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Abstract
In this paper, a class of second-order tempered difference operators for the left and
right Riemann–Liouville tempered fractional derivatives is constructed. And a class of
second-order numerical methods is presented for solving the space tempered
fractional diffusion equations, where the space tempered fractional derivatives are
evaluated by the proposed tempered difference operators, and in the time direction
is discreted by the Crank–Nicolson method. Numerical schemes are proved to be
unconditionally stable and convergent with order O(h2 + τ 2). Numerical experiments
demonstrate the effectiveness of the numerical schemes.
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1 Introduction
In recent years, many fractional models [1–18, 21, 22, 24–27] with (tempered) fractional
derivatives have been widely applied in many fields of science and technology, a lot of re-
search results have been obtained. Among them, Li and Deng [14] constructed a class
of second-order tempered weighted and shifted Grünwald difference operators (abbr.
TWSGD) for the Riemann–Liouville tempered fractional derivatives, and then a class of
second-order numerical schemes was proposed for solving a two-sided space tempered
fractional diffusion equation. Numerical schemes are unconditionally stable and conver-
gent with order O(h2 + τ 2). Dehghan et al. [6] developed a high-order numerical scheme
for the space-time tempered fractional diffusion-wave equation, the numerical scheme
was proved to be unconditionally stable and convergent with order O(h4 + τ 2). Qu and
Liang [18] used the Crank–Nicolson method and TWSGD method [14] to solve a class of
variable-coefficient tempered fractional diffusion equations and proved that the numer-
ical schemes are unconditionally stable and convergent with order O(h2 + τ 2). Yu et al.
[24] extended quasi-compact discretizations to Riemann–Liouville tempered fractional
derivatives and derived the numerical scheme for solving a tempered fractional diffusion
equation. Yu et al. [25] constructed a numerical scheme for one-sided space tempered
fractional diffusion equation, and the numerical scheme was shown to be stable and con-
vergent with order O(h3 + τ ). Çelik and Duman [2] solved the symmetric space tempered
fractional diffusion equation by the finite element method and achieved convergence or-
der O(h2 +τ 2). Zhang et al. [27] proposed a modified second-order Lubich tempered differ-
ence operator for the Riemann–Liouville tempered fractional derivatives and constructed
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a numerical scheme for solving the normalized Riesz space tempered fractional diffusion
equation. The stability and convergence of the numerical scheme have been proved. Hu
and Cao [12] combined the implicit midpoint method and the modified second-order Lu-
bich tempered difference operator to derive a numerical scheme for solving the normal-
ized Riesz space tempered fractional diffusion equation with a nonlinear source term and
discussed the stability and convergence of the numerical scheme.

In this paper, we consider the following space tempered fractional diffusion equation
[14]:

⎧
⎪⎪⎨

⎪⎪⎩

∂u(x,t)
∂t = l ∂α,λ

– u(x,t)
∂xα + r ∂

α,λ
+ u(x,t)

∂xα + f (x, t), (x, t) ∈ (a, b) × (0, T],

u(x, 0) = ϕ(x), x ∈ [a, b],

u(a, t) = ψl(t), u(b, t) = ψr(t), t ∈ [0, T],

(1)

where 1 < α < 2 and λ ≥ 0, f (x, t) is the linear source term, diffusion coefficients l and r are
nonnegative constants with l + r �= 0, and if l �= 0, then ψl(t) ≡ 0, if r �= 0, then ψr(t) ≡ 0.
The normalized left and right Riemann–Liouville tempered fractional derivatives ∂α,λ

– u(x,t)
∂xα

and ∂
α,λ
+ u(x,t)

∂xα are defined as follows [1, 14]:

∂α,λ
– u(x, t)

∂xα
= aDα,λ

x u(x, t) – λαu(x, t) – αλα–1 ∂u(x, t)
∂x

,

∂α,λ
+ u(x, t)

∂xα
= xDα,λ

b u(x, t) – λαu(x, t) + αλα–1 ∂u(x, t)
∂x

,

here the left and right Riemann–Liouville tempered fractional derivatives aDα,λ
x u(x, t) and

xDα,λ
b u(x, t) are defined by

aDα,λ
x u(x, t) =

e–λx

Γ (2 – α)
∂2

∂x2

(∫ x

a

eλτ u(τ , t)
(x – τ )α–1 dτ

)

,

xDα,λ
b u(x, t) =

eλx

Γ (2 – α)
∂2

∂x2

(∫ b

x

e–λτ u(τ , t)
(τ – x)α–1 dτ

)

,

where Γ (·) is the gamma function.
Obviously, when λ = 0, the left and right Riemann–Liouville tempered fractional deriva-

tives degenerate to the left and right Riemann–Liouville fractional derivatives, respec-
tively. When l = r = – 1

2 cos( απ
2 ) , the two-sided tempered fractional diffusion equation de-

generates to the normalized Riesz tempered fractional diffusion equation.
Considering these existing works in the literature, the aim of this paper is to try to give a

class of new second-order tempered difference operators; then, using the Crank–Nicolson
method and the proposed difference operators, to construct a class of second-order nu-
merical methods for solving problem (1) and give the theoretical analysis of the numerical
methods.

The outline of this paper is arranged as follows. In Sect. 2, new second-order tempered
difference operators are introduced. In Sect. 3, numerical schemes for problem (1) are
derived. In Sect. 4, the stability and convergence of the numerical schemes are obtained.
In Sect. 5, some numerical examples are given to verify the theoretical results. In Sect. 6,
we summarize the work of this paper.
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2 Second-order tempered difference operators
In this section, we first introduce a fractional Sobolev space Sn+α

λ (R) defined as follows
[27]:

Sn+α
λ (R) =

{

ν

∣
∣
∣ ν ∈ L1(R), and

∫

R

(
λ2 + w2) n+α

2
∣
∣ν̂(w)

∣
∣dw < ∞

}

, (2)

where ν̂(w) =
∫

R
ν(x)e–iwx dx is the Fourier transform of ν(x).

Lemma 2.1 ([27]) Let ν(x) ∈ L1(R), 1 < α < 2, and λ ≥ 0. Then the Fourier transforms of
the left and right Riemann–Liouville tempered fractional derivatives are

F
[

–∞Dα,λ
x ν

]
(w) = (λ + iw)αν̂(w)

and

F
[

xDα,λ
+∞ν

]
(w) = (λ – iw)αν̂(w).

Lemma 2.2 ([1, 14]) Let 1 < α < 2, λ ≥ 0, the shift number p is an integer, h is the step size,
ν(x) is defined on the bounded interval [a, b] and belongs to S2+α

λ (R) after zero extension
on the interval x ∈ (–∞, a) ∪ (b, +∞). The shifted Grünwald type difference operators are
defined as follows:

Aα,λ
h,pν(x) =

1
hα

[ x–a
h ]+p
∑

k=0

wα
k e–(k–p)λhν

(
x – (k – p)h

)
–

1
hα

Gp(1)ν(x), (3)

Âα,λ
h,pν(x) =

1
hα

[ b–x
h ]+p
∑

k=0

wα
k e–(k–p)λhν

(
x + (k – p)h

)
–

1
hα

Gp(1)ν(x), (4)

then

Aα,λ
h,pν(x) = aDα,λ

x ν(x) – λαν(x) + O(h), (5)

Âα,λ
h,pν(x) = xDα,λ

b ν(x) – λαν(x) + O(h), (6)

where wα
k = (–1)k(αk ) (k ≥ 0) denotes the normalized Grünwald weights,

Gp(s) = epλh(1 – e–λhs
)α =

+∞∑

k=0

wα
k e–(k–p)λhsk .

