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Abstract
A discrete monotone iterative method is reported here to solve a space-fractional
nonlinear diffusion–reaction equation. More precisely, we propose a Crank–Nicolson
discretization of a reaction–diffusion system with fractional spatial derivative of the
Riesz type. The finite-difference scheme is based on the use of fractional-order
centered differences, and it is solved using a monotone iterative technique. The
existence and uniqueness of solutions of the numerical model are analyzed using this
approach, along with the technique of upper and lower solutions. This methodology
is employed also to prove the main numerical properties of the technique, namely,
the consistency, stability, and convergence. As an application, the particular case of
the space-fractional Fisher’s equation is theoretically analyzed in full detail. In that
case, the monotone iterative method guarantees the preservation of the positivity
and the boundedness of the numerical approximations. Various numerical examples
are provided to illustrate the validity of the numerical approximations. More precisely,
we provide an extensive series of comparisons against other numerical methods
available in the literature, we show detailed numerical analyses of convergence in
time and in space against fractional and integer-order models, and we provide studies
on the robustness and the numerical performance of the discrete monotone method.
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1 Introduction
Monotone iterative methods have been used in the literature to investigate differential
equations (ordinary or partial) from both the analytical and numerical points of view.
For example, from the analytical side, such iterative techniques have been applied to in-
vestigate the existence and uniqueness of solutions of a wide range of parabolic partial
differential equations [1], as well as other analytical features of the solutions. In par-
ticular, this approach has been used to establish the existence of positive solutions of
quasilinear parabolic systems with Dirichlet boundary conditions [2], to study quasilinear
parabolic and elliptic systems with mixed quasimonotone functions [3], to analyze peri-
odic boundary-value problems for differential equations with delay [4], to solve first-order
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functional-difference equations with nonlinear boundary value conditions [5], to prove the
existence and asymptotic behavior of solutions for quasilinear parabolic systems [6], and,
recently, to establish the existence, uniqueness, and stability of the solutions of a parabolic
model in the formation of porous silicon [7], among other interesting applications.

From the numerical point of view, monotone iterative methods have been also employed
to effectively solve systems consisting of differential equations. As for the continuous case,
the numerical monotone iterative methods require the knowledge of upper and lower so-
lutions in order to generate two monotone sequences that converge to the solution of the
problems under investigation. Numerical techniques of this nature have been employed
to solve the multidimensional semiconductor Poisson equation [8], to simulate quantum-
corrected energy transport models [9], to study numerically the solutions of parabolic
problems with time delays [10], to investigate two-dimensional simulation of submicron
MOSFETs [11], to provide numerical analysis of coupled systems of nonlinear parabolic
equations [12], and to simulate porous silicon morphologies [13]. In various of these re-
ports and many other articles which employ discrete monotone iterative approaches, this
methodology has been used to prove the existence and uniqueness of solutions, as well as
to investigate the numerical efficiency of the computational algorithms.

In summary, the monotone method has been extensively employed in the analysis and
simulation of nonlinear systems of parabolic differential equations. Moreover, this method
has been extended to investigate fractional systems of differential equations. Indeed, in
recent years, fractional calculus has found a wide range of applications to viscoelasticity
[14], the discretization of nonsingular Mittag-Leffler kernels [15], and fractional operators
with exponential kernels and a Lyapunov type inequality [16] among other problems. Fur-
thermore, it has been proved that some families of equations with long-range interactions
lead to models governed by fractional differential equations in the continuous limit [17,
18]. In summary, fractional calculus has experienced fast development in the last years,
and the development of monotone iterative techniques has seen continuous development
within that area of research. However, many interesting problems still remain open to
this day. One of them is the development of discrete monotone iterative methods to solve
space-fractional diffusion–reaction regimes that generalize the well-known Fisher’s equa-
tion [19, 20]. This model is the simplest diffusive model with nonlinear reaction, and its
many generalizations have been a highly transited avenue of research in mathematics and
numerical analysis.

Fractional forms of Fisher’s equation have been investigated numerically in various
works, considering various generalizations and following different approaches [21]. In-
deed, some bounded schemes have been recently proposed to solve multidimensional
problems with anomalous diffusion [22], some dynamically consistent methods have been
designed also to solve advection–reaction systems with fractional diffusion [23]. On the
other hand, there are various extensions of the discrete monotone iterative method to
solve fractional differential equations. For example, there are reports on the monotone
iterative method for ordinary differential equations involving Riemann–Liouville frac-
tional derivatives [24]. Other articles employ this approach to solve nonlinear fractional q-
difference equations with integral boundary conditions [25], others apply it for Riemann–
Liouville fractional integro-differential equations with advanced arguments [26], and
some others use it to solve Riesz space distributed-order advection–dispersion equations
[27]. Various works report on the design of monotone methods to solve fractional dif-
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fusion equations with Caputo fractional derivatives in time [28, 29]. However, the Riesz
space-fractional scenario has been left without study, perhaps in light of the difficulties
arising in such a case.

