ
p(t) ∈ –dpzJ

p(t) +
∑n

q=1[co{āJ
pq, aJ

pq}f R
q (zR

q (t)) + co{āK
pq, aK

pq}f I
q (zI

q(t))

+ co{āR
pq, aR

pq}f J
q (zJ

q(t)) – co{āI
pq, aI

pq}f K
q (zK

q (t))]

+
∑n

q=1[co{b̄J
pq, bJ

pq}gR
q (zR

q (t – τ (t))) + co{b̄K
pq, bK

pq}gI
q(zI

q(t – τ (t)))

+ co{b̄R
pq, bR

pq}gJ
q(zJ

q(t – τ (t))) – co{b̄I
pq, bI

pq}gK
q (zK

q (t – τ (t)))],

żK
p (t) ∈ –dpzK

p (t) +
∑n

q=1[co{āK
pq, aK

pq}f R
q (zR

q (t)) – co{āJ
pq, aJ

pq}f I
q (zI

q(t))

+ co{āI
pq, aI

pq}f J
q (zJ

q(t)) + co{āR
pq, aR

pq}f K
q (zK

q (t))]

+
∑n

q=1[co{b̄K
pq, bK

pq}gR
q (zR

q (t – τ (t))) – co{b̄J
pq, bJ

pq}gI
q(zI

q(t – τ (t)))

+ co{b̄I
pq, bI

pq}gJ
q(zJ

q(t – τ (t))) – co{b̄R
pq, bR

pq}gK
q (zK

q (t – τ (t)))].

(5)

Or equivalently, there exist âμ
pq ∈ co{āμ

pq, aμ
pq}, b̂μ

pq ∈ co{b̄μ
pq, bμ

pq} such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

żR
p (t) = –dpzR

p (t) +
∑n

q=1[âR
pqf R

q (zR
q (t)) – âI

pqf I
q (zI

q(t)) – âJ
pqf J

q (zJ
q(t))

– âK
pqf K

q (zK
q (t))] +

∑n
q=1[b̂R

pqgR
q (zR

q (t – τ (t))) – b̂I
pqgI

q(zI
q(t – τ (t)))

– b̂J
pqgJ

q(zJ
q(t – τ (t))) – b̂K

pqgK
q (zK

q (t – τ (t)))],

żI
p(t) = –dpzI

p(t) +
∑n

q=1[âI
pqf R

q (zR
q (t)) + âR

pqf I
q (zI

q(t)) + âK
pqf J

q (zJ
q(t))

– âJ
pq(zJ

p(t))f K
q (zK

q (t))] +
∑n

q=1[b̂I
pqgR

q (zR
q (t – τ (t))) + b̂R

pqgI
q(zI

q(t – τ (t)))

+ b̂K
pqgJ

q(zJ
q(t – τ (t))) – b̂J

pqgK
q (zK

q (t – τ (t)))],

żJ
p(t) = –dpzJ

p(t) +
∑n

q=1[âJ
pqf R

q (zR
q (t)) + âK

pqf I
q (zI

q(t)) + âR
pqf J

q (zJ
q(t))

– âI
pqf K

q (zK
q (t))] +

∑n
q=1[b̂J

pqgR
q (zR

q (t – τ (t))) + b̂K
pqgI

q(zI
q(t – τ (t)))

+ b̂R
pqgJ

q(zJ
q(t – τ (t))) – b̂I

pqgK
q (zK

q (t – τ (t)))],

żK
p (t) = –dpzK

p (t) +
∑n

q=1[âK
pqf R

q (zR
q (t)) – âJ

pqf I
q (zI

q(t)) + âI
pqf J

q (zJ
q(t))

+ âR
pqf K

q (zK
q (t))] +

∑n
q=1[b̂K

pqgR
q (zR

q (t – τ (t))) – b̂J
pqgI

q(zI
q(t – τ (t)))

+ b̂I
pqgJ

q(zJ
q(t – τ (t))) – b̂R

pqgK
q (zK

q (t – τ (t)))].

(6)

Make the definition that āμ
pq = max{áμ

pq, àμ
pq}, aμ

pq = min{áμ
pq, àμ

pq}, b̄μ
pq = max{b́μ

pq, b̀μ
pq}, bμ

pq =
min{b́μ

pq, b̀μ
pq}, μ = R, I, J , K .