Meanwhile, denote

Wp(s) = eps
(

1 – e–s

s

)α

= 1 +
(

p –
α

2

)

s +
(

p2

2
–

pα

2
+

α

6
+

α(α – 1)
8

)

s2 + O
(|s|3)

with s = (λ + iw)h, (λ – iw)h, or λh, i2 = –1.
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Lemma 2.3 Let 1 < α < 2, λ ≥ 0, the shift number p is an integer, h is the step size, ν(x) is
defined on the bounded interval [a, b] and belongs to S2+α

λ (R) after zero extension on the
interval x ∈ (–∞, a) ∪ (b, +∞). The new difference operators are presented by

Bα,λ
h,pν(x) =

1
hα

[ x–a
h ]+p
∑

k=0

ŵα
k e–(k–p)λhν

(
x – (k – p)h

)
–

1
hα

Ĝp(1)ν(x), (7)

B̂α,λ
h,pν(x) =

1
hα

[ b–x
h ]+p
∑

k=0

ŵα
k e–(k–p)λhν

(
x + (k – p)h

)
–

1
hα

Ĝp(1)ν(x), (8)

then

Bα,λ
h,pν(x) = aDα,λ

x ν(x) – λαν(x) + O(h), (9)

B̂α,λ
h,pν(x) = xDα,λ

b ν(x) – λαν(x) + O(h), (10)

where

ŵα
k =

(
1
2

)α k∑

m=0

(–1)mwα
mwα

k–m, k ≥ 0,

Ĝp(s) = epλh
(

1 – e–2λhs2

2

)α

=
+∞∑

k=0

ŵα
k e–(k–p)λhsk .

Proof Taking the Fourier transform on both sides of (7) and (8), we obtain

F
[
Bα,λ

h,pν
]
(w) =

1
hα

+∞∑

k=0

ŵα
k e–(k–p)(λ+iw)hν̂(w) –

1
hα

(

epλh
(

1 – e–2λh

2

)α)

ν̂(w)

= eph(λ+iw)
(

1 – e–2(λ+iw)h

2h

)α

ν̂(w) – ephλ

(
1 – e–2λh

2h

)α

ν̂(w)

=
[
(λ + iw)αŴp

(
(λ + iw)h

)
– λαŴp(λh)

]
ν̂(w),

where Ŵp(s) = eps( 1–e–2s

2s )α = 1+(p–α)s+( p2

2 –pα + 2
3α + α(α–1)

2 )s2 +O(|s|3) with s = (λ+ iw)h
or λh, i2 = –1.

F
[
B̂α,λ

h,pν
]
(w) =

1
hα

+∞∑

k=0

ŵα
k e–(k–p)(λ–iw)hν̂(w) –

1
hα

(

epλh
(

1 – e–2λh

2

)α)

ν̂(w)

= eph(λ–iw)
(

1 – e–2(λ–iw)h

2h

)α

ν̂(w) – ephλ

(
1 – e–2λh

2h

)α

ν̂(w)

=
[
(λ – iw)αŴp

(
(λ – iw)h

)
– λαŴp(λh)

]
ν̂(w),

where Ŵp(s) with s = (λ – iw)h or λh, i2 = –1.
Denote

φ(w) = F
[
Bα,λ

h,pν
]
(w) – F

[

–∞Dα,λ
x ν – λαν

]
(w)

=
[
(λ + iw)α

(
Ŵp

(
(λ + iw)h

)
– 1

)
– λα

(
Ŵp(λh) – 1

)]
ν̂(w),



Qiu and Cao Advances in Difference Equations        (2019) 2019:485 Page 5 of 23

φ̂(w) = F
[
B̂α,λ

h,pν
]
(w) – F

[
xDα,λ

+∞ν – λαν
]
(w)

=
[
(λ – iw)α

(
Ŵp

(
(λ – iw)h

)
– 1

)
– λα

(
Ŵp(λh) – 1

)]
ν̂(w),

and there exist two positive constants C and Ĉ such that

∣
∣φ(w)

∣
∣ ≤ C

[
h|λ + iw|α+1 + h|λ|α+1]∣∣ν̂(w)

∣
∣,

∣
∣φ̂(w)

∣
∣ ≤ Ĉ

[
h|λ – iw|α+1 + h|λ|α+1]∣∣ν̂(w)

∣
∣.

Taking the inverse Fourier transform of φ(w) and utilizing known conditions ν(x) ∈
S2+α

λ (R), we can obtain

∣
∣Bα,λ

h,pν(x) – –∞Dα,λ
x ν(x) + λαν(x)

∣
∣ ≤ 1

2π

∫

R

∣
∣φ(w)

∣
∣dw

≤ Ch
∫

R

(|λ + iw|α+1 + |λ|α+1)∣∣ν̂(w)
∣
∣dw = O(h).

Similar provability

∣
∣B̂α,λ

h,pν(x)–xDα,λ
+∞ν(x) + λαν(x)

∣
∣ ≤ 1

2π

∫

R

∣
∣φ̂(w)

∣
∣dw

≤ Ĉh
∫

R

(|λ – iw|α+1 + |λ|α+1)∣∣ν̂(w)
∣
∣dw = O(h).

The proof is completed. �

Lemma 2.4 Let 1 < α < 2, λ ≥ 0, h is the step size, ν(x) is defined on the bounded interval
[a, b] and belongs to S2+α

λ (R) after zero extension on the interval x ∈ (–∞, a) ∪ (b, +∞). The
new second-order tempered difference operators are given as follows:

Cα,λ
h ν(x) = γ1Aα,λ

h,1 ν(x) + γ2Bα,λ
h,1 ν(x) + γ3Bα,λ

h,–1ν(x)

=
1

hα

[ x–a
h ]+1
∑

k=0

(
γ1wα

k + γ2ŵα
k + γ3ŵα

k–2
)
e–(k–1)λhν

(
x – (k – 1)h

)

–
1

hα

(

γ1eλh(1 – e–λh)α + γ2eλh
(

1 – e–2λh

2

)α

+ γ3e–λh
(

1 – e–2λh

2

)α)

ν(x)

=
1

hα

[ x–a
h ]+1
∑

k=0

gα
k ν

(
x – (k – 1)h

)
–

1
hα

G̃1(1)ν(x), (11)

Ĉα,λ
h ν(x) = γ1Âα,λ

h,1 ν(x) + γ2B̂α,λ
h,1 ν(x) + γ3B̂α,λ

h,–1ν(x)

=
1

hα

[ b–x
h ]+1
∑

k=0

(
γ1wα

k + γ2ŵα
k + γ3ŵα

k
)
e–(k–1)λhν

(
x + (k – 1)h

)

–
1

hα

(

γ1eλh(1 – e–λh)α + γ2eλh
(

1 – e–2λh

2

)α
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+ γ3e–λh
(

1 – e–2λh

2

)α)

ν(x)

=
1

hα

[ b–x
h ]+1
∑

k=0

gα
k ν

(
x + (k – 1)h

)
–

1
hα

G̃1(1)ν(x), (12)

then

Cα,λ
h ν(x) = aDα,λ

x ν(x) – λαν(x) + O
(
h2), (13)

Ĉα,λ
h ν(x) = xDα,λ

b ν(x) – λαν(x) + O
(
h2), (14)

where

gα
k =

(
γ1wα

k + γ2ŵα
k + γ3ŵα

k–2
)
e–(k–1)λh, k ≥ 0

(
ŵα

–1, ŵα
–2 = 0

)
,

G̃1(1) = γ1G1(1) + γ2Ĝ1(1) + γ3Ĝ–1(1),

γ1 =
2α – 2

α
+

4
α

γ3, γ2 =
2 – α

α
–

4 + α

α
γ3.

