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Abstract
In this paper, we study the existence and multiplicity of solutions of the quasilinear
problems with minimum and maximum

(φ(u′(t)))′ = (Fu)(t), a.e. t ∈ (0, T ),

min
{
u(t) | t ∈ [0, T ]

}
= A, max

{
u(t) | t ∈ [0, T ]

}
= B,

where φ : (–a,a) → R (0 < a <∞) is an odd increasing homeomorphism,
F : C1[0, T ] → L1[0, T ] is an unbounded operator, T > 1 is a constant and A,B ∈R satisfy
B > A. By using the Leray–Schauder degree theory and the Brosuk theorem, we prove
that the above problem has at least two different solutions.
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Leray–Schauder degree; Brosuk theorem

1 Introduction
In this paper we study the following quasilinear problem

(
φ
(
u′(t)

))′ = (Fu)(t), a.e. t ∈ (0, T), (1.1)

subjected to nonlinear boundary conditions

min
{

u(t) | t ∈ [0, T]
}

= A, max
{

u(t) | t ∈ [0, T]
}

= B, (1.2)

where φ : (–a, a) →R is an increasing homeomorphism, φ(0) = 0, a is a positive constant,
F : C1[0, T] → L1[0, T] is an unbounded operator, T > 1 is a constant and A, B ∈ R satisfy
B > A. A typical example should be

φ(s) =
s√

1 – s2
, s ∈ (–1, 1).

The differential operator we are considering, known as the mean curvature operator in
Minkowski space, which is originated in the study in differential geometry or special rela-
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tivity, has the property that the mean extrinsic curvature (trace of its second fundamental
form) is, respectively, zero or constant; see [1, 10, 23] and [24].

A solution of the problem (1.1) and (1.2) is a function u ∈ C1[0, T] such that
maxt∈[0,T] |u′(t)| < a, φ(u′) ∈ AC[0, T], u satisfies (1.2) and (1.1) is satisfied for a.e. t ∈ [0, T].

It is well known that the singular φ-Laplacian problem (1.1) with Dirichlet boundary
conditions have been introduced in [7, 10, 16], and a detailed study of homogeneous
Dirichlet and Neumann problems has been given in [7]. The various boundary value prob-
lems above are reduced to the search of a fixed point for some operator defined on the
space C1[0, T]. Those operators are completely continuous, and a novel feature linked to
the nature of the function φ lies in the fact that those operators map C1[0, T] into the
cylinder of functions u ∈ C1[0, T] such that max[0,T] |u′| < a. This property plays a very
important role in the search of the prior bound for the possible fixed point by using the
Leray–Schauder approach.

Notice also that, according to [12], existence and multiplicity of positive solutions of the
homogeneous Dirichlet problems for singular φ-Laplacian have been obtained by reduc-
tion to an equivalent nonsingular problem to which variational or topological methods
apply in a classical fashion.

However, a very interesting result was showed in [8]: that the Dirichlet problem

(
φ
(
u′(t)

))′ = (Fu)(t), u(0) = A, u(T) = B, (1.3)

is still solvable for any right-hand member F , like in the homogeneous case considered in
[7], but under the restriction

|B – A| < aT . (1.4)

For other nonhomogeneous cases, see [2–4] and [9].
When φ = I , (1.1) can be reduced to

u′′ = (Fu)(t), a.e. t ∈ (0, T). (1.5)

Many authors considered (1.5) with functional boundary value problem; see [5, 6, 14,
15, 17, 19] and [20]. In particular, the problem (1.5) and (1.2) has been studied in [5,
19] and [20]. On the other hand, the existence and multiplicity of solutions for nonlinear
second-order discrete problems with minimum and maximum also has been studied in
[17]. Moreover, the boundary condition (1.2) originates in the description of pest density
changes, which plays an important role in the study of pest quantities; see [5].

Note that φ : R → R is an odd increasing homeomorphism; the classical p-Laplacian
cases, for which φ(s) = |s|p–2s, the existence and multiplicity results of p-Laplacian prob-
lem with functional boundary conditions have been studied in [18, 20] and [22]; for the
other cases, see [21]. Also, functional fractional boundary value problems with a singular
φ-Laplacian were studied in [11].

