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Abstract
In this paper, we investigate the stability of neural networks with both time-varying
delays and uncertainties. A novel delayed intermittent control scheme is designed to
ensure the globally asymptotical stability of the addressed system. Some new delay
dependent sufficient criteria for globally asymptotical stability results are derived in
term of linear matrix inequalities (LMIs) by using free-weighting matrix techniques
and Lyapunov–Krasovskii functional method. Finally, a numerical simulation is
provided to show the effectiveness of the proposed approach.
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1 Introduction
Neural networks (NNs) have been widely investigated recently because of their potential
applications in many areas such as associative memory, pattern recognition, parallel com-
puting, and image processing; see [1–7] and references therein. In these real applications,
stability property of equilibrium points of the networks is an important factor in the de-
sign of NNs. However, due to the inherent communication between neurons and the finite
switching speed of amplifiers, time delays are always unavoidably encountered in neural
networks, and their existence may cause poor performance and even instability. There-
fore, stability analysis of time-delay neural networks has received considerable attention,
and many interesting results have been obtained in the literature [8–17].

In recent years, the discontinuous control approaches, such as intermittent and impul-
sive control, have aroused a great deal of interest in many applications because these con-
trol methods can reduce the amount of the transmitted information and thus are more
economic [18–22]. An intermittent control scheme comprises working and rest times in
turn, and only in each working time, the controller is activated. Compared with impulsive
control which is activated only at certain instants, intermittent control has the advan-
tage of easy implementation in process control and engineering applications because of
its nonzero control width. Owing to these merits, the intermittent control method has
been widely applied to the fields of chaotic systems and networks; see, e.g., [18, 23–33]
and references therein.

Nevertheless, most researches focus on the periodic case, i.e., the control width and pe-
riod are fixed. For example, the authors of [25, 26] considered the exponential stabilization
problem for chaotic systems without or with constant delays by periodically intermittent
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control. In [27, 28], the authors treated neural networks with time-varying delays, but
these studies were based on the fact that time-varying delays are differentiable. Moreover,
the stability criteria were presented in terms of transcendental equations or nonlinear ma-
trix inequalities, which are computationally difficult. In [18], a class of time-delay neural
networks was also studied via periodically intermittent control under the restriction of
differentiability of time-varying delays. Some delay-dependent sufficient conditions for
exponential stability were obtained in the form of linear matrix inequalities, which were
easily checked by Matlab LMI toolbox. However, subject to the change of the real envi-
ronment, some systems such as the generation of wind power and information exchange
for routers on the internet are typically aperiodically intermittent [29, 30]. Periodically
intermittent control may be unreasonable and inadequate in practice. Therefore, it is of
significance to investigate the cases where the control width and period are not fixed.

Very recently, in [31], an aperiodically intermittent pinning control was introduced to
guarantee the synchronization of hybrid-coupled delayed dynamical networks. Hu et al.
[32] addressed stabilization and synchronization of chaotic systems without delays under
adaptive intermittent control strategy with generalized control width and period. In [33],
by designing an intermittent control scheme with non-fixed control width and period,
Song et al. further considered the stabilization and synchronization of chaotic systems
with mixed time varying delays. Note that all those results in the literature are based on
the fact that parameters are known. Actually, the exact values of parameters are difficult
to obtain in neural networks because of the external disturbances or the modeling inac-
curacies. Discarding parametric uncertainties may lead to wrong conclusions in studying
dynamical behaviors of systems. On the other hand, receiving a signal and transmitting
it from the controller to the controlled system need some time. So, it is more reasonable
that the control input is relevant to the previous state variables. Moreover, sometimes in-
troducing time delays in control schemes can acquire better control performance, such
as the delayed state-feedback control [34]. It could adjust the value of time delay in the
controller without adding control gain, which begins to attract considerable attention for
the good of control performance in recent years [35, 36]. To the best of our knowledge,
although there are many results on intermittent control for stability of neural networks,
few results are concerned with the stability analysis of uncertain neural networks by using
delayed intermittent control. This motivates our present study.

Based on the above discussions, in this paper, we investigate the globally asymptoti-
cal stability of neural networks with both time-varying delays and uncertainties. A de-
layed intermittent controller with non-fixed control width and period is designed, which
is new in the sense that by selecting an appropriate matrix B, it could be activated in all
states or in some states, and non-fixed control width and period make the control scheme
more flexible. By constructing a proper Lyapunov–Krasovskii functional, some new delay-
dependent sufficient criteria for globally asymptotical stability of the addressed system
are derived in terms of LMIs. The proposed stability criteria establish the relationship
between the transmission delay in system and time delay in the controller, which could
be easily verified by Matlab LMI toolbox. Moreover, the value of time delay in the con-
troller can be adjusted without adding control gain and free-weighting matrices with full
cross-terms are employed in this paper, which provide more feasible results than those
studied in the previous work [32, 33]. Finally, a numerical example is studied to show the
effectiveness of the proposed approach.
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The rest of this paper is organized as follows. Section 2 introduces some preliminaries
assumptions, basic definitions, and necessary lemmas. In Sect. 3, the globally asymptotical
stability results with corresponding proofs are presented. The effectiveness of the devel-
oped methods is shown by a numerical example in Sect. 4.