Proof Taking the Fourier transform on both sides of (11) and (12), we obtain

F
[
Cα,λ

h ν
]
(w) = γ1F

[
Aα,λ

h,1 ν
]
(w) + γ2F

[
Bα,λ

h,1 ν
]
(w) + +γ3F

[
Bα,λ

h,–1ν
]
(w)

=
1

hα

+∞∑

k=0

(
γ1wα

k + γ2ŵα
k + γ3ŵα

k–2
)
e–(k–1)(λ+iw)hν̂(w)

–
1

hα

(

γ1eλh(1 – e–λh)α + γ2eλh
(

1 – e–2λh

2

)α

+ γ3e–λh
(

1 – e–2λh

2

)α)

ν̂(w)

= eh(λ+iw)
(

γ1

(
1 – e–(λ+iw)h

h

)α

+ γ2

(
1 – e–2(λ+iw)h

2h

)α)

ν̂(w)

+ γ3e–h(λ+iw)
(

1 – e–2(λ+iw)h

2h

)α

ν̂(w) –
(

γ1eλh
(

1 – e–λh

h

)α

+ γ2eλh
(

1 – e–2λh

2h

)α

+ γ3e–λh
(

1 – e–2λh

2h

)α)

ν̂(w)

=
[
(λ + iw)αW̃

(
(λ + iw)h

)
– λαW̃ (λh)

]
ν̂(w),

where

W̃ (s) = γ1W1(s) + γ2Ŵ1(s) + γ3Ŵ–1(s)

= γ1 + γ2 + γ3 +
[

γ1

(

1 –
α

2

)

+ γ2(1 – α) + γ3(–1 – α)
]

s + O
(|s|2)
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with s = (λ + iw)h or λh, i2 = –1.

F
[
Ĉα,λ

h ν
]
(w) = γ1F

[
Âα,λ

h,1 ν
]
(w) + γ2F

[
B̂α,λ

h,1 ν
]
(w) + γ3F

[
B̂α,λ

h,–1ν
]
(w)

=
1

hα

+∞∑

k=0

(
γ1wα

k + γ2ŵα
k + γ3ŵα

k–2
)
e–(k–1)(λ–iw)hν̂(w)

–
1

hα

(

γ1eλh(1 – e–λh)α + γ2eλh
(

1 – e–2λh

2

)α

+ γ3e–λh
(

1 – e–2λh

2

)α)

ν̂(w)

= eh(λ–iw)
(

γ1

(
1 – e–(λ–iw)h

h

)α

+ γ2

(
1 – e–2(λ–iw)h

2h

)α)

ν̂(w)

+ γ3e–h(λ–iw)
(

1 – e–2(λ–iw)h

2h

)α

ν̂(w) –
(

γ1eλh
(

1 – e–λh

h

)α

+ γ2eλh
(

1 – e–2λh

2h

)α

+ γ3e–λh
(

1 – e–2λh

2h

)α)

ν̂(w)

=
[
(λ – iw)αW̃

(
(λ – iw)h

)
– λαW̃ (λh)

]
ν̂(w),

where W̃ (s) with s = (λ – iw)h or λh, i2 = –1.
And then making

⎧
⎨

⎩

γ1 + γ2 + γ3 = 1,

γ1(1 – α
2 ) + γ2(1 – α) + γ3(–1 – α) = 0,

we get

γ1 =
2α – 2

α
+

4
α

γ3, γ2 =
2 – α

α
–

4 + α

α
γ3.

Denote

φ(w) = F
[
Cα,λ

h ν
]
(w) – F

[

–∞Dα,λ
x ν – λαν

]
(w)

=
[
(λ + iw)α

(
W̃

(
(λ + iw)h

)
– 1

)
– λα

(
W̃ (λh) – 1

)]
ν̂(w),

φ̂(w) = F
[
Cα,λ

h ν
]
(w) – F

[
xDα,λ

+∞ν – λαν
]
(w)

=
[
(λ – iw)α

(
W̃

(
(λ – iw)h

)
– 1

)
– λα

(
W̃ (λh) – 1

)]
ν̂(w),

and there exist two positive constants C and Ĉ such that

∣
∣φ(w)

∣
∣ ≤ C

[
h2|λ + iw|α+2 + h2|λ|α+2]∣∣ν̂(w)

∣
∣,

∣
∣φ̂(w)

∣
∣ ≤ Ĉ

[
h2|λ – iw|α+2 + h2|λ|α+2]∣∣ν̂(w)

∣
∣.
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Taking the inverse Fourier transform of φ(w) and utilizing known conditions ν(x) ∈
S2+α

λ (R), we can obtain

∣
∣Cα,λ

h ν(x) – –∞Dα,λ
x ν(x) + λαν(x)

∣
∣ ≤ 1

2π

∫

R

∣
∣φ(w)

∣
∣dw

≤ Ch2
∫

R

(|λ + iw|α+2 + |λ|α+2)∣∣ν̂(w)
∣
∣dw

= O
(
h2).

Similar provability

∣
∣Ĉα,λ

h ν(x) – xDα,λ
+∞ν(x) + λαν(x)

∣
∣ ≤ 1

2π

∫

R

∣
∣φ̂(w)

∣
∣dw

≤ Ĉh2
∫

R

(|λ – iw|α+2 + |λ|α+2)∣∣ν̂(w)
∣
∣dw

= O
(
h2).

The proof is completed. �

In this part, because of the selectivity of γ3, a class of approximation operators with
second-order accuracy for the Riemann–Liouville tempered fractional derivatives is
given.

3 Numerical schemes
For the space interval [a, b] and the time interval [0, T], we choose the grid points xi =
a + ih, 0 ≤ i ≤ N , tn = nτ , 0 ≤ n ≤ M, where h = (b – a)/N is the space stepsize, τ = T/M
denotes the time stepsize. The exact solution and numerical solution at the point (xi, tn) are
denoted by un

i = u(xi, tn) and Un
i , respectively. Denoting tn+1/2 = (tn + tn+1)/2, f n

i = f (xi, tn).
In this paper, u(x, ·) is defined on the bounded interval [a, b] and u(x, ·) belongs to S2+α

λ (R)
after zero extension on the interval x ∈ (–∞, a) ∪ (b, +∞).

Using the Crank–Nicolson method to discrete time for problem (1) at point (xi, tn), we
get

un+1
i – un

i
τ

= l
(

∂α,λ
– u
∂xα

)n+1/2

i
+ r

(
∂α,λ

+ u
∂xα

)n+1/2

i
+ f n+1/2

i + O
(
τ 2),

1 ≤ i ≤ N – 1, 0 ≤ n ≤ M – 1. (15)

From Lemma 2.4, we obtain

un+1
i – un

i
τ

= l
(
Cα,λ

h un+1/2
i – αλα–1δxun+1/2

i
)

+ r
(
Ĉα,λ

h un+1/2
i + αλα–1δxun+1/2

i
)

+ f n+1/2
i + O

(
τ 2 + h2), (16)

where δxun
i = un

i+1–un
i–1

2h , un+1/2
i = (un

i + un+1
i )/2.