To the best of our knowledge, there have been few discussions of the singular φ-
Laplacian problem with minimum and maximum. Motivated by the above papers, the
purpose of this paper is to give sufficient conditions imposed upon the nonlinearity F and
the numbers A, B (B > A) so that there exist at least two different solutions of the problem
(1.1) and (1.2).
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Throughout this paper we shall make the following assumptions:
(H1) There exists a continuous nondecreasing function f : [0,∞) → [0,∞) such that

∣∣(Fu)(t)
∣∣ ≤ f

(∣∣u′(t)
∣∣), a.e. t ∈ [0, T], u ∈ C1[0, T].

(H2)
∫ ∞

0
ds

f (φ–1(s)) ≥ T .
The remainder of this paper is arranged as follows. In Sect. 2, we give some notations

and the prior estimate for the possible solutions of (1.1) and (1.2). Section 3 is devoted to
proving the existence and multiplicity of solutions of (1.1) and (1.2), and we also give an
application to illustrate our main results.

2 Preliminaries
In this section we collect some preliminary results that will be used below.

We denote the usual norm in L1(0, T) by ‖ · ‖L1 . Let X := C[0, T] be the Banach space
endowed with the uniform norm ‖ · ‖∞, Y := C1[0, T] be the Banach space equipped with
the norm ‖u‖C1 = ‖u‖∞ + ‖u′‖∞, the corresponding open ball of center at 0 and radius r
is denoted by Br .

Definition 2.1 Let ω : X →R be a functional. ω is increasing if

x, y ∈ X, x(t) < y(t) for t ∈ [0, T], then ω(x) ≤ ω(y).

For each ω : X →R, Im(ω) denotes the range of ω.
Set A = {ω | ω : X →R is continuous and increasing}, A0 = {ω | ω ∈A,ω(0) = 0}.

Remark 2.2 Conspicuously, min{u(t) | t ∈ [0, T]} and max{u(t) | t ∈ [0, T]} belong to A. If
we take

ω(u) = min
{

u(t) | t ∈ [0, T]
}

,

then the boundary condition (1.2) is equal to

ω(u) = A, max
{

u(t) | t ∈ [0, T]
}

– min
{

u(t) | t ∈ [0, T]
}

= B – A. (2.1)

So, in the rest part of the paper we only deal with (1.1) and (2.1).

Lemma 2.3 ([20, Lemma 4]) Let ω ∈A, k ∈ [0, 1] and u ∈ X, the equality ω(u)–kω(–u) = 0
is satisfied. Then there exists a δ ∈ [0, T] such that u(δ) = 0.

Lemma 2.4 ([20, Lemma 5]) Let ω ∈ A, h ∈ Im(ω). Then there exists a unique k ∈ X such
that ω(k) = h.

Lemma 2.5 (Bihari lemma, [19, Lemma 2.1]; [20, Lemma 1]) Let p : [0, +∞) → (0, +∞)
be a nondecreasing continuous function, P : [0, +∞) → [0, +∞) be defined by P(u) =

∫ u
0

dt
p(t)

and let b ∈ [c, d] ⊂R. If v ∈ X satisfies the inequality

∣∣v(t)
∣∣ ≤

∣∣∣∣

∫ t

b
p
(∣∣v(s)

∣∣)
∣∣∣∣ds, for t ∈ [c, d],
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then

∣∣v(t)
∣∣ ≤ P–1(b – t), for t ∈ [c, b],

provided limu→∞ P(u) > b – c, and

∣∣v(t)
∣∣ ≤ P–1(t – b), for t ∈ [b, d],

provided limu→∞ P(u) > d – b. Here P–1 denotes the inverse function to P.

As in [5], we define the function ψ : X →R by the formula

ψ(u) = max

{∫ n

m
u(s) ds

∣∣∣ m, n ∈ [0, T], m ≤ n
}

. (2.2)

Lemma 2.6 ([5]) For all u ∈ Y , the functional ψ is continuous and

max
{

u(t) | t ∈ [0, T]
}

– min
{

u(t) | t ∈ [0, T]
}

= max
{
ψ

(
u′),ψ

(
–u′)}.