The novelty of the present work lies in the fact that a monotone iterative method will be
proposed for the first time in the literature to solve parabolic partial differential equations
with Riesz fractional diffusion. We consider in this case a nonlinear reaction term, so that
the mathematical model under investigation is a fractional extension of the well-known
Fisher’s equation from population dynamics. Suitable initial-boundary conditions will be
imposed on a closed and bounded interval of the real numbers. In a first step, we will pro-
pose a Crank–Nicolson discretization of the fractional system, and a monotone iterative
method will be proposed to solve the discretized model. Existence and uniqueness of so-
lutions will hinge on the fact that the discrete model can be rewritten in vector form, and
that the associated coefficient matrix is an M-matrix [30]. Moreover, the consistency, sta-
bility and quadratic convergence of the technique will be mathematically proved using the
monotone iterative approach, by imposing suitable computational requirements. A par-
ticularly meaningful form of the fractional model will be investigated mathematically in
deeper detail, and conditions for the existence, uniqueness, and numerical efficiency of
the discrete solutions will be derived in that particular case.

This manuscript is organized as follows. In Sect. 2, we introduce the fractional diffu-
sive problem on interest and provide a Crank–Nicolson discretization based on the use of
fractional-order centered differences. Here, it is worthwhile to recall that fractional-order
centered differences have been used successfully by some of the authors in the discretiza-
tion of various fractional problems [31–33]. Suitable discrete nomenclature is introduced
to that end, including some helpful properties of the fractional centered differences and a
convenient vector representation of the numerical model. Section 3 is devoted to present
the discrete monotone method for the numerical method of this work. The existence and
uniqueness of solutions of the iterative method are thoroughly proved in that stage. The
most important numerical properties of the methodology are established in Sect. 4, while
Sect. 5 is devoted to theoretically analyze the numerical methodology for the fractional
Fisher’s equation. Also, we provide thorough numerical comparisons of our methodol-
ogy against various other approaches proposed in the literature. In particular, we show
detailed numerical analyses of convergence in time and in space against fractional and
integer-order models, and we provide studies on the robustness and numerical perfor-
mance of the discrete monotone method. Section 6 is devoted to discuss the findings of
this work. Finally, we close this manuscript with a section of concluding remarks.

2 Preliminaries
Throughout this work, we let L, T ∈ R

+ and α ∈ (0, 1) ∪ (1, 2]. Consider an open spatial
domain Ω = (0, L) ⊆ R, and define the set ΩT = Ω × (0, T). In this manuscript, we let
v : ΩT → R be a sufficiently differentiable function. Define v as zero outside of ΩT , and
we suppose that it satisfies the initial-boundary-value problem

∂v(x, t)
∂t

– K
∂αv(x, t)
∂|x|α = f

(
x, t, v(x, t)

)
, ∀(x, t) ∈ ΩT ,

such that

⎧
⎨

⎩
v(x, 0) = v0(x), ∀x ∈ Ω ,

v(x, t) = 0, ∀(x, t) ∈ ∂Ω × [0, T].
(1)
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The fractional derivative in (1) is understood here in the Riesz sense, that is, we let

∂αv(x, t)
∂|x|α = –

1
2 cos( απ

2 )Γ (2 – α)
∂2

∂x2

∫ ∞

–∞
v(t, ξ ) dξ

|x – ξ |α–1 , ∀(x, t) ∈ ΩT . (2)

Here, Γ is the usual Gamma function and v0 : Ω →R is sufficiently smooth.