Qiu and Cao Advances in Difference Equations        (2019) 2019:485 Page 9 of 23

Rearrange (16) to get

un+1
i – un

i = τ lCα,λ
h un+1/2

i + τ rĈα,λ
h un+1/2

i – ταλα–1(l – r)δxun+1/2
i

+ τ f n+1/2
i + O

(
τ 3 + h2τ

)
. (17)

Furthermore, (17) can be written as

un+1
i – un

i = τ l
1

hα

i+1∑

k=0

gα
k un+1/2

i–k+1 – τ (l + r)
1

hα
G̃(1)un+1/2

i

+ τ r
1

hα

N–i+1∑

k=0

gα
k un+1/2

i+k–1 – ταλα–1(l – r)
un+1/2

i+1 – un+1/2
i–1

2h

+ τ f n+1/2
i + O

(
τ 3 + h2τ

)
. (18)

Eliminating the local truncation error, we obtain the numerical scheme as follows:

Un+1
i – Un

i = τ l
1

hα

i+1∑

k=0

gα
k Un+1/2

i–k+1 – τ (l + r)
1

hα
G̃(1)Un+1/2

i

+ τ r
1

hα

N–i+1∑

k=0

gα
k Un+1/2

i+k–1 – ταλα–1(l – r)
Un+1/2

i+1 – Un+1/2
i–1

2h

+ τ f n+1/2
i . (19)

That is,

Un+1
i = Un

i + τ l
1

hα

i+1∑

k=0

gα
k

Un
i–k+1 + Un+1

i–k+1
2

– τ (l + r)
1

hα
G̃(1)

Un
i + Un+1

i
2

+ τ r
1

hα

N–i+1∑

k=0

gα
k

Un
i+k–1 + Un+1

i+k–1
2

– ταλα–1(l – r)
Un+1

i+1 + Un
i+1 – Un+1

i–1 – Un
i–1

4h
+ τ f n+1/2

i . (20)

Furthermore, the matrix form of (20) can be written as follows:

(

I –
τ (lA + rAT )

2hα
+

ταλα–1(l – r)
4h

B
)

Un+1 =
(

I +
τ (lA + rAT )

2hα

–
ταλα–1(l – r)

4h
B
)

Un

+ τFn+1/2, (21)
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where Un = (Un
1 , Un

2 , . . . , Un
N–2, Un

N–1)T , A is the following (N – 1) order Toeplitz matrix:

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

gα
1 – G̃1(1) gα

0

gα
2 gα

1 – G̃1(1) gα
0

...
...

. . . . . .

...
...

...
. . . . . .

gα
N–2 gα

N–3 gα
N–4 · · · gα

1 – G̃1(1) gα
0

gα
N–1 gα

N–2 gα
N–3 · · · gα

2 gα
1 – G̃1(1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (22)

and B = tridiag {–1, 0, 1} is (N – 1) order tridiagonal matrix, the term Fn+1/2 is given by

Fn+1/2 =
(
f n+1/2
1 , f n+1/2

2 , . . . , f n+1/2
N–2 , f n+1/2

N–1
)T

+
Un+1/2

0
hα

(
lgα

2 +rgα
0 , lgα

3 , . . . , lgα
N–1, lgα

N
)T

+
Un+1/2

N
hα

(
rgα

N , rgα
N–1, . . . , rgα

3 , rgα
2 + lgα

0
)T

–
(l – r)αλα–1

2h
(
–Un+1/2

0 , 0, . . . , 0, Un+1/2
N

)T .

4 Stability and convergence of the numerical schemes
In order to analyze the stability and convergence of the numerical schemes, we give some
lemmas.

Lemma 4.1 ([19]) A real matrix A of order N is negative definite if and only if D = A+AT

2 is
negative definite.

Lemma 4.2 For 1 < α < 2, λ ≥ 0, h > 0, if any one of the following three conditions is satis-
fied:

(1) α ∈ (1,
√

57–5
2 ] and (2α2–α+2)(1–α)

5α2+4 ≤ γ3 ≤ (2–α)(α–1)
α2+5α–4 ;

(2) α ∈ (
√

57–5
2 ,

√
73–5
2 ) and max{ (2α2–α+2)(1–α)

5α2+4 , (2–α)2

8–α2–5α
} ≤ γ3 ≤ (2–α)(α–1)

α2+5α–4 ;
(3) α ∈ [

√
73–5
2 , 2) and (2–α)2

8–α2–5α
≤ γ3 ≤ (2–α)(α–1)

α2+5α–4 ,
then we have

gα
1 < 0, gα

0 + gα
2 > 0, gα

k > 0, k ≥ 3. (23)

Proof It is easy to know from the expression of wα
k that

wα
0 = 1, wα

1 = –α, wα
k > 0, k ≥ 2. (24)
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Utilizing automatic differentiation techniques [20], and from the expression of ŵα
k , we

know

ŵα
0 =

(
1
2

)α

, ŵα
1 = 0, ŵα

k =
1
k

(k – 2α – 2)ŵα
k–2 (k ≥ 2), (25)

which leads to

ŵα
2 < 0, ŵα

k = 0 (k is odd, and k ≥ 3), ŵα
k > 0 (k is even and k ≥ 4). (26)

Note that

gα
k =

((
2α – 2

α
+

4
α

γ3

)

wα
k +

(
2 – α

α
–

4 + α

α
γ3

)

ŵα
k + γ3ŵα

k–2

)

e–(k–1)λh

(
k ≥ 0, ŵα

–1, ŵα
–2

)
,

then

gα
0 + gα

2 =
((

2α – 2
α

+
4
α

γ3

)

wα
0 +

(
2 – α

α
–

4 + α

α
γ3

)

ŵα
0

)

eλh

+
((

2α – 2
α

+
4
α

γ3

)

wα
2 +

(
2 – α

α
–

4 + α

α
γ3

)

ŵα
2 + γ3ŵα

0

)

e–λh, (27)

gα
k =

(
2α – 2

α
+

4
α

γ3

)

wα
k e–(k–1)λh (k is odd and k ≥ 1), (28)

gα
k =

((
2α – 2

α
+

4
α

γ3

)

wα
k +

((
2 – α

α
–

4 + α

α
γ3

)
k – 2α – 2

k

+ γ3

)

ŵα
k–2

)

e–(k–1)λh (k is even and k ≥ 4). (29)

If γ3 > 1–α
2 , then

2α – 2
α

+
4
α

γ3 > 0. (30)

Combining (24) and (30), we obtain from (28)

gα
1 < 0, gα

k > 0 (k is odd and k ≥ 3).

If γ3 ≤ (2–α)(α–1)
α2+5α–4 , then we have

2 – α

α
–

4 + α

α
γ3 > 0, (31)

(
2 – α

α
–

4 + α

α
γ3

)
4 – 2α – 2

4
+ γ3 ≤ 0. (32)
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Based on inequalities (30)–(32), and if (2α2–α+2)(1–α)
5α2+4 ≤ γ3 ≤ (2–α)(α–1)

α2+5α–4 , then we can get from
(27)

gα
0 + gα

2 ≥
((

2α – 2
α

+
4
α

γ3

)
α2 – α + 2

2

+
(

1
2

)α((
2 – α

α
–

4 + α

α
γ3

)

(1 – α) + γ3

))

e–λh

>
((

2α – 2
α

+
4
α

γ3

)
α2 – α + 2

2

+
(

1
2

)((
2 – α

α
–

4 + α

α
γ3

)

(1 – α) + γ3

))

e–λh ≥ 0.