Lemma 2.7 Suppose that u is a solution of (1.1) on [0, T]. Then

min
{
ψ

(
u′),ψ

(
–u′)} ≤ T

2
φ–1

(
P–1

(
T
2

))
, (2.3)

where P–1 denotes the inverse function to

P(u) =
∫ u

0

ds
f (φ–1(s))

.

Proof Set

C+ =
{

t | u′(t) > 0, t ∈ (0, T)
}

, C– =
{

t | u′(t) < 0, t ∈ (0, T)
}

.

Let μ(C+) and μ(C–) be the Lebesgue measure of C+, C–, respectively.
If C+ = ∅ (resp. C– = ∅), then ψ(u′) = 0 (resp. ψ(–u′) = 0) and (2.3) is clearly established.

Assume C+ �= ∅ and C– �= ∅. u′ ∈ X, C+, C– are open subsets of [0, T] and therefore C+

(resp. C–) is a union of at most countable set of disjoint open intervals (ai, bi), i ∈ I+ ⊂ N

(resp. (cj, dj), j ∈ I– ⊂N) without common elements, i.e.

C+ =
⋃

i∈I+

(ai, bi), C– =
⋃

j∈I–

(cj, dj).

Of course, for any i ∈ I+, u′(ai) �= 0 or u′(bi) �= 0 (resp. u′(cj) �= 0 or u′(dj) �= 0 for any j ∈ I–)
imply ai = 0 or bi = T (resp. cj = 0 or dj = T ). Furthermore, C+ �= (0, T), since in the opposite
case C– = ∅, which makes a contradiction. Similarly, C– �= (0, T).

By the inequality μ(C+) + μ(C–) ≤ T , it is easy to see that

min
{
μ(C+),μ(C–)

} ≤ T
2

. (2.4)
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Next we prove the inequality

ψ
(
u′) ≤ μ(C+) sup

{
φ–1(P–1(bi – ai)

) | i ∈ I+
}

. (2.5)

Fix i ∈ I+, let u′(η) = 0, η ∈ {ai, bi}. Combining (1.1) with φ(0) = 0, we have

φ
(
u′(t)

)
=

∫ t

η

(Fu)(s) ds, t ∈ [ai, bi].

For t ∈ [ai, bi], u′(t) ≥ 0. Since φ is an increasing homeomorphism and because of (H1),
we get

0 ≤ φ
(
u′(t)

) ≤
∣∣∣∣

∫ t

η

∣∣(Fu)(s)
∣∣ds

∣∣∣∣ ≤
∣∣∣∣

∫ t

η

f
(
u′(s)

)
ds

∣∣∣∣ =
∣∣∣∣

∫ t

η

f
(
φ–1(φ

(
u′(s)

))
ds

∣∣∣∣. (2.6)

From Lemma 2.5 with b = η, c = ai, d = bi, v(s) = φ(u′(s)) and p(v) = f (φ–1(v)), it is not
difficult to see that

φ
(
u′(t)

) ≤ P–1(|η – t|), t ∈ [ai, bi].

Subsequently, 0 ≤ u′(t) ≤ φ–1(P–1(bi – ai)) for t ∈ [ai, bi], i ∈ I+. Thus

∫ bi

ai

u′(s) ds ≤ (bi – ai)φ–1(P–1(bi – ai)
)
. (2.7)

Moreover,

ψ
(
u′) ≤

∫

C+

u′(t) dt =
∑

i∈I+

∫ bi

ai

u′(t) dt

≤ sup
{
φ–1(P–1(bi – ai)

) | i ∈ I+
}∑

i∈I+

(bi – ai)

≤ μ(C+) sup
{
φ–1(P–1(bi – ai)

) | i ∈ I+
}

.

As a consequence, (2.5) is satisfied.
Next, we will show that

ψ
(
–u′) ≤ μ(C–) sup

{
φ–1(P–1(dj – cj)

) | j ∈ I–
}

. (2.8)

Fix j ∈ I–, let u′(ζ ) = 0, ζ ∈ {cj, dj}. Together (1.1) with φ(0) = 0, which implies

φ
(
u′(t)

)
=

∫ t

ζ

(Fu)(s) ds, t ∈ [cj, dj].