Chen et al. Advances in Difference Equations         (2020) 2020:92 Page 6 of 16

The response system is given by

˙̃zp(t) = –dpz̃p(t) +
n∑

q=1

apq
(
z̃p(t)

)
fq

(
z̃q(t)

)

+
n∑

q=1

bpq
(
z̃p(t)

)
gq

(
z̃q

(
t – τ (t)

))

+ lp(t) + up(t), t ≥ 0, p = 1, 2, . . . , n, (7)

where up(t) ∈ Q is an appropriate controller. The initial condition is z̃(s) = ϕ(s) ∈
C([–τ , 0],Qn), –τ ≤ s ≤ 0.

Similarly, system (7) can be written as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃zR
p (t) = –dpz̃R

p (t) +
∑n

q=1[ǎR
pqf R

q (z̃R
q (t)) – ǎI

pqf I
q (z̃I

q(t)) – ǎJ
pqf J

q (z̃J
q(t))

– ǎK
pqf K

q (z̃K
q (t))] +

∑n
q=1[b̌R

pqgR
q (z̃R

q (t – τ (t))) – b̌I
pqgI

q(z̃I
q(t – τ (t)))

– b̌J
pqgJ

q(z̃J
q(t – τ (t))) – b̌K

pqgK
q (z̃K

q (t – τ (t)))] + uR
p (t),

˙̃zI
p(t) = –dpz̃I

p(t) +
∑n

q=1[ǎI
pqf R

q (z̃R
q (t)) + ǎR

pqf I
q (z̃I

q(t)) + ǎK
pqf J

q (z̃J
q(t))

– ǎJ
pq(zJ

p(t))f K
q (z̃K

q (t))] +
∑n

q=1[b̌I
pqgR

q (z̃R
q (t – τ (t))) + b̌R

pqgI
q(z̃I

q(t – τ (t)))

+ b̌K
pqgJ

q(z̃J
q(t – τ (t))) – b̌J

pqgK
q (z̃K

q (t – τ (t)))] + uI
p(t),

żJ
p(t) = –dpz̃J

p(t) +
∑n

q=1[ǎJ
pqf R

q (z̃R
q (t)) + ǎK

pqf I
q (z̃I

q(t)) + ǎR
pqf J

q (z̃J
q(t))

– ǎI
pqf K

q (z̃K
q (t))] +

∑n
q=1[b̌J

pqgR
q (z̃R

q (t – τ (t))) + b̌K
pqgI

q(z̃I
q(t – τ (t))) + uJ

p(t)

+ b̌R
pqgJ

q(z̃J
q(t – τ (t))) – b̌I

pqgK
q (z̃K

q (t – τ (t)))],

żK
p (t) = –dpz̃K

p (t) +
∑n

q=1[ǎK
pqf R

q (z̃R
q (t)) – ǎJ

pqf I
q (z̃I

q(t)) + ǎI
pqf J

q (z̃J
q(t))

+ ǎR
pqf K

q (z̃K
q (t))] +

∑n
q=1[b̌K

pqgR
q (z̃R

q (t – τ (t))) – b̌J
pqgI

q(z̃I
q(t – τ (t)))

+ b̌I
pqgJ

q(z̃J
q(t – τ (t))) – b̌R

pqgK
q (z̃K

q (t – τ (t)))] + uK
p (t),

(8)

where ǎμ
pq ∈ co{āμ

pq, aμ
pq}, b̌μ

pq ∈ co{b̄μ
pq, bμ

pq}.
Let ep(t) = z̃p(t) – zp(t) be the error of synchronization, giving that the system error can

be modeled as follows:

ėp(t) ∈ –dpep(t) +
n∑

q=1

co{āpq, apq}Fq
(
eq(t)

)

+
n∑

q=1

co{b̄pq, bpq}Gq
(
eq

(
t – τ (t)

))

+ up(t), t ≥ 0, p = 1, 2, . . . , n, (9)

or equivalently, there exist āpq ∈ co{āpq, apq}, b̄pq ∈ co{b̄pq, bpq} such that

ėp(t) = –dpep(t) +
n∑

q=1

āpqFq
(
eq(t)

)
+

n∑

q=1

b̄pqGq
(
eq

(
t – τ (t)

))

+ up(t), t ≥ 0, p = 1, 2, . . . , n, (10)
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where Fq(eq(t)) = fq(z̃q(t)) – fq(zq(t)), Gq(eq(t – τq)) = gq(z̃q(t – τq)) – gq(zq(t – τq)). The initial
condition is φ(s) = ψ(s) – ϕ(s).