And if 1–α
2 < γ3 ≤ (2–α)(α–1)

α2+5α–4 , then we can obtain from (29)

gα
4 =

((
2α – 2

α
+

4
α

γ3

)

wα
4 +

((
2 – α

α
–

4 + α

α
γ3

)
4 – 2α – 2

4
+ γ3

)

ŵα
2

)

e–3λh > 0.

If α ∈ (1,
√

57–5
2 ) and γ3 ≤ (2–α)2

8–α2–5α
, or α ∈ (

√
57–5
2 , 2) and γ3 ≥ (2–α)2

8–α2–5α
, or α =

√
57–5
2 , then

(
2 – α

α
–

4 + α

α
γ3

)
6 – 2α – 2

6
+ γ3 ≥ 0. (33)

Combining (30) and (33), and if α ∈ (1,
√

57–5
2 ) and 1–α

2 < γ3 ≤ (2–α)2

8–α2–5α
, or α ∈ (

√
57–5
2 , 2) and

γ3 > max{ 1–α
2 , (2–α)2

8–α2–5α
}, or α =

√
57–5
2 and γ3 > 1–α

2 , then

gα
6 =

((
2α – 2

α
+

4
α

γ3

)

wα
6 +

((
2 – α

α
–

4 + α

α
γ3

)
6 – 2α – 2

6
+ γ3

)

ŵα
4

)

e–5λh > 0.

If α ∈ (1,
√

73–5
2 ) and γ3 ≤ (2–α)(3–α)

12–α2–5α
, or α ∈ (

√
73–5
2 , 2) and γ3 ≥ (2–α)(3–α)

12–α2–5α
, or α =

√
73–5
2 , then

(
2 – α

α
–

4 + α

α
γ3

)
8 – 2α – 2

8
+ γ3 ≥ 0. (34)

From (30) and (34), and if α ∈ (1,
√

73–5
2 ) and 1–α

2 < γ3 ≤ (2–α)(3–α)
12–α2–5α

, or α ∈ (
√

73–5
2 , 2) and

γ3 > max{ 1–α
2 , (2–α)(3–α)

12–α2–5α
}, or α =

√
73–5
2 and γ3 > 1–α

2 , then

gα
8 =

((
2α – 2

α
+

4
α

γ3

)

wα
8 +

((
2 – α

α
–

4 + α

α
γ3

)
8 – 2α – 2

8
+ γ3

)

ŵα
6

)

e–7λh > 0.

If γ3 ≤ 2–α
4 , then

(
2 – α

α
–

4 + α

α
γ3

)
k – 2α – 2

k
+ γ3 ≥ 0 (k is even and k ≥ 10). (35)
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Combining (30) and (35), and if 1–α
2 < γ3 ≤ 2–α

4 , then

gα
k =

((
2α – 2

α
+

4
α

γ3

)

wα
k +

((
2 – α

α
–

4 + α

α
γ3

)
k – 2α – 2

k

+ γ3

)

ŵα
k–2

)

e–(k–1)λh > 0 (k is even and k ≥ 10).

Summarizing the above relationships, we find that if any one of the following three con-
ditions is satisfied:

(1) α ∈ (1,
√

57–5
2 ] and (2α2–α+2)(1–α)

5α2+4 ≤ γ3 ≤ (2–α)(α–1)
α2+5α–4 ;

(2) α ∈ (
√

57–5
2 ,

√
73–5
2 ) and max{ (2α2–α+2)(1–α)

5α2+4 , (2–α)2

8–α2–5α
} ≤ γ3 ≤ (2–α)(α–1)

α2+5α–4 ;
(3) α ∈ [

√
73–5
2 , 2) and (2–α)2

8–α2–5α
≤ γ3 ≤ (2–α)(α–1)

α2+5α–4 ,
then the results of (23) hold.

The proof is completed. �

Theorem 4.1 If matrix A is defined by (22), then D = A+AT

2 is strictly diagonally dominant
and negative definite.

Proof Denoting D = A+AT

2 = (di,j)(N–1)×(N–1), we have

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

gα
1 – G̃1(1) 1

2 (gα
0 + gα

2 ) 1
2 gα

3 · · · 1
2 gα

N–2
1
2 gα

N–1

1
2 (gα

2 + gα
0 ) gα

1 – G̃1(1) 1
2 (gα

0 + gα
2 ) · · · 1

2 gα
N–3

1
2 gα

N–2

...
. . . . . . . . .

...
...

...
...

. . . . . . . . .
...

1
2 gα

N–2
1
2 gα

N–3
1
2 gα

N–4 · · · gα
1 – G̃1(1) 1

2 (gα
0 + gα

2 )

1
2 gα

N–1
1
2 gα

N–2
1
2 gα

N–3 · · · 1
2 (gα

2 + gα
0 ) gα

1 – G̃1(1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Because the following relationships are established:

+∞∑

k=0

wα
k e–kλh =

(
1 – e–λh)α ,

+∞∑

k=0

ŵα
k e–kλh =

(
1 – e–2λh

2

)α

,

we know

+∞∑

k=0

gα
k =

+∞∑

k=0

((
2α – 2

α
+

4
α

γ3

)

wα
k +

(
2 – α

α
–

4 + α

α
γ3

)

ŵα
k + γ3ŵα

k–2

)

e–(k–1)λh

= γ1G1(1) + γ2Ĝ1(1) + γ3Ĝ–1(1)

= G̃1(1).
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That is,

+∞∑

k=0

gα
k – G̃1(1) = 0. (36)

From Lemma 4.2 and (36), we know

N–1∑

j=1

di,j < 0,

–di,i >
N–1∑

j �=i

di,j, i = 1, 2, . . . , N – 1.

Thus, matrix D is strictly diagonally dominant. Utilizing the Gershgorin theorem [23],
we know that the eigenvalues of matrix D are all negative. That is, matrix D is negative
definite.

The proof is completed. �

Theorem 4.2 The numerical scheme (20) is unconditionally stable.

Proof Denoting M = τ (lA+rAT )
2hα – ταλα–1(l–r)

4h B, then the matrix form (21) becomes

(I – M)Un+1 = (I + M)Un + τFn+1/2. (37)

Let λ(M) represent the eigenvalue of matrix M, then the eigenvalue of matrix (I – M)–1(I +
M) is 1+λ(M)

1–λ(M) . Because M+MT

2 = τ (l+r)(A+AT )
4hα = τ (l+r)

2hα D, from Lemma 4.1 and Theorem 4.1, we
know λ(M) < 0, then | 1+λ(M)

1–λ(M) | < 1. Thus the spectral radius of matrix (I – M)–1(I + M) is
less than one.

The proof is completed. �

Define Uh = {u | u = {ui} is a grid function defined on {xi = a + ih}N–1
i=1 and u0 = uN = 0}.

And we define the corresponding discrete L2-norm ‖u‖L2 = (h
∑N–1

i=1 u2
i )1/2 for all u ∈ Uh.

Lemma 4.3 ([14]) For matrix M in (37), there exists

∥
∥(I – M)–1∥∥

2 ≤ 1,
∥
∥(I – M)–1(I + M)

∥
∥

2 ≤ 1,

where ‖ · ‖2 denotes 2-norm (spectral norm).

Theorem 4.3 The numerical scheme (20) is convergent, i.e., there is a constant C such that

∥
∥en∥∥

L2
≤ C

(
τ 2 + h2), n = 1, 2, . . . , M,

where en = (en
1, en

2, . . . , en
N–1)T , en

i = un
i – Un

i .