We have u′(t) ≤ 0 on [cj, dj]. Combining the fact that φ is an odd increasing homeomor-
phism and (H1), we obtain

0 ≤ –φ
(
u′(t)

) ≤
∣∣∣
∣

∫ t

ζ

∣∣(Fu)(s)
∣∣ds

∣∣∣∣ ≤
∣∣∣∣

∫ t

ζ

f
(
–u′(s)

)
ds

∣∣∣
∣. (2.9)
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Thus

φ
(∣∣u′(t)

∣∣) = –φ
(
u′(t)

) ≤
∣∣∣∣

∫ t

ζ

f
(
φ–1(φ

(∣∣u′(s)
∣∣))ds

∣∣∣∣. (2.10)

From Lemma 2.5 with b = ζ , c = cj, d = dj, v(s) = φ(|u′(s)|) and p(v) = f (φ–1(v)), it is easy
to verify that

φ
(∣∣u′(t)

∣∣) ≤ P–1(|t – ζ |), t ∈ [cj, dj].

Hence, 0 ≤ –u′(t) ≤ φ–1(P–1(dj – cj)) for t ∈ [cj, dj], j ∈ I–. So

–
∫ dj

cj

u′(t) dt ≤ (dj – cj)φ–1(P–1(dj – cj)
)
. (2.11)

Furthermore,

ψ
(
–u′) ≤ –

∫

C–

u′(t) dt = –
∑

j∈I–

∫ dj

cj

u′(t) dt

≤ sup
{
φ–1(P–1(dj – cj)

) | j ∈ I–
}∑

j∈I+

(dj – cj)

≤ μ(C–) sup
{
φ–1(P–1(dj – cj)

) | j ∈ I–
}

.

Therefore, (2.8) is satisfied.
The result follows now from (2.4), (2.5) and (2.8). �

Let us consider the homotopy problem

(
φ
(
u′(t)

))′ = λ(Fu)(t), λ ∈ [0, 1], (2.12)

depending on the parameter λ.
The next lemma gives prior bounds for solutions of (2.12) and (1.2).

Lemma 2.8 Suppose that u is a solution of (2.12) for any λ ∈ [0, 1] and satisfies the bound-
ary condition (1.2) with A = 0. Then the following conclusions are fulfilled:

‖u‖∞ ≤ B, (2.13)

‖u‖C1 ≤ B + a. (2.14)

Proof From ω(u) = A = 0 and Lemma 2.3, there exists a δ ∈ [0, T] such that u(δ) = 0. Thus

max
{

u(t) | t ∈ [0, T]
} ≥ 0,

this together with (2.1) shows that we obtain (2.13).
Taking into account φ : (–a, a) and (2.13), we deduce that

‖u‖C1 = ‖u‖∞ +
∥∥u′∥∥∞ < B + a. �
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We now state the following important lemma.

Lemma 2.9 Let B be a positive constant, ω ∈A and ψ be defined in (2.2). Set

Ω =
{

(u,α,β) | (u,α,β) ∈ Y ×R
2,‖u‖C1 < ρ,

∥∥u′∥∥∞ < a, |α| < ρ, |β| < φ(a)
}

,

where ρ = B + a and ρ < aT .
Define Φi : Ω → Y ×R

2 (i = 1, 2),

Φ1(u,α,β) =
(
α + φ–1(β)t,α + ω(u),β + ψ

(
u′) – B

)
, (2.15)

Φ2(u,α,β) =
(
α + φ–1(β)t,α + ω(u),β + ψ

(
–u′) – B

)
. (2.16)

Then

D(I – Φi,Ω , 0) �= 0, i = 1, 2, (2.17)

where D, I denote the Leray–Schauer degree and the identity operator on Y × R
2, respec-

tively.

Proof Obviously, Ω is a bounded open subset of the Banach space Y × R
2 with usual

norm, and it is symmetric with respect to θ ∈ Ω .
Define Gi : [0, 1] × Ω → Y ×R

2 (i = 1, 2),

G1(λ, u,α,β) =
(
α +

(
φ–1(β) – (1 – λ)φ–1(–β)

)
t,α + ω(u) – (1 – λ)ω(–u),

β + ψ
(
u′) – ψ

(
(λ – 1)u′) – λB

)
,

G2(λ, u,α,β) =
(
α +

(
φ–1(β) – (1 – λ)φ–1(–β)

)
t,α + ω(u) – (1 – λ)ω(–u),

β + ψ
(
–u′) – ψ

(
(1 – λ)u′) – λB

)
.