Notations By R
n we denote the n-dimensional real space equipped with the Euclidean

norm ‖·‖;Rn×m refers to the n×m-dimensional real space. LetZ+ represent the set of pos-
itive integers, and N denote the set of nonnegative integers; A < 0 or A > 0 means that the
matrix A is a symmetric and negative definite or positive definite matrix. If A, B are sym-
metric matrices, A > B means that A – B is a positive definite matrix. By A–1 and AT we de-
note the inverse and the transpose of A, respectively. Let α ∨β denote the maximum value
of α and β . For any J ⊆R and S ⊆R

k (1 ≤ k ≤ n), set C(J, S) = {ϕ : J → S is continuous} and
C1(J, S) = {ϕ : J → S is continuously differentiable}. For each ϕ ∈ C1([–ρ, 0],Rn), the norm
is defined by ‖ϕ‖ρ = sups∈[–ρ,0]{|ϕ(s)|, |ϕ̇(s)|}. With ∗ we always denote the symmetric block
in a symmetric matrix, and Λ = {1, 2, . . . , n}.

2 Preliminaries
Consider the time-delay neural networks with uncertainties

⎧
⎨

⎩

ẋ(t) = –C(t)x(t) + W1(t)f (x(t)) + W2(t)f (x(t – τ (t))) + J , t > 0,

x(t) = φ(t), ∀t ∈ [–ρ, 0],
(1)

where x(t) = (x1(t), x2(t), . . . , xn(t)) ∈ R
n is the neural state vector, f (x(t)) = (f1(x1(t)),

f2(x2(t)), . . . , fn(xn(t)))T ∈ R
n is the neuron activation function, C(t) = C + 	C(t), W1(t) =

W1 + 	W1(t), W2(t) = W2 + 	W2(t), in which C is a positive diagonal matrix, W1, W2 ∈
R

n×n are the connection weight matrices of the neurons, and 	C(t), 	W1(t), 	W2(t) are
time-varying parametric uncertainties, φ ∈ C1([–ρ, 0],Rn) is the initial state, J is the ex-
ternal input, τ (t) is a time-varying delay which satisfies 0 ≤ τ (t) ≤ τ , where τ is a constant.

The following assumptions are made throughout this paper:
(H1) The activation function f ∈ C(Rn,Rn), fj(0) = 0, j ∈ Λ, is such that there exist con-

stants l–
j and l+

j such that

l–
j ≤ fj(α1) – fj(α2)

α1 – α2
≤ l+

j , ∀α1,α2 ∈R,α1 
= α2.

For convenience, we denote

L1 = diag
(
l–
1 l+

1 , l–
2 l+

2 , . . . , l–
n l+

n
)
, L2 = diag

(
l–
1 + l+

1
2

,
l–
2 + l+

2
2

, . . . ,
l–
n + l+

n
2

)

.

(H2) The time-varying parametric uncertainties 	C(t), 	W1(t), 	W2(t), 	B(t) are of
the form

(
	C(t),	W1(t),	W2(t),	B(t)

)
= HA(t)(E1, E2, E3, E4),

where A(t) is an unknown matrix satisfying AT (t)A(t) ≤ I , and H , E1, E2, E3, E4 are
known constant matrices of appropriate dimensions.
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Suppose that x
 = (x

1, x


2, . . . , x

n)T is an equilibrium point of system (1). By the transfor-

mation y = x – x
, the equilibrium point x
 can be shifted to the origin. Then system (1)
turns into

⎧
⎨

⎩

ẏ(t) = –C(t)y(t) + W1(t)F(y(t)) + W2(t)F(y(t – τ (t))), t > 0,

y(t) = ϕ(t), ∀t ∈ [–ρ, 0],
(2)

where ϕ(t) = φ(t) – x
, ϕ ∈ C1([–ρ, 0],Rn) and F(y) = f (y + x
) – f (x
).
To achieve the stability of system (2), firstly, a delayed intermittent control with non-

fixed control width and period is designed. The controlled system of (2) can be described
as follows:

⎧
⎨

⎩

ẏ(t) = –C(t)y(t) + W1(t)F(y(t)) + W2(t)F(y(t – τ (t))) + B(t)u(t), t > 0,

y(t) = ϕ(t), ∀t ∈ [–ρ, 0],
(3)

where B(t) = B + 	B(t), B ∈ R
n×m represents a known real matrix, 	B(t) is a time-varying

parametric uncertainty, u(t) ∈R
m is a control input with the form:

u(t) =

⎧
⎨

⎩

K(y(t – γ )), tk ≤ t < tk + dk ,

0, tk + dk ≤ t < tk+1,
(4)

with γ is a positive constant delay, K ∈R
m×n is the controller gain to be designed, dk is the

so-called control width, and tk+1 – tk is the control period. The control instant is defined
by 0 = t1 < t2 < · · · < tk < · · · , limk→∞ tk = +∞, k ∈ Z

+.
Then, one may transform system (3) and (4) into the following closed-loop system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ(t) = –C(t)y(t) + W1(t)F(y(t)) + W2(t)F(y(t – τ (t)))

+ D(t)y(t – γ ), tk ≤ t < tk + dk ,

ẏ(t) = –C(t)y(t) + W1(t)F(y(t)) + W2(t)F(y(t – τ (t))),

tk + dk ≤ t < tk+1,

y(t) = ϕ(t), ∀t ∈ [–ρ, 0],

(5)

where D(t) = B(t)K and ρ = γ ∨ τ .

Definition 1 ([37]) System (5) is said to be globally asymptotically stable if it is stable in
the sense of Lyapunov and limt→∞ y(t) = 0 for any initial condition ϕ ∈ C1([–ρ, 0],Rn).