Definition 1 A function ṽ ∈ C2,1(ΩT )∩C(ΩT ) is called an upper solution of (1) if it solves
the problem

∂ ṽ(x, t)
∂t

– K
∂α ṽ(x, t)
∂|x|α ≥ f

(
x, t, ṽ(x, t)

)
, ∀(x, t) ∈ ΩT ,

such that

⎧
⎨

⎩
ṽ(x, 0) ≥ v0(x), ∀x ∈ Ω ,

ṽ(x, t) ≥ 0, ∀(x, t) ∈ ∂Ω × [0, T].
(3)

Similarly, we say that a function v̂ ∈ C2,1(ΩT ) ∩ C(ΩT ) is a lower solution of (1) if it sat-
isfies (3) with all the inequalities reversed. If ṽ and v̂ are, respectively, upper and lower
solutions of (1) then we will assume that they are ordered, that is, they satisfy v̂ ≤ ṽ. With
this nomenclature, we will suppose that f : R3 →R is continuously differentiable, and that
there are suitable bounded functions c ≡ c(x, t) and c ≡ c(x, t) such that

–c(x, t)(v1 – v2) ≤ f (x, t, v1) – f (x, t, v2) ≤ c(x, t)(v1 – v2), (4)

for all v̂ ≤ v2 ≤ v1 ≤ ṽ and (x, t) ∈ ΩT .

For convenience, we let IP = {1, . . . , P} and IP = IP ∪{0}, for each P ∈N. Let M, N ∈ Z, and
consider a grid of ΩT using uniform spatial and temporal nodes of the forms xi = ih and
tk = kτ , respectively, for each i ∈ IM and k ∈ IN . The spatial and temporal partition norms
are h = L/M and τ = T/N , respectively, and we use the symbols vk

i and V k
i , respectively,

to represent the exact and numerical solutions of (1) at (xi, tk). In this work, the temporal
partial derivative of (1) will be calculated through the forward-difference scheme

∂v(xi, tk)
∂t

=
vk+1

i – vk
i

τ
+ O(τ ), ∀(i, k) ∈ IM–1 × IN–1. (5)

Definition 2 (Ortigueira [34]) For any function ϕ : R→R, h > 0 and α > –1 we define the
fractional centered difference of order α of ϕ at the point x as


α
hϕ(x) =

∞∑

m=–∞
gα

mϕ(x – mh), ∀x ∈R, (6)

whenever the right-hand side of this expression converges. The coefficients (gα
k )∞k=–∞ are

defined by

gα
m =

(–1)mΓ (α + 1)
Γ ( α

2 – m + 1)Γ ( α
2 + m + 1)

, ∀m ∈N∪ {0}. (7)
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Lemma 3 (Wang et al. [27]) If α ∈ (0, 1)∪ (1, 2] then the coefficients (7) satisfy the following
properties:

(i) gα
0 > 0.

(ii) gα
m = gα

–m < 0 for each m ∈N.
(iii)

∑∞
m=–∞ gα

m = 0. As a consequence, gα
0 = –

∑∞
m=–∞,m�=0 gα

m.

As a consequence of this lemma, the series in the right-hand side of (6) converges ab-
solutely for any bounded function ϕ ∈ L1(R). With this notation, it is easy to see that any
ϕ ∈ C5(R), for which all of its derivatives up to order five belong to L1(R), has the property

–
1

hα

α

hϕ(x) =
∂αϕ(x)
∂|x|α + O

(
h2), ∀x ∈R, (8)

whenever α ∈ (0, 1) ∪ (1, 2] (see [27]). Under these circumstances, if 1 ≤ j ≤ M – 1 and
1 ≤ n ≤ N – 1 then

∂αu
∂|x|α (xj, tn) = –

1
hα

(xj–a)/h∑

k=–(b–xj)/h

g(α)
k u(xj – kh, tn) + O

(
h2) = δ(α)

x un
j + O

(
h2), (9)

where

δ(α)
x un

j = –
1

hα

M∑

k=0

g(α)
j–kun

k . (10)

In this work, we use formulas (5) and (9) in order to propose the following scheme to
solve (1):

V k+1
i +

τK
2

δ(α)
x V k+1

i = V k
i –

τK
2

δ(α)
x V k

i +
τ

2
[
f
(
xi, tk+1, V k+1

i
)

+ f
(
xi, tk , V k

i
)]

. (11)

It is obvious that this numerical model is a Crank–Nicolson-type of scheme. For the sake
of convenience, we let r = 1

2τh–α , and define the (M + 1)-dimensional real vectors

Vk =
(
V k

0 , V k
1 , . . . , V k

M
)
, ∀k ∈ IN , (12)

F(Vk) =
(
f
(
x0, tk , V k

0
)
, f
(
x1, tk , V k

1
)
, . . . , f

(
xM, tk , V k

M
))

, ∀k ∈ IN . (13)

Using this nomenclature, system (11) can be readily rewritten in vector form as

(I + rKA)Vk+1 = (I – rKA)Vk + rhα
[
F(Vk+1) + F(Vk)

]
, (14)

where I is the identity matrix of size (M + 1) × (M + 1), and A is the matrix of the same
size of I given by

A =

⎡

⎢⎢⎢
⎢⎢
⎢⎢
⎣

gα
0 gα

–1 gα
–2 . . . gα

–M

gα
1 gα

0 gα
–1 . . . gα

1–M

gα
2 gα

1 gα
0 . . . gα

2–M
...