For all (u,α,β) ∈ Ω , it is clear that Gi(1, u,α,β) = Φi(u,α,β) (i = 1, 2). Hence to prove
D(I – Φi,Ω , 0) �= 0, we only need to prove the following hypotheses holding by the Bor-
suk theorem [13, Theorem 8.3].

(1) Gi(0, ·, ·, ·) is an odd operator on Ω , that is,

Gi(0, –u, –α, –β) = –Gi(0, u,α,β) (i = 1, 2), (u,α,β) ∈ Ω ; (2.18)

(2) Gi is a completely continuous operator;
(3) Gi(λ, u,α,β) �= (u,α,β) for (λ, u,α,β) ∈ [0, 1] × ∂Ω .
In fact, we take (u,α,β) ∈ Ω , for i = 1,

G1(0, –u, –α, –β) =
(
–α +

(
φ–1(–β) – φ–1(β)

)
t, –α + ω(–u) – ω(u),

–β + ψ
(
–u′) – ψ

(
u′))

= –G1(0, u,α,β).

Analogously G2(0, –u, –α, –β) = –G2(0, u,α,β). So (1) is asserted.
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Next we show that (2) holds.
Let {(λn, un,αn,βn)} ⊂ [0, 1] × Ω be a sequence. Then, for each n ∈ Z

+ and by the fact
that t ∈ [0, T], 0 ≤ λn ≤ 1, ‖un‖C1 < ρ , |αn| ≤ ρ , |βn| < φ(a); meanwhile, {ω(un)}, {ω(–un)},
{ψ(un)} and {ψ(–un)} are bounded. By the Arzelà–Ascoli theorem, it is not difficult to
verify they are relatively compact. Then Gi(λ, u,α,β) is convergent in Y × R

2. It follows
from the continuity of φ–1, ω and ψ that Gi (i = 1, 2) is continuous. So Gi (i = 1, 2) are
completely continuous.

Finally, we prove that (3) is valid. Assume on the contrary that

Gi(λ0, u0,α0,β0) = (u0,α0,β0) (2.19)

for some (λ0, u0,α0,β0) ∈ [0, 1] × ∂Ω . Then

α0 +
(
φ–1(β0) – (1 – λ0)φ–1(–β0)

)
t = u0(t), (2.20)

ω(u0) – (1 – λ0)ω(–u0) = 0, (2.21)

ψ
(
u′

0
)

– ψ
(
(λ0 – 1)u′

0
)

= λ0B. (2.22)

By Lemma 2.3 (take u = u0, k = 1–λ0) and (2.21), there exist γ ∈ [0, T] and, consequently,
u0(γ ) = 0. Together with (2.20) this shows that we obtain

α0 = –
(
φ–1(β0) – (1 – λ0)φ–1(–β0)

)
γ (2.23)

and

u0(t) =
(
φ–1(β0) – (1 – λ0)φ–1(–β0)

)
(t – γ ). (2.24)

The rest of the proof is divided into three cases.
Case 1. If β0 = 0, it follows from (2.23), (2.24) that α0 = 0, u0 = 0, then

(0, 0, 0) = (u0,α0,β0) ∈ ∂Ω ,

which is a contradiction.
Case 2. If β0 > 0, one deduces from φ–1(β0) – (1 – λ0)φ–1(–β0) > 0 and the definition of

ψ in (2.2) that

ψ
(
u′

0
)

– ψ
(
(λ0 – 1)u′

0
)

=
(
φ–1(β0) – (1 – λ0)φ–1(–β0)

)
T .

Combining this with (2.22), we have

(
φ–1(β0) – (1 – λ0)φ–1(–β0)

)
T = λ0B (2.25)

and

φ–1(β0) ≤ λ0ρ

T
, if – (1 – λ0)φ–1(–β0) ≥ 0.