Definition 2 ([18]) System (5) is said to be globally exponentially stable if there ex-
ist two positive constants ε > 0 and Ã > 0 such that the solution y(t) of (5) satisfies
‖y(t)‖ ≤ Ã‖ϕ‖ρe–εt , for all t ≥ 0, ϕ ∈ C1([–ρ, 0],Rn).

Lemma 1 ([36]) Suppose that matrix M = MT > 0 is a real matrix of appropriate dimen-
sions and ω(·) : [a, b] 
→ R

n is a vector function such that the integrations concerned are
well defined, then

[∫ b

a
ω(s) ds

]T

M
[∫ b

a
ω(s) ds

]

≤ (b – a)
∫ b

a
ωT (s)Mω(s) ds.
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Lemma 2 ([38]) For matrices J̃ , E, and V of appropriate dimensions and assuming V T = V ,

V + J̃LE + ET LT J̃T < 0

holds for all matrices L satisfying LT L ≤ I if and only if there exists a constant ε > 0 such
that

V + εJ̃ J̃T + ε–1ET E < 0.

3 Main results
This section is devoted to study the globally asymptotical stability of the neural networks
(5) by constructing suitable Lyapunov–Krasovskii functional. First, the following stability
results can be derived in terms of LMIs.

Theorem 1 Under conditions (H1) and (H2), the neural network (5) is globally asymptot-
ically stable if for given constants α > 0, β ≥ –α, c ≥ 0, there exist n × n matrices P > 0,
Q > 0, n × n diagonal matrices X > 0, Y > 0, n × n matrix R and 2n × 2n matrix

T1 =

[
T11 T12

∗ T22

]

> 0 (6)

such that following inequalities hold:

M1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M11 M12 M13 M14 M15 0
∗ M22 0 M24 M25 M26

∗ ∗ M33 0 0 M36

∗ ∗ ∗ M44 0 0
∗ ∗ ∗ ∗ –X 0
∗ ∗ ∗ ∗ ∗ –Y

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (7)

N1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

N11 M12 M13 M14 M15 0
∗ M22 0 0 M25 M26

∗ ∗ M33 0 0 M36

∗ ∗ ∗ M44 0 0
∗ ∗ ∗ ∗ –X 0
∗ ∗ ∗ ∗ ∗ –Y

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (8)

and the control width and period satisfy

sup
k∈Z+

{tk+1 – tk – dk} ≤ c, lim
k→∞

(

βtk – (α + β)
k–1∑

i=1

di

)

= –∞, k ∈ Z
+, (9)

where M11 = αP – γ –1Q – L1X, M12 = P – RC(t), M13 = T12, M14 = γ –1Q, M15 = L2X, M22 =
τeατ T22 + γ eαγ Q – R – RT , M24 = RD(t), M25 = RW1(t), M26 = RW2(t), M33 = τT11 – T12 –
TT

12 – L1Y , M36 = L2Y , M44 = –γ –1Q, N11 = –βP – γ –1Q – L1X.

Proof We construct a Lyapunov–Krasovskii functional of the form

V (t) = V1(t) + V2(t) + V3(t) + V4(t),
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where

V1(t) = yT (t)Py(t), V2(t) =
∫ 0

–τ

∫ t

t+ξ

eα(s–t+τ )ẏT (s)T22ẏ(s) ds dξ ,

V3(t) =
∫ t

0

∫ ξ

ξ–τ (ξ )
eα(s–t)

[
y(ξ – τ (ξ ))

ẏ(s)

]T[
T11 T12

∗ T22

][
y(ξ – τ (ξ ))

ẏ(s)

]

ds dξ ,

V4(t) =
∫ 0

–γ

∫ t

t+ξ

eα(s–t+γ )ẏT (s)Qẏ ds dξ .

Calculating the derivative of V (t) along the trajectory of neural network (5) at the interval
t ∈ [tk , tk+1), it follows that

V̇1(t) = 2ẏ(t)PyT (t) = –αV1(t) + αyT (t)Py(t) + 2ẏ(t)PyT (t), (10)

V̇2(t) = τeατ ẏT (t)T22ẏ(t) –
∫ t

t–τ

eα(s–t+τ )ẏT (s)T22ẏ(s) ds – αV2(t)

≤ –αV2(t) + τeατ ẏT (t)T22ẏ(t) –
∫ t

t–τ

ẏT (s)T22ẏ(s) ds, (11)

V̇3(t) =
∫ t

t–τ (t)

[
y(t – τ (t))

ẏ(s)

]T[
T11 T12

∗ T22

][
y(t – τ (t))

ẏ(s)

]

ds – αV3(t)

≤ –αV3(t) +
∫ t

t–τ

ẏT (s)T22ẏ(s) ds + 2yT(
t – τ (t)

)
T12y(t)

+ yT(
t – τ (t)

)(
τT11 – T12 – TT

12
)
y
(
t – τ (t)

)
, (12)

V̇4(t) = γ eαγ ẏT (t)Qẏ(t) –
∫ t

t–γ

eα(s–t+γ )ẏT (s)Qẏ(s) ds – αV4(t)

≤ –αV4(t) + γ eαγ ẏT (t)Qẏ(t) –
∫ t

t–γ

ẏT (s)Qẏ(s) ds.

By Lemma 1, we have

∫ t

t–γ

ẏT (s)Qẏ(s) ds ≤ –
1
γ

(∫ t

t–γ

ẏT (s) ds
)T

Q
∫ t

t–γ

ẏ(s) ds

= –
1
γ

(
y(t) – y(t – γ )

)T Q
(
y(t) – y(t – γ )

)

= –
1
γ

yT (t)Qy(t) +
2
γ

yT (t)Qy(t – γ )

–
1
γ

yT (t – γ )Qy(t – γ ).