...
...

. . .
...

gα
M gα

M–1 gα
M–2 . . . gα

0

⎤

⎥⎥⎥
⎥⎥
⎥⎥
⎦

. (15)
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3 Discrete monotone method
The purpose of the present section is to introduce a discrete monotone method, and use
it to establish the existence and uniqueness of the solutions of the discrete system (14). In
the following, given any real vectors V and W of the same dimensions, we will employ the
notation V ≤W (alternatively, W ≥ V) meaning that each component of V is less than or
equal to the corresponding component of W .

Let c(x, t) and c(x, t) be bounded functions satisfying the requirements in Definition 1.
Introduce now the real diagonal matrices of sizes (M + 1) × (M + 1)

C =

⎡

⎢⎢
⎢⎢
⎣

ck
0 0 . . . 0

0 ck
1 . . . 0

...
...

. . .
...

0 0 . . . ck
M

⎤

⎥⎥
⎥⎥
⎦

, C =

⎡

⎢⎢
⎢⎢
⎣

ck
0 0 . . . 0

0 ck
1 . . . 0

...
...

. . .
...

0 0 . . . ck
M

⎤

⎥⎥
⎥⎥
⎦

, (16)

satisfying B = I + r(KA + hαC), D = I – r(KA + hαC) and F (Vk) = CVk + F(Vk). Here, we
have omitted the dependence of C and C on k for the sake of convenience. Note that (4)
implies that F (Vk) is nondecreasing. Using Picard iterations, we reach the iterative system

⎧
⎪⎪⎨

⎪⎪⎩

BV (p)
k+1 = DV (p)

k + rhα[F (V (p–1)
k+1 ) + F (V (p–1)

k )], ∀k ∈ IN–1,

BV (p)
k+1 = DV (p)

k + rhα[F (V (p–1)
k+1 ) + F (V (p–1)

k )], ∀k ∈ IN–1,

V (p)
0 = V0 = V (p)

0 .

(17)

The initial iteration is given by (V (0)
k ,V (0)

k ) = (Ṽk , V̂k), where Ṽk and V̂k are, respectively,
ordered upper and lower solutions of (14), in the sense of Definition 4 below. In the sequel,
system (17) will be referred to simply as the discrete monotone (DM) method.

Definition 4 The (M + 1)-dimensional real vector Ṽk is an upper solution of (14) if it
satisfies the inequalities

(I + rKA)Ṽk+1 ≥ (I – rKA)Ṽk + rhα
[
F(Ṽk+1) + F(Ṽk)

]
, ∀k ∈ IN–1,

Ṽ0 ≥ V0.
(18)

Similarly, the real vector V̂k is a lower solution of (14) if it satisfies all the reversed inequal-
ities in (18). If {Ṽk}N

k=0 and {V̂k}N
k=0 are respectively sets of upper and lower solutions of

(14), we will assume tacitly that they are ordered, that is, Ṽk ≥ V̂k for all k ∈ IN–1.

Definition 5 A square real matrix A is an M-matrix if there exist a nonnegative matrix B
and a number μ ≥ ρ(B) such that A can be expressed in the form A = μI – B. Here, ρ(B)
represents the spectral radius of B.

It is important to recall that M-matrices are nonsingular, and their inverses are nonneg-
ative matrices.

Theorem 6 (Plemmons [35]) A square real matrix A is an M-matrix if and only if
(i) all its diagonal entries are positive,
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(ii) all its off-diagonal components are nonpositive, and
(iii) there exists a diagonal matrix D with positive diagonal entries such that AD is

strictly diagonally dominant.