Based on the above analysis, the error system ep(t) � eR
p (t) + ıeI

p(t) + jeJ
p(t) + κeK

p (t) can
be represented as the following four parts:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ėR
p (t) = –dpeR

p (t) +
∑n

q=1[āR
pqFR

q (eR
q (t)) – āI

pqFI
q(eI

q(t)) – āJ
pqFJ

q(eJ
q(t))

– āK
pqFK

q (eK
q (t))]

+
∑n

q=1[b̄R
pqGR

q (eR
q (t – τ (t))) – b̄I

pqGI
q(eI

q(t – τ (t))) – b̄J
pqGJ

q(eJ
q(t – τ (t)))

– b̄K
pqGK

q (eK
q (t – τ (t)))] + uR

p (t),

ėI
p(t) = –dpeI

p(t) +
∑n

q=1[āI
pqFR

q (eR
q (t)) + āR

pqFI
q(eI

q(t)) + āK
pqFJ

q(eJ
q(t))

– āJ
pqFK

q (eK
q (t))]

+
∑n

q=1[b̄I
pqGR

q (eR
q (t – τ (t))) + b̄R

pqGI
q(eI

q(t – τ (t))) + b̄K
pqGJ

q(eJ
q(t – τ (t)))

– b̄J
pqGK

q (eK
q (t – τ (t)))] + uI

p(t),

ėJ
p(t) = –dpeJ

p(t) +
∑n

q=1[āJ
pqFR

q (eR
q (t)) + āK

pqFI
q(eI

q(t)) + āR
pqFJ

q(eJ
q(t))

– āI
pqFK

q (eK
q (t))]

+
∑n

q=1[b̄J
pqGR

q (eR
q (t – τ (t))) + b̄K

pqGI
q(eI

q(t – τ (t))) + b̄R
pqGJ

q(eJ
q(t – τ (t)))

– b̄I
pqGK

q (eK
q (t – τ (t)))] + uJ

p(t),

ėK
p (t) = –dpeK

p (t) +
∑n

q=1[āK
pqFR

q (eR
q (t)) – āJ

pqFI
q(eI

q(t)) + āI
pqFJ

q(eJ
q(t))

+ āR
pqFK

q (eK
q (t))]

+
∑n

q=1[b̄K
pqGR

q (eR
q (t – τ (t))) – b̄J

pqGI
q(eI

q(t – τ (t))) + b̄I
pqGJ

q(eJ
q(t – τ (t)))

– b̄R
pqGK

q (eK
q (t – τ (t)))] + uK

p (t),

(11)

where Fμ
q (eμ

q (t)) = f μ
q (z̃μ

q (t)) – f μ
q (zμ

q (t)), Gμ
q (eμ

q (t – τq)) = gμ
q (z̃μ

q (t – τq)) – gμ
q (zμ

q (t – τq)), āμ
pq ∈

co{āμ
pq, aμ

pq}, b̄μ
pq ∈ co{b̄μ

pq, bμ
pq}, μ = R, I, J , K .

For the subsequent discussion, the definitions and lemmas are given.

Definition 1 ([6]) For any initial values φ, at an existing time of 0 < T(φ) < ∞ such that
(1) limt→T(φ) ‖e(t,φ)‖ = 0,
(2) ‖e(t,φ)‖ = 0, t > T(φ),

drive-response systems (1) and (7) can obtain the finite time synchronization.

Definition 2 Drive-response systems (1) and (7) are said to reach the FTS if the conditions
of finite time synchronization hold and the setting time T(φ) is upper bounded by Tmax,
i.e., T(φ) ≤ Tmax.