Then

V̇4(t) ≤ –αV4(t) + γ eαγ ẏT (t)Qẏ(t) –
1
γ

yT (t)Qy(t)

+
2
γ

yT (t)Qy(t – γ ) –
1
γ

yT (t – γ )Qy(t – γ ). (13)
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Consider n × n diagonal matrices X > 0, Y > 0. From assumption (H1), we get

[
y(t)

F(y(t))

]T[
L1X –L2X
∗ X

][
y(t)

F(y(t))

]

≤ 0, (14)

and

[
y(t – τ (t))

F(y(t – τ (t)))

]T[
L1Y –L2Y
∗ Y

][
y(t – τ (t))

F(y(t – τ (t)))

]

≤ 0. (15)

It then follows from inequalities (10)–(15) that

V̇ (t) ≤ –αV (t) + yT (t)
(

αP –
1
γ

Q – L1X
)

y(t) + yT (t)
(
P + PT)

ẏ(t)

+ ẏT (t)
(
τeατ T22 + γ eαγ Q

)
ẏ(t) + yT(

t – τ (t)
)(

τT11 – T12

– TT
12 – L1Y

)
y
(
t – τ (t)

)
+ yT (t)

(
T12 + TT

12
)
y
(
t – τ (t)

)

+
2
γ

yT (t)Qy(t – γ ) –
1
γ

yT (t – γ )Qy(t – γ ) + 2L2yT (t)XF
(
y(t)

)

– FT(
y(t)

)
XF

(
y(t)

)
+ 2L2yT(

t – τ (t)
)
YF

(
y
(
t – τ (t)

))

– FT(
y
(
t – τ (t)

))
YF

(
y
(
t – τ (t)

))
. (16)

In addition, when tk ≤ t < tk + dk , we introduce the auxiliary equality as follows:

0 = 2ẏT (t)R
(
–ẏ(t) + ẏ(t)

)

= –2ẏT (t)Rẏ(t) – 2ẏT (t)RC(t)y(t) + 2ẏT (t)RW1(t)F
(
y(t)

)

+ 2ẏT (t)RW2(t)F
(
y
(
t – τ (t)

))
+ 2ẏT (t)RD(t)y(t – γ ). (17)

Then, from (16) and (17), we obtain

V̇ (t) ≤ –αV (t) + yT (t)
(

αP –
1
γ

Q – L1X
)

y(t) + 2yT (t)
(
P – RC(t)

)
ẏ(t)

+ ẏT (t)
(
τeατ T22 + γ eαγ Q – R – RT)

ẏ(t) + yT(
t – τ (t)

)(
τT11 – T12

– TT
12 – L1Y

)
y
(
t – τ (t)

)
+ 2yT (t)T12y

(
t – τ (t)

)
+

2
γ

yT (t)Qy(t – γ )

–
1
γ

yT (t – γ )Qy(t – γ ) + 2L2yT (t)XF
(
y(t)

)
+ 2ẏT (t)RW1(t)F

(
y(t)

)

– FT(
y(t)

)
XF

(
y(t)

)
+ 2L2yT(

t – τ (t)
)
YF

(
y
(
t – τ (t)

))

+ 2ẏ(t)RW2(t)F
(
y
(
t – τ (t)

))
+ 2ẏT (t)RD(t)y(t – γ )

– FT(
y
(
t – τ (t)

))
YF

(
y
(
t – τ (t)

))

= ηT (t)M1η(t) – αV (t),
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where η(t) = (yT (t), ẏT (t), yT (t – τ (t)), yT (t – γ ), FT (y(t)), FT (y(t – τ (t))))T , which together
with (7) yields

V̇ (t) ≤ –αV (t), t ∈ [tk , tk + dk). (18)

Let G1(t) = eαtV (t). By (18), one can see that G1(t) is a monotone decreasing function on
t ∈ [tk , tk + dk). Then

G1(t) ≤ G1(tk), G1(tk + dk) ≤ G1(tk),

which implies that

V (t) ≤ e–α(t–tk )V (tk), t ∈ [tk , tk + dk), (19)

V (tk + dk) ≤ e–αdk V (tk). (20)

When tk + dk ≤ t < tk+1, from the second equation of system (5), it follows that

0 = 2ẏT(t)R
(
–ẏ(t) + ẏ(t)

)

= –2ẏ(t)Rẏ(t) – 2ẏ(t)RC(t)y(t) + 2ẏT(t)RW1(t)F
(
y(t)

)

+ 2ẏ(t)RW2(t)F
(
y
(
t – τ (t)

))
. (21)

Since α + β > 0, from (8), (16) and (21), we obtain

V̇ (t) ≤ –αV (t) + ηT(t)N1η(t) + (α + β)yT(t)Py(t)

≤ –αV (t) + ηT(t)N1η(t) + (α + β)V (t) ≤ βV (t). (22)

Let G2(t) = e–βtV (t). Then G2(t) is a monotone decreasing function on t ∈ [tk + dk , tk+1)
and we have

G2(t) ≤ G2(tk + dk), G2(tk+1) ≤ G2(tk + dk),

which implies that

V (t) ≤ V (tk + dk)eβ(t–tk–dk ), t ∈ [tk + dk , tk+1), (23)

V (tk+1) ≤ V (tk + dk)eβ(tk+1–tk–dk ). (24)

Thus, combing (20) and (24), one may deduce that

V (tk+1) ≤ V (0)e–α
∑k

i=1 di+β(tk+1–
∑k

i=1 di) = V (0)eβtk+1–(α+β)
∑k

i=1 di , (25)