Lemma 7 The matrix Ξ = KA + hαC is an M-matrix if

hα max
0≤s≤M

∣∣ck
s
∣∣ < K

M∑

k=0

gα
k . (19)

Proof The diagonal components of the matrix Ξ are given by ξs,s = Kgα
0 + hαck

s , for s ∈ IM .
The hypothesis (19) and Lemma 3 guarantee then that (i) of Theorem 6 is satisfied. On the
other hand, note that the off-diagonal elements ξr,s of Ξ are the constants gα

k , for suitable
indexes k ∈ Z \ {0}, whence condition (ii) of Theorem 6 holds. Finally, (19) assures that Ξ

is already diagonally dominant in view of

M∑

s=0

ξr,s = K
M∑

s=0

gr–s + hαck
s , ∀r ∈ IM. (20)

The conclusion of the theorem readily follows now from Theorem 6. �

Theorem 8 (Existence and uniqueness) Let Ṽk and V̂k be respectively upper and lower
solutions of (14) at time tk , for each k ∈ IN . Define the constant

c = max
1≤k≤N

{(
max

0≤s≤M

∣
∣ck

s
∣
∣
)

∨
(

max
0≤s≤M

∣
∣ck

s
∣
∣
)}

, (21)

and, for each k ∈ IN , let {V (p)
k }∞p=0 and {V (p)

k }∞p=0 be the sequences generated by the DM

method (17), with initial iterations V (0)
k = Ṽk and V (0)

k = V̂k . If the condition

0 < r

(

K
M∑

k=0

gα
k – hαc

)

< 1 (22)

is satisfied then these sequences have the property that

V̂k = V (0)
k ≤ V (1)

k ≤ · · · ≤ V (p)
k ≤ V (p)

k ≤ · · · ≤ V (1)
k ≤ V (0)

k = Ṽk , ∀p ∈N∪ {0}. (23)

Moreover, the sequences converge to the unique solution of (14) between its upper and lower
solutions.

Proof We will prove the theorem in three steps. Firstly, we will show inductively that (23)
is satisfied, for each k ∈ IN and p ∈ N ∪ {0}. Secondly, we will prove that the sequences
converge to the solution of (14) and, finally, we will establish the existence and uniqueness
of solutions as a direct consequence of the first and second steps.

1. Note that W (1)
k = V (1)

k – V (0)
k = V (1)

k – V̂k . Using inequality (18), and adding and
subtracting the terms rhαCV̂k+1 and rhαCV̂k , respectively, it follows that

BV̂k+1 ≤ DV̂k + rhα[CV̂k+1 + CV̂k] + rhα
[
F(V̂k+1) + F(V̂k)

]
. (24)
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We subtract then inequality (24) from the following equation that results from (17):

BV (1)
k+1 = DV (1)

k + rhα
[
F
(
V (0)

k+1
)

+ F
(
V (0)

k
)]

. (25)

As a consequence, we obtain BW (1)
k+1 = BV (1)

k+1 – BV̂k ≥ DW (1)
k . But B–1 exists and is

nonnegative, which implies that W (1)
k+1 ≥ B–1DW (1)

k . On the other hand, system (17)
implies that W (1)

1 ≥ B–1DW (1)
0 = 0. Inductively, if W (1)

k ≥ 0 for k ∈ IN–1, then
W (1)

k+1 ≥ B–1DW (1)
k ≥ 0 and V (1)

k ≥ V (0)
k are also satisfied. In summary, we have

established so far that W (1)
k ≥ 0, for each k ∈ IN .

Let p ∈N, assume that V (p)
k ≥ V (p–1)

k and let W (p+1)
k = V (p+1)

k – V (p)
k . From system

(17) we obtain

BW (p+1)
k = DW (p+1)

k + rhα
[
F
(
V (p)

k+1
)

– F
(
V (p–1)

k+1
)

+ F
(
V (p)

k
)

– F
(
V (p–1)

k
)]

. (26)

As a consequence of F being monotone nondecreasing, BW (p+1)
k+1 ≥ DW (p+1)

k and
W (p+1)

k+1 ≥ B–1DW (p+1)
k . An inductive argument over k and reuse of the arguments

employed above leads to W (p+1)
k+1 ≥ 0 and V (p+1)

k ≥ V (p)
k . The proofs that V (p)

k ≥ V (p+1)
k

and V (p)
k ≥ V (p)

k are obtained in a similar fashion, letting W (p+1)
k = V (p)

k – V (p+1)
k and

W (p)
k = V (p)

k – V (p)
k . We have established thus the validity of the chain of inequalities

(23).
2. Expression (23) implies that {V (p)

k }∞p=0 is nonincreasing and bounded from below,
while {V (p)

k }∞p=0 is nondecreasing and bounded from above. This implies that the
following limits exist for each k ∈ IN :

lim
p→∞ V (p)

k = Vk , lim
p→∞ V (p)

k = Vk . (27)