Proof The proof is similar [14]. Combining (18) and (19), we obtain

(I – M)en+1 = (I + M)en + Rn, (38)
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where Rn = (Rn
1, Rn

2, . . . , Rn
N–1)T , and Rn

i = O(τ 3 + τh2) is the local truncation error. Equation
(38) can be rewritten as

en+1 = (I – M)–1(I + M)en + (I – M)–1Rn.

By taking the Euclidean norm ‖ · ‖2 at the same time on both sides of the upper form, we
get

∥
∥en∥∥

2 ≤ ∥
∥(I – M)–1(I + M)en–1∥∥

2 +
∥
∥(I – M)–1Rn–1∥∥

2

≤ ∥
∥(I – M)–1(I + M)

∥
∥

2

∥
∥en–1∥∥

2 +
∥
∥(I – M)–1∥∥

2

∥
∥Rn–1∥∥

2.

Noting that ‖ · ‖L2 = h1/2‖ · ‖2 and from Lemma 4.3, we can get

∥
∥en∥∥

L2
≤ ∥

∥(I – M)–1(I + M)
∥
∥

2

∥
∥en–1∥∥

L2
+

∥
∥(I – M)–1∥∥

2

∥
∥Rn–1∥∥

L2

≤ ∥
∥en–1∥∥

L2
+

∥
∥Rn–1∥∥

L2
.

Because the local truncation error is given as |Rk
i | ≤ C(τ 3 +τh2), and noticing that ‖e0‖L2 =

0, we have

∥
∥en∥∥

L2
≤ ∥

∥en–1∥∥
L2

+
∥
∥Rn–1∥∥

L2
≤ ∥

∥en–2∥∥
L2

+
∥
∥Rn–2∥∥

L2
+

∥
∥Rn–1∥∥

L2

≤ ∥
∥e0∥∥

L2
+

n–1∑

k=0

∥
∥Rk∥∥

L2
≤ C

(
τ 2 + h2).

The proof is completed. �

5 Numerical experiments
The observation order is defined as

Order = log2

( ‖e‖L2,h

‖e‖L2,h/2

)

.

We give four examples to verify the effectiveness of the numerical schemes and com-
pare the numerical results of our method with those of the CN-TWSGD method [14]
(max{ (2–α)(α2+α–8)

α2+3α+2 , (1–α)(α2+2α)
2(α2+3α+4) } ≤ β3 ≤ (2–α)(α2+2α–3)

2(α2+3α+2) , β1 = α
2 + β3, β2 = 2–α

2 – 2β3) for Exam-
ple 2.

Example 1 ([14]) Consider the initial-boundary value problem of tempered fractional dif-
fusion equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u(x,t)
∂t = ∂α,λ

– u(x,t)
∂xα + e–λx+t((λα – αλα + 1)x2+α

– Γ (3+α)
Γ (3) x2 + α(α + 2)λα–1xα+1), (x, t) ∈ (0, 1) × (0, 1],

u(0, t) = 0, u(1, t) = e–λ+t , t ∈ [0, 1],

u(x, 0) = e–λxx2+α , x ∈ [0, 1],

where 1 < α < 2.
The exact solution is u(x, t) = e–λx+tx2+α .
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Choosing different α, λ, and γ3, we use the proposed method to solve Example 1, the
errors and observation orders are displayed in Tables 1, 2, and 3. From Tables 1–3, we find
that the numerical schemes are second-order accuracy both in time and space, which is a
match with theoretical results.

Table 1 Errors and corresponding observation orders at t = 1, α = 1.2

λ h = τ γ3 = –0.065 γ3 = 0 γ3 = 0.046

‖e‖L2 Order ‖e‖L2 Order ‖e‖L2 Order

1/50 1/10 1.3091e–03 8.9048e–03 1.5872e–02
1/20 3.4456e–04 1.9257 2.2077e–03 2.0120 3.9986e–03 1.9889
1/40 8.8261e–05 1.9649 5.4891e–04 2.0079 9.9862e–04 2.0015
1/80 2.2181e–05 1.9925 1.3688e–04 2.0037 2.4933e–04 2.0019

0 1/10 5.4687e–03 1.3477e–02 1.9237e–02
1/20 1.2413e–03 2.1393 3.2862e–03 2.0360 4.7459e–03 2.0191
1/40 2.9794e–04 2.0588 8.1182e–04 2.0172 1.1770e–03 2.0116
1/80 7.3348e–05 2.0222 2.0193e–04 2.0073 2.9313e–04 2.0055

2 1/10 3.9639e–03 8.1213e–03 1.0887e–02
1/20 9.7650e–04 2.0212 2.1455e–03 1.9204 2.9861e–03 1.8663
1/40 2.4398e–04 2.0009 5.4410e–04 1.9794 7.6695e–04 1.9611
1/80 6.1112e–05 1.9972 1.3648e–04 1.9952 1.9300e–04 1.9905

Table 2 Errors and corresponding observation orders at t = 1, α = 1.5

λ h = τ γ3 = –0.142 γ3 = 0 γ3 = 0.333

‖e‖L2 Order ‖e‖L2 Order ‖e‖L2 Order

1/50 1/10 7.7227e–03 1.0465e–02 5.3286e–02
1/20 2.0245e–03 1.9315 2.6046e–03 2.0064 1.3526e–02 1.9780
1/40 5.1203e–04 1.9833 6.4995e–04 2.0027 3.3823e–03 1.9997
1/80 1.2836e–04 1.9960 1.6239e–04 2.0009 8.4480e–04 2.0013

0 1/10 5.7263e–03 1.1908e–02 5.3855e–02
1/20 1.5271e–03 1.9068 2.9592e–03 2.0087 1.3568e–02 1.9889
1/40 3.8755e–04 1.9783 7.3811e–04 2.0033 3.3854e–03 2.0028
1/80 9.7221e–05 1.9950 1.8439e–04 2.0011 8.4508e–04 2.0022

2 1/10 2.5444e–03 6.6079e–03 2.2144e–02
1/20 7.8955e–04 1.6882 1.7420e–03 1.9234 6.9946e–03 1.6626
1/40 2.0774e–04 1.9263 4.4145e–04 1.9804 1.8798e–03 1.8956
1/80 5.2509e–05 1.9841 1.1072e–04 1.9953 4.7865e–04 1.9735

Table 3 Errors and corresponding observation orders at t = 1, α = 1.8

λ h = τ γ3 = –0.009 γ3 = 0 γ3 = 0.019

‖e‖L2 Order ‖e‖L2 Order ‖e‖L2 Order

1/50 1/10 7.0968e–03 8.2095e–03 1.0559e–02
1/20 1.7653e–03 2.0073 2.0554e–03 1.9979 2.6681e–03 1.9846
1/40 4.4073e–04 2.0019 5.1397e–04 1.9997 6.6861e–04 1.9966
1/80 1.1015e–04 2.0004 1.2850e–04 1.9999 1.6724e–04 1.9992

0 1/10 7.6081e–03 8.7279e–03 1.1093e–02
1/20 1.8930e–03 2.0069 2.1846e–03 1.9983 2.8006e–03 1.9858
1/40 4.7265e–04 2.0018 5.4624e–04 1.9998 7.0166e–04 1.9969
1/80 1.1812e–04 2.0005 1.3656e–04 2 1.7550e–04 1.9993