V (tk + dk) ≤ V (0)e–α
∑k

i=1 di+β(tk –
∑k–1

i=1 di) ≤ V (0)eβtk –(α+β)
∑k–1

i=1 di . (26)

When tk ≤ t < tk + dk , it follows from (19) and (25) that

V (t) ≤ e–α(t–tk )V (tk) ≤ V (0)eβtk –(α+β)
∑k–1

i=1 di . (27)
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When tk + dk ≤ t < tk+1, it follows from (9), (23) and (26) that

V (t) ≤ eβ(t–tk –dk )V (tk + dk) ≤ e|β|cV (0)eβtk –(α+β)
∑k–1

i=1 di . (28)

Therefore, we obtain from (27) and (28) that

V (t) ≤ e|β|cV (0)eβtk –(α+β)
∑k–1

i=1 di , k ∈ Z
+, t ≥ 0.

Combing condition (9), we have limt→∞ V (t) = 0, which implies that limt→∞ y(t) = 0.
Hence, system (5) is globally asymptotically stable. The proof is completed. �

Especially, in the case of system (5) without parametric uncertainties, i.e., when 	C(t) =
	W1(t) = 	W2(t) = 	B(t) = 0, system (5) reduces to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ(t) = –Cy(t) + W1F(y(t)) + W2F(y(t – τ (t))) + Dy(t – γ ),

tk ≤ t < tk + dk ,

ẏ(t) = –Cy(t) + W1F(y(t)) + W2F(y(t – τ (t))),

tk + dk ≤ t < tk+1,

y(t) = ϕ(t), ∀t ∈ [–ρ, 0],

(29)

where the matrix D = BK . Then the following corollary is easily derived.

Corollary 1 Suppose that (H1) holds. Then the neural network (29) is globally asymptot-
ically stable if for given constants α > 0, β ≥ –α, c ≥ 0, there exist n × n matrices P > 0,
Q > 0, n × n diagonal matrices X > 0, Y > 0, n × n matrix R and 2n × 2n matrix

T1 =

[
T11 T12

∗ T22

]

> 0

such that following inequalities hold:

M2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M11 M̃12 M13 M14 M15 0
∗ M22 0 M̃24 M̃25 M̃26

∗ ∗ M33 0 0 M36

∗ ∗ ∗ M44 0 0
∗ ∗ ∗ ∗ –X 0
∗ ∗ ∗ ∗ ∗ –Y

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0,

N2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

N11 M̃12 M13 M14 M15 0
∗ M22 0 0 M̃25 M̃26

∗ ∗ M33 0 0 M36

∗ ∗ ∗ M44 0 0
∗ ∗ ∗ ∗ –X 0
∗ ∗ ∗ ∗ ∗ –Y

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0,

and the control width and period satisfy (9), where M̃12 = P – RC, M̃24 = RD, M̃25 = RW1,
M̃26 = RW2, and other parameters are the same as in Theorem 1.
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It is worth noticing that Theorem 1 can be applied only if the uncertainty A(t) and the
matrix D(t) are exactly known. When just an estimate of A(t) is known or K is a control
gain to be designed, it is difficult to use the above derived results. Next, we will give a
result for such general case, in which the control gain K is determined by making some
transformations.

Theorem 2 Under conditions (H1) and (H2), the neural network (5) is globally asymptot-
ically stable if for given constants μi, i = 1, 2, . . . , 7, α > 0, β ≥ –α, c ≥ 0, there exist n × n
diagonal matrix S > 0 and m × n matrix Z such that the following inequalities hold:

T2 =

[
μ5S μ6S
∗ μ7S

]

> 0, (30)

M3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

φ11 φ12 φ13 φ14 φ15 0 0 0
∗ φ22 0 φ24 φ25 φ26 –SET

1 0
∗ ∗ φ33 0 0 φ36 0 0
∗ ∗ ∗ φ44 0 0 0 ZT ET

4

∗ ∗ ∗ ∗ –μ1S 0 0 SET
2

∗ ∗ ∗ ∗ ∗ –μ2S 0 SET
3

∗ ∗ ∗ ∗ ∗ ∗ –ε1I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ –ε2I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (31)

N3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

φ̃11 φ12 φ13 φ14 φ15 0 0 0
∗ φ̃22 0 0 φ25 φ26 –SET

1 0
∗ ∗ φ33 0 0 φ36 0 0
∗ ∗ ∗ φ44 0 0 0 0
∗ ∗ ∗ ∗ –μ1S 0 0 SET

2

∗ ∗ ∗ ∗ ∗ –μ2S 0 SET
3

∗ ∗ ∗ ∗ ∗ ∗ –ε1I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ –ε3I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (32)

and the control width and period satisfy (9), where φ11 = αS–γ –1μ4S–μ1SL1 +(ε1μ
2
3)HHT ,

φ12 = S – μ3CS, φ13 = μ6S, φ14 = γ –1μ4S, φ15 = μ1SL2, φ22 = μ7τeατ S + μ4γ eαγ S –
2μ3S + (ε2μ

2
3)HHT , φ24 = μ3BZ, φ25 = μ3W1S, φ26 = μ3W2S, φ33 = μ5τS – 2μ6S – μ2SL1,

φ36 = μ2SL2, φ44 = –γ –1μ4S, φ̃11 = –βS – γ –1μ4S – μ1SL1 + (ε1μ
2
3)HHT , φ̃22 = μ7τeατ S +

μ4γ eαγ S – 2μ3S + (ε3μ
2
3)HHT .