Lemma 1 ([35]) If V : Rn → R+
⋃{0} is a continuous radially unbounded function satis-

fying:
(1) V (y) = 0 ⇔ y = 0;
(2) For ξ ,η > 0, δ > 1, 0 < θ < 1, the following inequality holds:

D+V
(
y(t)

) ≤ –ξV δ
(
y(t)

)
– ηV θ

(
y(t)

)
, ∀y(t),
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then the origin is fixed time stable; moreover,

V
(
y(t)

) ≡ 0, t ≥ T(y0),

with the setting time bounded by

T(y0) ≤ Tmax :=
1
η

(
η

ξ

) 1–θ
δ–θ

(
1

1 – θ
+

1
δ – 1

)
.

Lemma 2 ([36]) Assume y1, y2, . . . , yn ≥ 0, 0 < ε ≤ 1, ζ > 1, then the following inequalities
hold:

n∑

q=1

yε
p ≥

( n∑

q=1

yp

)ε

,
n∑

q=1

yζ
p ≥ n1–ζ

( n∑

q=1

yp

)ζ

.

3 Fixed time synchronization
In order to achieve the FTS of delayed QVMNN, the controller is designed as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

uR
p (t) = –λR

1peR
p (t) – sign(eR

p (t))[λR
2p|eR

p (t)|δ + λR
3p|eR

p (t)|θ + λR
4p|eR

p (t – τ (t))|],
uI

p(t) = –λI
1peI

p(t) – sign(eI
p(t))[λI

2p|eI
p(t)|δ + λI

3p|eI
p(t)|θ + λI

4p|eI
p(t – τ (t))|],

uJ
p(t) = –λ

J
1peJ

p(t) – sign(eJ
p(t))[λJ

2p|eJ
p(t)|δ + λ

J
3p|eJ

p(t)|θ + λ
J
4p|eJ

p(t – τ (t))|],
uK

p (t) = –λK
1peK

p (t) – sign(eK
p (t))[λK

2p|eK
p (t)|δ + λK

3p|eK
p (t)|θ + λK

4p|eK
p (t – τ (t))|],

(12)

where λ
μ
1p, λμ

2p, λμ
3p, λμ

4p (μ = R, I, J , K , p = 1, 2, . . . , n) are control gains, δ > 1, 0 < θ < 1.

Theorem 1 Let Assumptions 1–3 hold, when the control gains satisfy the following condi-
tions:

⎧
⎪⎪⎨

⎪⎪⎩

λ
μ
1p ≥ ∑n

q=1[|āR
qp| + |āI

qp| + |āJ
qp| + |āK

qp|]lμp – dp,

λ
μ
4p ≥ ∑n

q=1[|b̄R
qp| + |b̄I

qp| + |b̄J
qp| + |b̄K

qp|]hμ
p ,

λ
μ
2p ≥ 0, λ

μ
3p ≥ 0, p = 1, 2, . . . , n,μ = R, I, J , K ,

(13)

where δ > 1, 0 < θ < 1, then the response system (7) can synchronize the drive system (1) in
a fixed time under controller (12). The fixed time T is estimated as follows:

T ≤ 1
λ3

(
λ3

λ2(4n)1–δ

) 1–θ
δ–θ

(
1

1 – θ
+

1
δ – 1

)
, (14)

where λ2 = minp{λμ
2p}, λ3 = minp{λμ

3p}.

Proof Constructing the Lyapunov function

V (t) = V1(t) + V2 + V3(t)(t) + V4(t)

�
n∑

p=1

∣∣eR
p (t)

∣∣ +
n∑

p=1

∣∣eI
p(t)

∣∣ +
n∑

p=1

∣∣eJ
p(t)

∣∣ +
n∑

p=1

∣∣eK
p (t)

∣∣, (15)
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taking the time derivative of V1(t), one gets

V̇1(t) =
n∑

p=1

sign
(
eR

p (t)
)
{

–dpeR
p (t) +

n∑

q=1

[
āR

pqFR
q
(
eR

q (t)
)

– āI
pqFI

q
(
eI

q(t)
)

– āJ
pqFJ

q
(
eJ

q(t)
)

– āK
pqFK

q
(
eK

q (t)
)]