Hence, β0 ≤ φ( λ0ρ

T ) < φ(a).
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On the other hand, according to (2.23)–(2.25), for each t ∈ [0, T], we conclude that

∣∣u0(t)
∣∣ ≤ λ0B

T
|t – γ | ≤ B,

∣∣u′
0(t)

∣∣ = φ–1(β0) – (1 – λ0)φ–1(–β0) ≤ λ0B
T

≤ ρ

T
< a,

|α0| =
∣∣u0(0)

∣∣ < ‖u0‖∞ < ρ, ‖u0‖C1 < B + a = ρ.

Thus (u0,α0,β0) /∈ ∂Ω , a contradiction.
Case 3. If β0 < 0, it follows that φ(β ′

0) – φ((λ0 – 1)β ′
0) < 0, and by the definition of ψ in

(2.2), we obtain

ψ
(
u′

0
)

– ψ
(
(λ0 – 1)u′

0
)

= 0 – (λ0 – 1)
(
φ–1(β0) – (1 – λ0)φ–1(–β0)

)
T

= (1 – λ0)
(
φ–1(β0) – (1 – λ0)φ–1(–β0)

)
T .

Combining this with (2.22), we deduce that

(1 – λ0)
(
φ–1(β0) – (1 – λ0)φ–1(–β0)

)
T = λ0B. (2.26)

If λ0 = 0, then (2.26) implies φ–1(β0)–φ–1(–β0) = 0, which contradicts φ(β ′
0)–φ(–β ′

0) < 0.
If λ0 = 1, then λ0B = 0, i.e. B = 0, which is impossible.
If λ0 ∈ (0, 1), then

(1 – λ0)
(
φ–1(β0) – (1 – λ0)φ–1(–β0)

)
T < 0, also λ0B > 0.

This is a contradiction. The proof is completed. �

3 Existence and multiplicity results
Theorem 3.1 Assume that (H1), (H2) hold and P is defined by Lemma 2.5. Let A = 0. Then,
for any B ∈R satisfying

T
2

φ–1
(

P–1
(

T
2

))
< B < a(T – 1), (3.1)

problems (1.1) and (1.2) have at least two different solutions.

Proof Fix B ∈ R and let (3.1) be satisfied. Let A = 0. Let us consider the boundary condi-
tions

ω(u) = 0, ψ
(
u′) = B – A = B, (3.2)

and

ω(u) = 0, ψ
(
–u′) = B – A = B, (3.3)

where ψ : X → R is defined by (2.2).
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Suppose u is a solution of (1.1), then, from Lemma 2.6,

max
{

u(t) | t ∈ [0, T]
}

– min
{

u(t) | t ∈ [0, T]
}

= max
{
ψ

(
u′),ψ

(
–u′)}. (3.4)

Now, if (1.1) and (3.2) has a solution u1, then Lemma 2.7 and (3.2) show that ψ(–u′
1) < B

and

max
{

u1(t) | t ∈ [0, T]
}

– min
{

u1(t) | t ∈ [0, T]
}

= B. (3.5)

As a consequence, u1 is a solution of (1.1) and (3.2), such that u1 is also a solution of (1.1)
and (1.2).

Similarly, if (1.1) and (3.3) have a solution u2, then ψ(u′
2) < B and

max
{

u2(t) | t ∈ [0, T]
}

– min
{

u2(t) | t ∈ [0, T]
}

= B. (3.6)

Therefore, u2 is also a solution of (1.1) and (1.2).
Furthermore, it follows from ψ(u′

1) = B and ψ(u′
2) < B that u1 �= u2. Next, we only need

to prove (1.1) and (3.2), or that (1.1) and (3.2) have solutions, respectively.
Let ρ = B + a. According to (3.1), ρ < aT is satisfied. Set

Ω =
{

(u,α,β) | (u,α,β) ∈ Y ×R
2,‖u‖C1 < ρ,

∥∥u′∥∥∞ < a, |α| < ρ, |β| < φ(a)
}

.