Moreover, the gain matrix K is given by K = ZS–1.

Proof When tk ≤ t < tk + dk , the condition M1 < 0 in Theorem 1 can be rewritten as

M1 = M2 +

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 –R�C(t) 0 0 0 0
∗ 0 0 R�D(t) R�W1(t) R�W2(t)
∗ ∗ 0 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= M2 + Γ T
1 A(t)Υ1 + Υ T

1 AT (t)Γ1 + Γ T
2 A(t)Υ2 + Υ T

2 AT (t)Γ2 < 0, (33)
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where Γ T
1 = ( HT RT 0 0 0 0 0 )T , Γ T

2 = ( 0 HT RT 0 0 0 0 )T , Υ1 = ( 0 –E1 0 0 0 0 ), Υ2 =
( 0 0 0 E4K E2 E3 ), and M2 is defined as in Corollary 1.

When tK + dk ≤ t < tk+1, the condition N1 < 0 in Theorem 1 can be written as

N1 = N2 +

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 –R�C(t) 0 0 0 0
∗ 0 0 0 R�W1(t) R�W2(t)
∗ ∗ 0 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= N2 + Γ T
1 A(t)Υ1 + Υ T

1 AT (t)Γ1 + Γ T
2 A(t)Υ3 + Υ T

3 AT (t)Γ2 < 0, (34)

where Υ3 = ( 0 0 0 0 E2 E3 ) and N2 is defined as in Corollary 1. By Lemma 2, (33) and (34)
are equivalent to following inequalities:

M2 + ε1Γ
T

1 Γ1 + ε–1
1 Υ T

1 Υ1 + ε2Γ
T

2 Γ2 + ε–1
2 Υ T

2 Υ2 < 0, (35)

N2 + ε1Γ
T

1 Γ1 + ε–1
1 Υ T

1 Υ1 + ε3Γ
T

2 Γ2 + ε–1
3 Υ T

3 Υ3 < 0. (36)

Then applying Schur complement lemma, we have from the above inequalities that

⎡

⎢
⎣

M̂ Υ T
1 Υ T

2

∗ –ε1I 0
∗ ∗ –ε2I

⎤

⎥
⎦ < 0, (37)

⎡

⎢
⎣

N̂ Υ T
1 Υ T

3

∗ –ε1I 0
∗ ∗ –ε3I

⎤

⎥
⎦ < 0, (38)

where M̂ = M2 + ε1Γ
T

1 Γ1 + ε2Γ
T

2 Γ2 and N̂ = N2 + ε1Γ
T

1 Γ1 + ε3Γ
T

2 Γ2. Let X = μ1P, Y =
μ2P, R = μ3P, Q = μ4P, T11 = μ5P, T12 = μ6P, T22 = μ7P in M2 and N2 and let S = P–1,
Z = SK , where P is a diagonal matrix. By pre-multiplying and post-multiplying inequality
(6) with diag {P–1, P–1}, inequalities (37) and (38) with diag {P–1, P–1, P–1, P–1, P–1, P–1, I, I},
we obtain that inequalities (6), (37) and (38) are equivalent to inequalities (30), (31) and
(32), which completes the proof. �

Remark 1 Up to now, many interesting results on intermittent control have been reported
in the literature [18, 25–28]. Note that most of them are based on the facts that the control
scheme is periodic or only associated with the state of current time. However, in many ap-
plications, the fixed control width and period may be inadequate [29, 30], and there always
exist delays in the process of inputting control. Therefore, the existing control schemes in
[18, 25–28] seem to be unreasonable. In is paper, we focus on the delayed intermittent
control with non-fixed control width and period for the stability of uncertain neural net-
works with delays. Because the value of time delay in a controller could be changed without
adding control gain and the control width and period are non-fixed, the delayed intermit-
tent control has better performance, which is more flexible and practical in engineering
control and industrial process.
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Remark 2 The control term in system (3) is given in the form of Bu. Then the controller
can be input to some states, not all states by selecting proper matrix B, which has some sig-
nificant importance in engineering control problems. The numerical examples are shown
in Sect. 4.

In particular, if there exists no time delay in the controller, i.e., γ = 0, it is easy to prove
the following corollary.

Corollary 2 Under conditions (H1) and (H2), neural network (5) with γ = 0 is globally
asymptotically stable if for given constants μi, i = 1, 2, 3, 5, 6, 7, α > 0, β ≥ –α, c ≥ 0, there
exist n × n diagonal matrix S > 0 and m × n matrix Z such that (30) and the following
inequalities hold:

M4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

π11 π12 π13 π14 0 0 0
∗ π22 0 π24 π25 –SET

1 + ZT ET
4 0

∗ ∗ π33 0 π35 0 0
∗ ∗ ∗ –μ1S 0 0 SET

2

∗ ∗ ∗ ∗ –μ2S 0 SET
3

∗ ∗ ∗ ∗ ∗ –ε4I 0
∗ ∗ ∗ ∗ ∗ ∗ –ε5I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (39)

N4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

π̃11 π̃12 π13 π14 0 0 0
∗ π22 0 π24 π25 –SET

1 0
∗ ∗ π33 0 π35 0 0
∗ ∗ ∗ –μ1S 0 0 SET

2

∗ ∗ ∗ ∗ –μ2S 0 SET
3

∗ ∗ ∗ ∗ ∗ –ε6I 0
∗ ∗ ∗ ∗ ∗ ∗ –ε5I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (40)

and the control width and period satisfy (9), where π11 = αS – μ1SL1 + ε4μ
2
3HHT , π12 =

S –μ3CS +μ3BZ, π13 = μ6S, π14 = μ1SL2, π22 = μ7τeατ S – 2μ3S + ε5μ
2
3HHT , π24 = μ3W1S,

π25 = μ3W2S, π33 = μ5τS – 2μ6S – μ2SL1, π35 = μ2SL2, π̃11 = –βS – μ1SL1 + ε6μ
2
3HHT ,

π̃12 = S – μ3CS.
Moreover, the gain matrix K is taken as K = ZS–1.