2 1/10 3.2345e–03 3.6657e–03 4.5644e–03
1/20 8.2615e–04 1.9691 9.5022e–04 1.9478 1.2121e–03 1.9129
1/40 2.0755e–04 1.9929 2.3977e–04 1.9866 3.0865e–04 1.9735
1/80 5.1949e–05 1.9983 6.0075e–05 1.9968 7.7317e–05 1.9971
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Table 4 Errors and corresponding observation orders at t = 1, λ = 1/50

α β3 γ3 h = τ CN-TWSGD

‖e‖L2 Order CPU time

1.2 –0.042 –0.065 1/10 4.6812e–03 1.2119e–02
1/20 1.1156e–03 2.0691 2.1528e–02
1/40 2.6920e–04 2.0511 4.9296e–02
1/80 6.6095e–05 2.0261 1.8533e–01

1.4 –0.093 –0.09 1/10 3.5917e–03 1.1856e–02
1/20 8.0067e–04 2.1654 1.9344e–02
1/40 1.8738e–04 2.0952 5.0544e–02
1/80 4.5523e–05 2.0413 1.9469e–01

1.6 –0.1 –0.062 1/10 2.8683e–03 1.5912e–02
1/20 6.8778e–04 2.0602 1.7784e–02
1/40 1.7060e–04 2.0113 4.4928e–02
1/80 4.2575e–05 2.0025 1.8221e–01

1.8 –0.055 –0.009 1/10 4.2551e–03 1.3104e–02
1/20 1.0522e–03 2.0158 1.8408e–02
1/40 2.6237e–04 2.0037 4.4304e–02
1/80 6.5551e–05 2.0009 1.9531e–01

Example 2 ([14]) Consider the initial-boundary value problem of tempered fractional dif-
fusion equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u(x,t)
∂t = ∂

α,λ
+ u(x,t)

∂xα + eλx+t((λα – αλα + 1)(1 – x)2+α

– Γ (3+α)
Γ (3) (1 – x)2 + α(α + 2)λα–1(1 – x)α+1), (x, t) ∈ (0, 1) × (0, 1],

u(0, t) = et , u(1, t) = 0, t ∈ [0, 1],

u(x, 0) = eλx(1 – x)2+α , x ∈ [0, 1],

where 1 < α < 2.
The exact solution is u(x, t) = eλx+t(1 – x)2+α .

In order to compare the CN-TWSGD method with the proposed method in this paper,
we choose different α, λ, β3, and γ3 to solve Example 2, the errors, observation orders,
and CPU times are displayed in Tables 4–9. From Tables 4–9, we see that both the CN-
TWSGD method and our method are effective.

Example 3 (cf. [27]) Consider the initial-boundary value problem of tempered fractional
diffusion equation

⎧
⎪⎪⎨

⎪⎪⎩

∂u(x,t)
∂t = l ∂α,λ

– u(x,t)
∂xα + r ∂

α,λ
+ u(x,t)

∂xα + f (x, t), (x, t) ∈ (0, 1) × (0, 1],

u(0, t) = 0, u(1, t) = 0, t ∈ [0, 1],

u(x, 0) = e–λxx4(1 – x)4, x ∈ [0, 1],

where 1 < α < 2, l = 1, r = 2, and the linear source term is

f (x, t) = αeαt–λxx4(1 – x)4 – eαt

[

e–λx
4∑

k=0

(–1)
(4

k

) Γ (5 + k)
Γ (5 + k – α)

x4+k–α
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Table 5 Errors and corresponding observation orders at t = 1, λ = 1/50

α β3 γ3 h = τ Proposed

‖e‖L2 Order CPU time

1.2 –0.042 –0.065 1/10 1.3356e–03 1.5912e–02
1/20 3.5152e–04 1.9258 2.2152e–02
1/40 9.0044e–05 1.9649 4.8672e–02
1/80 2.2629e–05 1.9925 1.9594e–01

1.4 –0.093 –0.09 1/10 1.4612e–03 1.3728e–02
1/20 4.2047e–04 1.7971 1.9344e–02
1/40 1.0892e–04 1.9487 5.0856e–02
1/80 2.7456e–05 1.9881 2.0280e–01

1.6 –0.1 –0.062 1/10 2.2694e–03 1.2480e–02
1/20 5.0328e–04 2.1729 1.9656e–02
1/40 1.2209e–04 2.0434 5.0544e–02
1/80 3.0302e–05 2.0105 1.9313e–01

1.8 –0.055 –0.009 1/10 7.1897e–03 1.4664e–02
1/20 1.7878e–03 2.0077 2.2464e–02
1/40 4.4632e–04 2.0020 5.1480e–02
1/80 1.1154e–04 2.0005 2.0062e–01

Table 6 Errors and corresponding observation orders at t = 1, λ = 0

α β3 γ3 h = τ CN-TWSGD

‖e‖L2 Order CPU time

1.2 –0.042 –0.065 1/10 1.1101e–02 1.2168e–02
1/20 2.5816e–03 2.1044 1.8096e–02
1/40 6.0446e–04 2.0945 4.2744e–02
1/80 1.4554e–04 2.0542 1.8408e–01

1.4 –0.093 –0.09 1/10 6.5309e–03 1.3104e–02
1/20 1.4729e–03 2.1486 1.7784e–02
1/40 3.4402e–04 2.0981 5.3040e–02
1/80 8.3284e–05 2.0464 4.2120e–01

1.6 –0.1 –0.062 1/10 3.9390e–03 1.2168e–02
1/20 9.5249e–04 2.0481 1.9344e–02
1/40 2.3672e–04 2.0085 4.6176e–02
1/80 5.9105e–05 2.0018 1.8627e–01

1.8 –0.055 –0.009 1/10 4.6667e–03 1.1856e–02
1/20 1.1555e–03 2.0139 2.0592e–02
1/40 2.8821e–04 2.0033 4.2432e–02
1/80 7.2014e–05 2.0008 1.9375e–01

+ 2eλ(x–2)
+∞∑

i=0

(2λ)i

i!

4∑

k=0

(–1)
(4

k

) Γ (5 + k + i)
Γ (5 + k + i – α)

(1 – x)4+k+i–α

– 3λαe–λxx4(1 – x)4 + αλα–1e–λx(–λx4(1 – x)4 + 4
(
x – x2)3(1 – 2x)

)
]

.

The exact solution is u(x, t) = eαt–λxx4(1 – x)4.