Define Γ1 : [0, 1] × Ω → Y ×R
2,

Γ1(λ, u,α,β) =
(

α +
∫ t

0
φ–1

(
β + λ

∫ s

0
(Fu)(σ ) dσ

)
ds,α + ω(u),β + ψ

(
u′) – B

)
. (3.7)

It is easy to check that

Γ1(0, u,α,β) = Φ1(u,α,β), (u,α,β) ∈ Ω̄ . (3.8)

Let us consider the parameter equation

Γ1(λ, u,α,β) = (u,α,β), λ ∈ [0, 1]. (3.9)

Obviously, when λ = 1, u is a solution of (1.1) and (3.2) if and only if (u(t), u(0),φ(u′(0))) is
a solution of (3.9). By Lemma 2.9, to prove D(I – Φi,Ω , 0) �= 0, we only need to show the
following hypotheses:

(h1) Γ1(λ, u,α,β) is a completely operator;
(h2) Γ1(λ, u,α,β) �= (u,α,β) for any (λ, u,α,β) ∈ [0, 1] × ∂Ω .
According to the continuity of φ–1, F , ω and ψ , it is clear that Γ1(λ, u,α,β) is continuous.

Suppose that {(λn, un,αn,βn)} ⊂ [0, 1] × Ω is a sequence. Set

(vn, τn, ξn) = Γ1(λn, un,αn,βn), for n ∈N.

We have

vn = αn +
∫ t

0
φ–1

(
βn + λn

∫ s

0
(Fun)(σ ) dσ

)
ds, (3.10)
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τn = αn + ω(un), (3.11)

ξn = βn + ψ
(
u′

n
)

– B. (3.12)

It follows from 0 ≤ λn ≤ 1, ‖un‖C1 < ρ , ‖u′
n‖∞ < a, |αn| < ρ and |βn| < φ(a) that

‖vn‖∞ ≤ ρ + Tφ–1(φ(a) + Tf (a)
)
, (3.13)

∥∥v′
n
∥∥∞ ≤ φ–1(φ(a) + Tf (a)

)
, (3.14)

∣∣φ
(
v′

n(t1)
)

– φ
(
v′

n(t2)
)∣∣ = λn

∫ t2

t1

(Fun)(s) ds ≤ f (a)|t2 – t1|, (3.15)

for n ∈N, t1, t2 ∈ [0, T].
Since φ is increasing, combining (3.13), (3.14) and (3.15) with the Arzelà–Ascoli the-

orem, there exists a sequence {ηn} such that {vηn} is convergent in Y . By ω(un) ≤
max{ω(a),ω(–a)}, 0 ≤ ψ(u′

n) ≤ ρ , it follows that {τn} and {ξn} are bounded. Without loss
of generality, we can assume that {τηn} and {ξηn} are convergent. Thus {(un,αn,βn)} is con-
vergent in Y ×R

2, which implies Γ1(λ, u,α,β) is completely continuous.
To prove (h2), we assume on the contrary that

Γ1(λ0, u0,α0,β0) = (u0,α0,β0) (3.16)

for some (λ0, u0,α0,β0) ∈ [0, 1] × ∂Ω . Then

α0 +
∫ t

0
(φ–1

(
β0 + λ0

∫ s

0
φ–1(Fu0)(σ ) dσ

)
ds = u0(t), t ∈ [0, T], (3.17)

and

ω(u0) = 0, ψ
(
u′

0
)

= B. (3.18)

From (3.17), we have

(φ
(
u′

0(t)
)′ = λ(Fu0)(t) for a.e. t ∈ [0, T].

Hence, u0 is a solution of (2.12) and (1.2). By Lemma 2.8,

∥∥u′∥∥∞ < a, ‖u‖∞ ≤ B, ‖u‖C1 < B + a = ρ.

Moreover, α0 = u0(0), φ(u′
0(0)) = β0, so

|α0| < ‖u0‖∞ < ρ, |β0| < φ(a),

which contradicts with (u0,α0,β0) ∈ ∂Ω .
Similarly, consider the operator Γ2 : [0, 1] × Ω → Y ×R

2,

Γ2(λ, u,α,β) =
(

α+
∫ t

0
φ–1

(
β +λ

∫ s

0
(Fu)(σ ) dσ

)
ds,α+ω(u),β +ψ

(
–u′)–B

)
, (3.19)

we can obtain a solution of (1.1) and (3.3). �
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Theorem 3.2 Assume that (H1), (H2) hold and P is defined by Lemma 2.5. Then, for A, B ∈
R satisfying A ∈ Im(ω) and

T
2

φ–1
(

P–1
(

T
2

))
< B – A < a(T – 1), (3.20)

(1.1) and (1.2) have at least two different solutions.