+
n∑

q=1

[
b̄R

pqGR
q
(
eR

q
(
t – τ (t)

))
– b̄I

pqGI
q
(
eI

q
(
t – τ (t)

))

– b̄J
pqGJ

q
(
eJ

q
(
t – τ (t)

))
– b̄K

pqGK
q
(
eK

q
(
t – τ (t)

))]

– λR
1peR

p (t) – sign
(
eR

p (t)
)[

λR
2p

∣∣eR
p (t)

∣∣δ + λR
3p

∣∣eR
p (t)

∣∣θ + λR
4p

∣∣eR
p
(
t – τ (t)

)∣∣]
}

≤
n∑

p=1

{
–
(
dp + λR

1p
)∣∣eR

p (t))
∣∣ +

n∑

q=1

[∣∣āR
pq

∣∣lR
q
∣∣eR

q (t)
∣∣ +

∣∣āI
pq

∣∣lI
q
∣∣eI

q(t)
∣∣ +

∣∣āJ
pq

∣∣lJ
q
∣∣eJ

q(t)
∣∣

+
∣∣āK

pq
∣∣lK

q
∣∣eK

q (t)
∣∣] +

n∑

q=1

[∣∣b̄R
pq

∣∣hR
q
∣∣eR

q
(
t – τ (t)

)∣∣

+
∣∣b̄I

pq
∣∣hI

q
∣∣eI

q
(
t – τ (t)

)∣∣ +
∣∣b̄J

pq
∣∣hJ

q
∣∣eJ

q
(
t – τ (t)

)∣∣ +
∣∣b̄K

pq
∣∣hK

q
∣∣eK

q
(
t – τ (t)

)∣∣]

– λR
2p

∣∣eR
p (t)

∣∣δ – λR
3p

∣∣eR
p (t)

∣∣θ – λR
4p

∣∣eR
p
(
t – τ (t)

)∣∣
}

=
n∑

p=1

{
–dp – λR

1p +
n∑

q=1

∣∣āR
qp

∣∣lR
p

}
∣∣eR

p (t))
∣∣ +

n∑

p=1

n∑

q=1

[∣∣āI
pq

∣∣lI
q
∣∣eI

q(t)
∣∣ +

∣∣āJ
pq

∣∣lJ
q
∣∣eJ

q(t)
∣∣

+
∣∣āK

pq
∣∣lK

q
∣∣eK

q (t)
∣∣] +

n∑

p=1

{
–λR

4p +
n∑

q=1

∣∣b̄R
qp

∣∣hR
p

}
∣∣eR

p
(
t – τ (t)

)∣∣

+
n∑

p=1

n∑

q=1

[∣∣b̄I
pq

∣∣hI
q
∣∣eI

q
(
t – τ (t)

)∣∣ +
∣∣b̄J

pq
∣∣hJ

q
∣∣eJ

q
(
t – τ (t)

)∣∣ +
∣∣b̄K

pq
∣∣hK

q
∣∣eK

q
(
t – τ (t)

)∣∣]

–
n∑

p=1

[
λR

2p
∣∣eR

p (t)
∣∣δ + λR

3p
∣∣eR

p (t)
∣∣θ ].

Similarly:

V̇2(t) ≤
n∑

p=1

{
–dp – λI

1p +
n∑

q=1

∣∣āR
qp

∣∣lI
p

}
∣∣eI

p(t)
∣∣ +

n∑

p=1

n∑

q=1

[∣∣āI
pq

∣∣lR
q
∣∣eR

q (t)
∣∣ +

∣∣āK
pq

∣∣lJ
q
∣∣eJ

q(t)
∣∣

+
∣∣āJ

pq
∣∣lK

q
∣∣eK

q (t)
∣∣] +

n∑

p=1

{
–λI

4p +
n∑

q=1

∣∣b̄R
qp

∣∣hI
p

}
∣∣eI

p
(
t – τ (t)

)∣∣

+
n∑

p=1

n∑

q=1

[∣∣b̄I
pq

∣∣hR
q
∣∣eR

q
(
t – τ (t)

)∣∣ +
∣∣b̄K

pq
∣∣hJ

q
∣∣eJ

q
(
t – τ (t)