Choosing different α and λ, we use the proposed method to solve Example 3, the errors
and observation orders are displayed in Table 10. From Table 10, we find that the numer-
ical scheme is second-order accuracy both in time and space, which is in line with our
convergence analysis.
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Table 7 Errors and corresponding observation orders at t = 1, λ = 0

α β3 γ3 h = τ Proposed

‖e‖L2 Order CPU time

1.2 –0.042 –0.065 1/10 5.4687e–03 1.3728e–02
1/20 1.2413e–03 2.1393 2.2152e–02
1/40 2.9794e–04 2.0588 4.9608e–02
1/80 7.3348e–05 2.0222 1.9594e–01

1.4 –0.093 –0.09 1/10 1.4523e–03 1.3728e–02
1/20 2.8548e–04 2.3468 2.2776e–02
1/40 6.7785e–05 2.0744 4.8048e–02
1/80 1.6770e–05 2.0151 1.8876e–01

1.6 –0.1 –0.062 1/10 3.3311e–03 1.3104e–02
1/20 7.7293e–04 2.1076 1.9968e–02
1/40 1.8976e–04 2.0262 4.5240e–02
1/80 4.7234e–05 2.0063 1.9656e–01

1.8 –0.055 –0.009 1/10 7.5583e–03 1.4976e–02
1/20 1.8800e–03 2.0073 2.0904e–02
1/40 4.6938e–04 2.0019 4.8048e–02
1/80 1.1730e–04 2.0006 1.8970e–01

Table 8 Errors and corresponding observation orders at t = 1, λ = 2

α β3 γ3 h = τ CN-TWSGD

‖e‖L2 Order CPU time

1.2 –0.042 –0.065 1/10 4.5730e–02 1.3416e–02
1/20 1.1805e–02 1.9537 1.6536e–02
1/40 2.9742e–03 1.9888 4.9608e–02
1/80 7.4490e–04 1.9974 1.9594e–01

1.4 –0.093 –0.09 1/10 2.8404e–02 1.4040e–02
1/20 7.1673e–03 1.9866 1.9032e–02
1/40 1.7961e–03 1.9966 5.3352e–02
1/80 4.4950e–04 1.9985 1.8876e–01

1.6 –0.1 –0.062 1/10 1.7727e–02 1.3728e–02
1/20 4.3929e–03 2.0127 1.9032e–02
1/40 1.0962e–03 2.0027 4.8672e–02
1/80 2.7415e–04 1.9995 1.9095e–01

1.8 –0.055 –0.009 1/10 1.5124e–02 1.1544e–02
1/20 3.7756e–03 2.0021 2.0280e–02
1/40 9.4332e–04 2.0009 4.7424e–02
1/80 2.3587e–04 1.9998 1.8627e–01

Example 4 Consider the initial-boundary value problem of tempered fractional diffusion
equation:

⎧
⎪⎪⎨

⎪⎪⎩

∂u(x,t)
∂t = ∂α,λ

– u(x,t)
∂xα + ∂

α,λ
+ u(x,t)

∂xα , (x, t) ∈ (0, 1) × (0, 1],

u(0, t) = 0, u(1, t) = 0, t ∈ [0, 1],

u(x, 0) = x2(1 – x)2, x ∈ [0, 1],

where 1 < α < 2.

Using the proposed method to take the step size h = τ = 1/400, the result obtained in
solving Example 4 is taken as the true solution. Choosing different α and λ, we use the
proposed method to solve Example 4, the errors and observation orders are displayed in
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Table 9 Errors and corresponding observation orders at t = 1, λ = 2

α β3 γ3 h = τ Proposed

‖e‖L2 Order CPU time

1.2 –0.042 –0.065 1/10 2.9290e–02 1.2792e–02
1/20 7.2154e–03 2.0213 1.9656e–02
1/40 1.8028e–03 2.0008 4.7112e–02
1/80 4.5156e–04 1.9972 1.8907e–01

1.4 –0.093 –0.09 1/10 1.4051e–02 1.4664e–02
1/20 3.3112e–03 2.0852 1.9344e–02
1/40 8.3063e–04 1.9951 4.4928e–02
1/80 2.0919e–04 1.9894 1.8377e–01

1.6 –0.1 –0.062 1/10 1.6352e–02 1.4040e–02
1/20 3.8004e–03 2.1052 2.0280e–02
1/40 9.3219e–04 2.0275 4.8672e–02
1/80 2.3242e–04 2.0039 1.8751e–01

1.8 –0.055 –0.009 1/10 2.3758e–02 1.4976e–02
1/20 6.0638e–03 1.9701 1.8720e–02
1/40 1.5231e–03 1.9932 5.0544e–02
1/80 3.8119e–04 1.9984 1.9126e–01

Table 10 Errors and corresponding observation orders at t = 1, γ3 = 0

α h = τ λ = 1/50 λ = 0 λ = 2

‖e‖L2 Order ‖e‖L2 Order ‖e‖L2 Order

1.2 1/10 3.6036e–04 3.9643e–04 3.8557e–04
1/20 9.3836e–05 1.9412 9.8756e–05 2.0051 1.0825e–04 1.8326
1/40 2.4100e–05 1.9611 2.4944e–05 1.9852 2.7754e–05 1.9636
1/80 6.1263e–06 1.9759 6.2947e–06 1.9865 6.9556e–06 1.9964

1.5 1/10 4.8058e–04 4.9188e–04 2.3030e–04
1/20 1.2712e–04 1.9186 1.2939e–04 1.9266 6.1371e–05 1.9079
1/40 3.2771e–05 1.9557 3.3285e–05 1.9588 1.5816e–05 1.9562
1/80 8.3331e–06 1.9755 8.4560e–06 1.9768 4.0057e–06 1.9813

1.8 1/10 5.0678e–04 5.1402e–04 1.7371e–04
1/20 1.3156e–04 1.9456 1.3326e–04 1.9476 4.5103e–05 1.9454
1/40 3.3388e–05 1.9783 3.3800e–05 1.9791 1.1761e–05 1.9392
1/80 8.4106e–06 1.9890 8.5114e–06 1.9896 3.0136e–06 1.9645

Table 11 Errors and corresponding observation orders at t = 1, γ3 = 0

α h = τ λ = 2 λ = 3 λ = 5

‖e‖L2 Order ‖e‖L2 Order ‖e‖L2 Order

1.2 1/10 4.4064e–03 7.3432e–03 1.3289e–02
1/20 1.4170e–03 1.6368 2.3874e–03 1.6210 4.6713e–03 1.5083
1/40 4.4624e–04 1.6669 7.1388e–04 1.7417 1.3593e–03 1.7810
1/80 1.4351e–04 1.6367 2.1251e–04 1.7482 3.7612e–04 1.8536

1.5 1/10 2.7871e–04 6.9236e–04 2.1027e–03
1/20 9.6202e–05 1.5346 2.3030e–04 1.5880 7.2237e–04 1.5414
1/40 3.1225e–05 1.6234 7.2323e–05 1.6710 2.3189e–04 1.6393
1/80 1.0186e–05 1.6161 2.1899e–05 1.7236 6.6164e–05 1.8093

1.8 1/10 2.6714e–04 2.7940e–04 3.2526e–04
1/20 3.7920e–05 2.8166 3.7952e–05 2.8801 3.9166e–05 3.0539
1/40 5.2055e–06 2.8649 5.1329e–06 2.8863 5.0821e–06 2.9461
1/80 7.0658e–07 2.8811 6.9299e–07 2.8889 6.8096e–07 2.8998
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Figure 1 γ3 = 0, α = 1.5, λ = 3, the change in particle concentration u(x, t) at different times

Figure 2 γ3 = 0, α = 1.5, λ = 0, the change in particle concentration u(x, t) at different times

Table 11. Figure 1 shows the particle concentration of the solution of the tempered frac-
tional diffusion equation with α = 1.5 and λ = 3 at different times. Figure 2 shows the
particle concentration of the solution of the classical (λ = 0) fractional diffusion equa-
tion with α = 1.5 at different times. It can be seen from Fig. 1 and Fig. 2 that the tem-
pered fractional diffusion equation governs the transition densities, which become slower
in progress.

6 Conclusion
In this paper, a class of second-order tempered difference operators for the left and right
Riemann–Liouville tempered fractional derivatives is constructed, and then a class of
second-order numerical methods is presented for solving the space tempered fractional
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diffusion equation. Numerical schemes are proved to be unconditionally stable and con-
vergent theoretically and are verified to be effective by numerical experiments.
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