Proof Consider a Lyapunov–Krasovskii functional V = V1 + V2 + V3, where V1, V2 and V3

are the same as in Theorem 1. When tk ≤ t < tk + dk , if

M5 = M6 + Γ T
3 A(t)Υ4 + Υ T

4 AT (t)Γ3 + Γ T
4 A(t)Υ5 + Υ T

5 AT (t)Γ4 < 0, (41)

it can be derived that V̇ (t) ≤ ηT (t)M5η(t) – αV (t) ≤ –αV (t), where

M6 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ϕ11 ϕ12 ϕ13 ϕ14 0
∗ ϕ22 0 ϕ24 ϕ25

∗ ∗ ϕ33 0 ϕ35

∗ ∗ ∗ –X 0
∗ ∗ ∗ ∗ –Y

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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ϕ11 = αP – L1X, ϕ12 = P – RC + RD, ϕ13 = T12, ϕ14 = L2X, ϕ22 = τeατ T22 – R – RT , ϕ24 =
RW1, ϕ25 = RW2, ϕ33 = τT11 – T12 – TT

12 – L1Y , ϕ35 = L2Y , Γ T
3 = ( HT RT 0 0 0 0 )T , Γ T

4 =
( 0 HT RT 0 0 0 )T , Υ4 = ( 0 –E1 + E4K 0 0 0 ), Υ5 = ( 0 0 0 E2 E3 ).

When tK + dk ≤ t < tk+1, if

N5 = N6 + Γ T
3 A(t)Υ6 + Υ T

6 AT (t)Γ3 + Γ T
4 A(t)Υ5 + Υ T

5 AT (t)Γ4 < 0, (42)

we have V̇ (t) ≤ ηT (t)N5η(t) + βV (t) ≤ βV (t), where

N6 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ϕ̂11 ϕ̂12 ϕ13 ϕ14 0
∗ ϕ22 0 ϕ24 ϕ25

∗ ∗ ϕ33 0 ϕ35

∗ ∗ ∗ –X 0
∗ ∗ ∗ ∗ –Y

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

ϕ̂11 = –βP – L1X, ϕ̂12 = P – RC, Υ6 = ( 0 –E1 0 0 0 ).
Then by following the steps of Theorem 1, under conditions (6), (41), and (42), system

(5) with γ = 0 is globally asymptotically stable. Next, we will make some transformations
in order to get equivalent stability conditions which can be solved by LMI toolbox. By
Lemma 2 and Schur complement lemma, (41) and (42) are equivalent to the following
inequalities:

⎡

⎢
⎣

M̄ Υ T
4 Υ T

5
∗ –ε4I 0
∗ ∗ –ε5I

⎤

⎥
⎦ < 0, (43)

⎡

⎢
⎣

N̄ Υ T
6 Υ T

5
∗ –ε6I 0
∗ ∗ –ε5I

⎤

⎥
⎦ < 0, (44)

where M̄ = M6 + ε4Γ
T

3 Γ3 + ε5Γ
T

4 Γ4, N̄ = N6 + ε6Γ
T

3 Γ3 + ε5Γ
T

4 Γ4. Similarly, repeating the
arguments as in Theorem 2, one can obtain that (6), (43), and (44) are equivalent to (30),
(39), and (40). The proof is completed. �

It should be noted that the proposed approach in this paper is also available to study the
stability of system (5) when the control scheme is periodic.

In this case, the intermittent controller u(t) can be written as

u(t) =

⎧
⎨

⎩

Ky(t – γ ), kT ≤ t < kT + δ,

0, kT + δ ≤ t < (k + 1)T ,
(45)
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where δ denotes the control width and T > 0 is the control period. System (5) turns into
the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ(t) = –C(t)y(t) + W1(t)F(y(t)) + W2(t)F(y(t – τ (t)))

+ D(t)y(t – γ ), kT ≤ t < kT + δ,

ẏ(t) = –C(t)y(t) + W1(t)F(y(t)) + W2(t)F(y(t – τ (t)),

kT + δ ≤ t < (k + 1)T ,

y(t) = ϕ(t), ∀t ∈ [–ρ, 0],

(46)

where k ∈ Λ. Then we can get the result as follows.

Corollary 3 Under conditions (H1) and (H2), the neural network (46) is globally exponen-
tially stable if for given constants μi, i = 1, 2, . . . , 7, α > 0, β ≥ –α, c ≥ 0, there exist n × n
diagonal matrix S > 0 and m × n matrix Z such that inequalities (30)–(32) hold and the
control period and control width satisfy

(α + β)δ – βT > 0. (47)

Proof When kT ≤ t < kT + δ, based on (27) and (47), we get

V (t) ≤ V (0)eβkT–(α+β)(k–1)δ = V (0)e(α+β)δ+(βT–(α+β)δ)k

≤ C1V (0)e(βT–(α+β)δ) t–δ
T , (48)

where C1 = e(α+β)δ . When kT + δ ≤ t < (k + 1)T , using (28) and (47), we can obtain

V (t) ≤ e|β|cV (0)eβkT–(α+β)(k–1)δ = V (0)e|β|c+(α+β)δ+(βT–(α+β)δ)k

≤ C2V (0)e(βT–(α+β)δ) t
T , (49)

where C2 = e|β|c–βT+2(α+β)δ . Therefore, it follows from (48) and (49) that

V (t) ≤ C2V (0)e–2ζ (t–δ),

where ζ = (α+β)δ–βT
2T > 0. Letting

C3 = λmax(P) +
1
2
τ 2eατ λmax(T22) +

1
2
γ 2eαγ λmax(Q),

one get

V (t) ≥ V1(t) ≥ λmin(P)
∥
∥y(t)

∥
∥2, V (0) ≤ C3‖φ‖2

ρ .