)∣∣ +
∣∣b̄J

pq
∣∣hK

q
∣∣eK

q
(
t – τ (t)

)∣∣]

–
n∑

p=1

[
λI

2p
∣∣eI

p(t)
∣∣δ + λI

3p
∣∣eI

p(t)
∣∣θ ],

V̇3(t) ≤
n∑

p=1

{
–dp – λ

J
1p +

n∑

q=1

∣∣āR
qp

∣∣lJ
p

}
∣∣eJ

p(t)
∣∣ +

n∑

p=1

n∑

q=1

[∣∣āJ
pq

∣∣lR
q
∣∣eR

q (t)
∣∣ +

∣∣āK
pq

∣∣lI
q
∣∣eI

q(t)
∣∣
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+
∣∣āI

pq
∣∣lK

q
∣∣eK

q (t)
∣∣] +

n∑

p=1

{
–λ

J
4p +

n∑

q=1

∣∣b̄R
qp

∣∣hJ
p

}
∣∣eJ

p
(
t – τ (t)

)∣∣

+
n∑

p=1

n∑

q=1

[∣∣b̄J
pq

∣∣hR
q
∣∣eR

q
(
t – τ (t)

)∣∣ +
∣∣b̄K

pq
∣∣hI

q
∣∣eI

q
(
t – τ (t)

)∣∣ +
∣∣b̄I

pq
∣∣hK

q
∣∣eK

q
(
t – τ (t)

)∣∣]

–
n∑

p=1

[
λ

J
2p

∣∣eJ
p(t)

∣∣δ + λ
J
3p

∣∣eJ
p(t)

∣∣θ ],

V̇4(t) ≤
n∑

p=1

{
–dp – λK

1p +
n∑

q=1

∣∣āR
qp

∣∣lK
p

}
∣∣eK

p (t)
∣∣ +

n∑

p=1

n∑

q=1

[∣∣āK
pq

∣∣lR
q
∣∣eR

q (t)
∣∣ +

∣∣āJ
pq

∣∣lI
q
∣∣eI

q(t)
∣∣

+
∣∣āI

pq
∣∣lJ

q
∣∣eJ

q(t)
∣∣] +

n∑

p=1

{
–λK

4p +
n∑

q=1

∣∣b̄R
qp

∣∣hK
p

}
∣∣eK

p
(
t – τ (t)

)∣∣

+
n∑

p=1

n∑

q=1

[∣∣b̄K
pq

∣∣hR
q
∣∣eR

q
(
t – τ (t)

)∣∣ +
∣∣b̄J

pq
∣∣hI

q
∣∣eI

q
(
t – τ (t)

)∣∣ +
∣∣b̄I

pq
∣∣hJ

q
∣∣eJ

q
(
t – τ (t)

)∣∣]

–
n∑

p=1

[
λK

2p
∣∣eK

p (t)
∣∣δ + λK

3p
∣∣eK

p (t)
∣∣θ ].

By combining the above inequalities and according to Lemma 2, one gets the following:

V̇ (t) ≤
n∑

p=1

{
–dp – λR

1p +
n∑

q=1

[∣∣āR
qp

∣∣ +
∣∣āI

qp
∣∣ +

∣∣āJ
qp

∣∣ +
∣∣āK

qp
∣∣]lR

p

}
∣∣eR

p (t))
∣∣

+
n∑

p=1

{
–dp – λI

1p +
n∑

q=1

[∣∣āR
qp

∣∣ +
∣∣āI

qp
∣∣ +

∣∣āJ
qp

∣∣ +
∣∣āK

qp
∣∣]lI

p

}
∣∣eI

p(t))
∣∣

+
n∑

p=1

{
–dp – λ

J
1p +

n∑

q=1

[∣∣āR
qp

∣∣ +
∣∣āI

qp
∣∣ +

∣∣āJ
qp

∣∣ +
∣∣āK

qp
∣∣]lJ

p

}
∣∣eJ

p(t))
∣∣

+
n∑

p=1

{
–dp – λK

1p +
n∑

q=1

[∣∣āR
qp

∣∣ +
∣∣āI

qp
∣∣ +

∣∣āJ
qp

∣∣ +
∣∣āK

qp
∣∣]lK

p

}
∣∣eK

p (t))
∣∣

+
n∑

p=1

{
–λR

4p +
n∑

q=1

[∣∣b̄R
qp

∣∣ +
∣∣b̄I

qp
∣∣ +

∣∣b̄J
qp

∣∣ +
∣∣b̄K

qp
∣∣]hR

p

}
∣∣eR

p
(
t – τ (t)