Proof Suppose A ∈ Im(ω). From Lemma 2.4, there exists a unique k ∈ R such that
ω(k) = A.

Define ω̃ : X →R,

ω̃(u) = ω(u + k) – w(k),

then ω̃(u) = 0. Define the continuous operator F̃ : Y → L1[0, T],

(̃Fu)(t) = (Fv)(t), v(t) = u(t) + A. (3.21)

Hence, by (H1),

∣∣(̃Fu)(t)
∣∣ ≤ f

(∣∣(u(t) + A
)′∣∣) = f

(∣∣u′(t)
∣∣), for u ∈ Y . (3.22)

Then it follows from Theorem 3.1 that

(
φ
(
u′(t)

))′ = (̃Fu)(t), t ∈ (0, T), (3.23)

ω̃(u) = 0, max
{

u(t) | t ∈ [0, T]
}

– min
{

u(t) | t ∈ [0, T]
}

= B – A (3.24)

has at least two different solutions ũ1, ũ2. Notice that ũ(t) is a solution of (3.23) and (3.24)
if and only if ũ(t) + A is a solution of (1.1) and (2.1). Then it is not difficult to see that

ui(t) = ũi(t) + A, i = 1, 2 (3.25)

are two different solutions of (1.1) and (2.1), Therefore, ui(t) are two different solutions of
problem (1.1) and (1.2). �

Remark 3.3 Since φ : (–a, a) → R (0 < a < ∞) is an odd increasing homeomorphism,
clearly, ‖u′‖∞ < a and φ–1 is bounded. We do not need the assumption

∫ ∞
0

t
f (t) ds = ∞,

which plays a very important role in [5, 19] and [20] for the classical case φ = I .

Finally, we give an example to illustrate our main result.

Example 3.4 Let Fi : Y → L1[0,π ] (i = 1, 2) be the continuous operators such that
|(Fiu)(t)| ≤ 1 for any u ∈ Y and g ∈ X, |g(r)| ≤ r2 for r ∈R.

Consider the following singular φ-Laplacian:

(
u′

√
1 – u′2

)′
= (F1u)(t) + (F2u)(t)g

(
u′(t)

)
, a.e. t ∈ (0,π ), (3.26)
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submitted to the nonlinear boundary conditions

min
{

u(t) | t ∈ [0,π ]
}

= A, max
{

u(t) | t ∈ [0,π ]
}

= B. (3.27)

Set φ(s) = s√
1–s2 . Then φ : (–1, 1) →R is an increasing homeomorphism, φ(0) = 0, φ–1(s) =

s√
1+s2 and φ–1 : R → (–1, 1). We take f (r) = 1 + r2 for r ∈ [0,∞). It is not difficult to see that

∣∣(F1u)(t) + (F2u)(t)g
(
u′(t)

)∣∣ ≤ f
(∣∣u′(t)

∣∣), u ∈ Y .

Clearly,

∫ ∞

0

ds
f (φ–1(s))

=
∫ ∞

0

1 + s2

1 + 2s2 ds =
1
2

(s + arctan
√

2s)
∣∣s=∞
s=0 = ∞ ≥ π .

As a consequence, (H1) and (H2) are satisfied. In addition,

P(u) =
∫ u

0

ds
f (φ–1(s))

=
∫ u

0

1 + s2

1 + 2s2 ds =
1
2

(u + arctan
√

2u).

Since P′(u) = 1
2 (1+ 1

1+2u ) > 0 for u ∈ [0,∞), and P is strictly monotone increasing, of course,
P–1 exists. By a simple computation, we have

π

2
φ–1

(
P–1

(
π

2

))
<

π

2
< π – 1.

It follows that ν(u) = min{u(t) | t ∈ [0,π ]}, ω(u) = min{u(t) | t ∈ [0,π ]} and ν,ω ∈ A, by
Theorem 3.2, for A, B ∈ R and A, B satisfy

π

2
φ–1

(
P–1

(
π

2

))
<

π

2
≤ B – A ≤ π – 1.

Then the problem (3.26) and (3.27) has at least two different solutions.
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