Thus, ‖y(t)‖ ≤ C4‖φ‖ρe–ζ t , where C4 = eζδ
√

C2C3/λmin(P). The proof is completed. �

Remark 3 In [18, 27, 28], the exponential stability of time-delay neural networks has been
extensively studied by the periodically intermittent control method. However, these stud-
ies were based on the fact that time-varying delays are differentiable. Corollary 3 removes
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the restriction of differentiability of the transmission delays and gets the globally expo-
nential stability of uncertain neural networks (46), which improves the results in [18, 27,
28]. Moreover, the fact that the value of time delay in the controller is adjustable makes
our results more practical in real applications.

4 Numerical illustrations
In this section, a numerical simulation is provided to show the effectiveness of the pro-
posed approach.

Consider a 2D neural network (5) with parameters as follows:

C =

[
1.2 0
0 0.1

]

, B =

[
0
1

]

, W1 =

[
0 –0.4

1.3 –0.3

]

, W2 =

[
–0.1 0.2

–0.01 0.9

]

,

F(s) =

[
tanh(0.3s) – 0.2 sin s
tanh(0.2s) + 0.3 sin s

]

, τ (t) = 0.1 + 0.01 sin(5t).

It is obtained that l–
1 = –0.2, l+

1 = 0.5, l–
2 = –0.3, l+

2 = 0.5, i.e.,

L1 =

[
–0.1 0

0 –0.15

]

, L2 =

[
0.15 0

0 0.1

]

.

The delayed intermittent controller u is designed as

u(t) =

⎧
⎨

⎩

Ky(t – γ ), tk ≤ t < tk + dk ,

0, tk + dk ≤ t < tk+1,
(50)

where
⎧
⎨

⎩

t2k–1 = 1.5(k – 1), k ∈N,

t2k = 1.5k – 0.8, k ∈N,

⎧
⎨

⎩

d2k–1 = 0.3, k ∈N,

d2k = 0.5, k ∈N,

and γ = 0.01.
In particular, we consider the case that ϕ1(t) = –0.5 sin t, ϕ2(t) = 0.5 cos t, α = 0.1, β = 0.1,

c = 0.4, τ = 0.11, μ1 = 1.01, μ2 = 0.38, μ3 = 0.08, μ4 = 0.5, μ5 = 1.4, μ6 = 0.26, μ7 = 0.93.
By MATLAB LMI toolbox, it follows from Theorem 2 that

S =

[
0.0230 0

0 0.0229

]

, Z =
[

–0.0017 –0.2645
]

.

Then the gain matrix of the control law is taken as K = [ –0.0667 –11.5328 ].
The numerical simulation of neural network (5) with controller u = 0 in [0, +∞) is pre-

sented in Fig. 1, which shows that the system is unstable. Under the designed intermittent
controller (50) (see Fig. 3), neural network (5) becomes a closed-loop system. In this case,
Fig. 2 illustrates that the neural network (5) is globally asymptotical stable. Noting that
B = [0, 1]T , the controller is only imposed on the second variable. Actually, the stability of
system (5) is achieved through the interaction of x1 and x2.
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Figure 1 State trajectories for neural networks (5) without control input

Figure 2 State trajectories for neural networks (5) with delayed intermittent controller (50)

Remark 4 The established stability conditions in this paper depend both on the upper
bound of transmission delays of the system and time delay in the controller. The relation-
ship between the two delays is shown in Tables 1 and 2, which can be conveniently checked
by the MATLAB LMI toolbox.

5 Conclusion
This paper was dedicated to the stability problem of neural networks with both time-
varying delays and uncertainties. A novel delayed intermittent controller with non-fixed
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Figure 3 Delayed intermittent controller (50)

Table 1 The allowed upper bound τ for different γ

γ 0.01 0.02 0.03 0.04 0.05
τ 0.1263 0.0958 0.0649 0.0336 0.0020

Table 2 The allowed upper bound γ for different τ

τ 0.01 0.03 0.07 0.11 0.14
γ 0.0474 0.0411 0.0283 0.0153 0.0054

control width and period has been designed in the sense that it could be activated in all
states or in some states and the value of time delay in controller could be adjusted without
adding control gain. Moreover, the control width and period are non-fixed, which makes
the control scheme is more flexible in real applications. Some delay-dependent stability
criteria have been presented by using free-weighting matrix techniques and Lyapunov–
Krasovskii functional method. It is shown that such criteria can provide better feasibil-
ity results than some existing ones. Actually, from the viewpoint of switched systems,
the intermittently controlled system can be seen as a switched system composed of an
unstable-uncontrolled subsystem and a stable-controlled subsystem. Switching phenom-
ena are likely to cause impulsive effects to systems. Hence, how to develop our results to
impulsive systems is an interesting problem for the future.
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