)∣∣

+
n∑

p=1

{
–λI

4p +
n∑

q=1

[∣∣b̄R
qp

∣∣ +
∣∣b̄I

qp
∣∣ +

∣∣b̄J
qp

∣∣ +
∣∣b̄K

qp
∣∣]hI

p

}
∣∣eI

p
(
t – τ (t)

)∣∣

+
n∑

p=1

{
–λ

J
4p +

n∑

q=1

[∣∣b̄R
qp

∣∣ +
∣∣b̄I

qp
∣∣ +

∣∣b̄J
qp

∣∣ +
∣∣b̄K

qp
∣∣]hJ

p

}
∣∣eJ

p
(
t – τ (t)

)∣∣

+
n∑

p=1

{
–λK

4p +
n∑

q=1

[∣∣b̄R
qp

∣∣ +
∣∣b̄I

qp
∣∣ +

∣∣b̄J
qp

∣∣ +
∣∣b̄K

qp
∣∣]hK

p

}
∣∣eK

p
(
t – τ (t)

)∣∣

–
n∑

p=1

[
λR

2p
∣∣eR

p (t)
∣∣δ + λR

3p
∣∣eR

p (t)
∣∣θ ] –

n∑

p=1

[
λI

2p
∣∣eI

p(t)
∣∣δ + λI

3p
∣∣eI

p(t)
∣∣θ ]
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–
n∑

p=1

[
λ

J
2p

∣∣eJ
p(t)

∣∣δ + λ
J
3p

∣∣eJ
p(t)

∣∣θ ] –
n∑

p=1

[
λK

2p
∣∣eK

p (t)
∣∣δ + λK

3p
∣∣eK

p (t)
∣∣θ ]

≤ –
n∑

p=1

[
λR

2p
∣∣eR

p (t)
∣∣δ + λR

3p
∣∣eR

p (t)
∣∣θ ] –

n∑

p=1

[
λI

2p
∣∣eI

p(t)
∣∣δ + λI

3p
∣∣eI

p(t)
∣∣θ ]

–
n∑

p=1

[
λ

J
2p

∣∣eJ
p(t)

∣∣δ + λ
J
3p

∣∣eJ
p(t)

∣∣θ ] –
n∑

p=1

[
λK

2p
∣∣eK

p (t)
∣∣δ + λK

3p
∣∣eK

p (t)
∣∣θ ]

≤ –λ2

n∑

p=1

[∣∣eR
p (t)

∣∣δ +
∣∣eI

p(t)
∣∣δ +

∣∣eJ
p(t)

∣∣δ +
∣∣eK

p (t)
∣∣δ]

– λ3

n∑

p=1

[∣∣eR
p (t)

∣∣θ +
∣∣eI

p(t)
∣∣θ +

∣∣eJ
p(t)

∣∣θ +
∣∣eK

p (t)
∣∣θ ]

≤ –λ2(4n)1–δ

[ n∑

p=1

∣∣eR
p (t)

∣∣ +
∣∣eI

p(t)
∣∣ +

∣∣eJ
p(t)

∣∣ +
∣∣eK

p (t)
∣∣
]δ

– λ3

[ n∑

p=1

∣∣eR
p (t)

∣∣ +
∣∣eI

p(t)
∣∣ +

∣∣eJ
p(t)

∣∣ +
∣∣eK

p (t)
∣∣
]θ

= –λ2(4n)1–δV δ(t) – λ3V θ (t).

Therefore, following from Lemma 1, the FTS between drive-response systems (1) and
(7) can be achieved. Moreover, the upper bound of setting time is estimated by T ≤
1
λ3

( λ3
λ2(4n)1–δ )

1–θ
δ–θ ( 1

1–θ
+ 1

δ–1 ). �

Remark 3 Ref. [34] investigated the FTS of QVNN without considering time-delay, and
some conditions of FTS and bound of the settling time were obtained. In our paper, the
FTS of more complex QVMNN at the presence of time varying delays is considered. More-
over, the design of controllers and the conclusions are more complex and more general
than those in Ref. [34].

Remark 4 Recently, many excellent results on FTS of RVNN and CVNN [18–24] have
been presented. Compared with previous works, QVNN possess superiority in dealing
with multidimensional problems, and they have widely potential application in engineer-
ing field. Hence, our result is more general and meaningful.

Remark 5 It is worthy of pointing out that quaternion multiplication does not satisfy
the commutative rule. Therefore, traditional methods and techniques for solving prob-
lems of CVNN or RVNN cannot be directly employed to study QVNN. To avoid the
non-commutativity of quaternion multiplication, a feasible method is to decompose the
quaternion-valued systems into real-valued systems. Choosing different approaches on in-
vestigating the dynamics characteristics of QVNN is still an open and challenging task. In
the future, we are focusing on studying the synchronization of QVMNN via direct method.
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4 Numerical example
The following QVMNN with time delay is taken as a drive system:

żp(t) = –dpzp(t) +
2∑

q=1

apq
(
zp(t)

)
fq

(
zq(t)

)

+
2∑

q=1

bpq
(
zp(t)

)
gq

(
zq

(
t – τ (t)

))

+ lp(t), t ≥ 0, p = 1, 2, (16)

where zp(t) = zR
p (t) + ızI

p(t) + jzJ
p(t) +κzK

p (t), τ (t) = 0.2 + 0.78 sin(t). l1(t) = 0.5 + 0.4ı – 0.5j –
0.3κ , l2(t) = –0.3 + 0.3ı + 2j – 1κ , d1 = d2 = 1.
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⎨
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⎨
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21

(
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2
)
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⎨
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22

(
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2
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Figure 1 The error curves of eR1, e
R
2

bI
21

(
xI

2
)

=
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⎩
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bJ
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(
xJ
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(
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The neuron activation function is

fp
(
zp(t)

)
= gp

(
zp(t)

) 1

1 + ezR
p (t)

+
1

1 + ezI
p(t)

ı +
1

1 + ezJ
p(t)

j +
1

1 + ezK
p (t)

κ

for p = 1, 2, which implies lμp = hμ
p = 1, μ = R, I, J , K .

The response system is described as follows:

˙̃zp(t) = –dpz̃p(t) +
n∑

q=1

apq
(
z̃p(t)

)
fq

(
z̃q(t)

)

+
n∑

q=1

bpq
(
z̃p(t)

)
gq

(
z̃q(t – τq)

)

+ lp(t) + up(t), t ≥ 0, p = 1, 2, (17)
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Figure 2 The error curves of eI1, e
I
2

Figure 3 The error curves of eJ1, e
J
2

where z̃p(t) = z̃R
p (t) + ız̃I

p(t) + j z̃J
p(t) + κ z̃K

p (t). up(t) = uR
p (t) + ıuI

p(t) + juJ
p(t) + κuK

p (t) is the
controller. The parameters used here are similar to those used in (16). Choosing λ

μ
1p = 4,

λ
μ
2p = 5, λ

μ
3p = 10, λ

μ
4p = 2 (μ = R, I, J , K , p = 1, 2, . . . , n), δ = 1.5, θ = 0.5, the conditions in

Theorem 1 hold. According to Theorem 1, drive-response systems (16) and (17) can syn-
chronize with the setting time Tmax = 0.6. Figures 1–4 show the synchronization trajecto-
ries with ten random initial values.

5 Conclusions
The FTS issue for a class of QVMNN at the presence of time varying delays is investigated
based on fixed time stability theory. With the help of a Lyapunov function and a nonlinear
controller, some sufficient conditions are established to implement the FTS of delayed
QVMNN. Finally, a numerical example is used to present the effectiveness of the proposed
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Figure 4 The error curves of eK1 , e
K
2

method. The synchronization of delayed QVMNN with parameter uncertainties warrants
further investigation.
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