Obviously, Vk and Vk are solutions of the difference system (14). Now, let V∗
k be

another solution of (14), and define Wk = Vk – V∗
k . Using (14), then

BWk+1 = DWk + rhα
[
F(Vk+1) – F

(
V∗

k+1
)

+ F(Vk) – F
(
V∗

k
)]

. (28)

Note that V∗
k is also a lower solution of (14), so Wk ≥ 0. As consequences of

inequalities (23), it follows that F(Vk) – F(V∗
k ) ≤ C(Vk – V∗

k )) and

(I + rKA)Wk+1 ≤ (I – rKA)Wk + rhα[CWk+1 + CWk], (29)

which implies that

[
I + r

(
KA – hαC

)]
Wk+1 ≤ [

I – r
(
KA – hαC

)]
Wk . (30)

On the other hand, hypothesis (22) implies that Q = KA – hαC is an M-matrix, and
we know that the matrix I – rQ is positive. Therefore, we reach
Wk+1 ≤ (I + rQ)–1(I – rQ)Wk in light that each solution of (14) satisfies the initial
condition, that is, V0 = V∗

0 . It follows that W1 ≤ 0 and, using induction over k, we
obtain that Wk ≤ 0 and Vk = V∗

k . The proof that V∗
k = Vk is analogous, letting

Zk = V∗ – Vk .
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3. Finally, the construction of the sequence {Vk} can be readily established using
induction over k. The approximation V0 is defined through the initial condition.
Supposing that Vk has been already obtained, Vk+1 is reached using the iterative
technique and the approximation Vk . �

4 Numerical efficiency
In this stage, we establish the main numerical properties of the DM method, namely, the
consistency, stability and convergence. In our proofs, we will require that the conditions of
Theorem 8 are satisfied in order to guarantee the existence and uniqueness of the solutions
of the DM method.

Definition 9 Let {Yk} and {Y k} be sequences of approximations to the solution of the
problem Ay = 0, obtained by using the scheme Ayk = 0 with the initial conditions Y0 and
Y 0, respectively. The difference scheme is stable if given ε > 0 there exists δ > 0 such that
‖Yk – Y k‖ < ε for all k ∈ IN , whenever ‖Y0 – Y 0‖ ≤ δ.

We will need the following result to prove the stability of method (14).

Lemma 10 (Flores and Jerez [13]) Let {Y (r)
k+1} be a sequence of vectors with ‖Y (r)

0 ‖,‖Y (0)
k ‖ ≤

δ, such that

∥∥Y (r)
k+1
∥∥≤ a1

∥∥Y (r)
k
∥∥ + a2

∥∥Y (r–1)
k+1

∥∥ + a3
∥∥Y (r–1)

k
∥∥, (31)

where a1, a2 and a3 are positive constants with a1 < 1. Then, for all k ∈ IR,

∥
∥Y (r)

k+1
∥
∥≤ [

ϑ r + (1 + a3)
(
ϑ r + ϑ r–1 + · · · + ϑ + 1

)]
δ, (32)

where ϑ = a2+a3
1–a1

.

Theorem 11 The DM method is unconditionally stable if (22) is satisfied.

Proof Suppose that δ > 0, and let Z (p)
k be a perturbation of V (p)

k or V (p)
k , with the property

that ‖Z (p)
0 – V (p)

0 ‖ < δ and ‖Z (0)
k – V (0)

k ‖ < δ. Suppose that Z (p)
k satisfies

BZ (p)
k+1 = DZ (p)

k + rhα
[
F
(
Z (p–1)

k+1
)

+ F
(
Z (p–1)

k
)]

. (33)

DefineY (p)
k = Z (p)

k –V (p)
k , so ‖Y (p)

0 ‖ < δ and ‖Y (0)
k ‖ < δ. Subtracting (17) from (33), we obtain

BY (p)
k+1 = DY (p)

k + rhα
[
F
(
Z (p–1)

k+1
)

– F
(
V (p–1)

k+1
)]

+ rhα
[
F
(
Z (p–1)

k
)

– F
(
V (p–1)

k
)]

(34)

and

∥
∥Y (p)

k+1
∥
∥≤ a1

∥
∥Y (p)

k
∥
∥ + a2

∥
∥Y (p–1)

k+1
∥
∥ + a3

∥
∥Y (p–1)

k
∥
∥, (35)

where a1 = ‖B–1D‖, a2 = rhα‖B–1C‖, and a3 = rhα‖B–1C‖. Notice that

a1 =
∥∥[I + r

(
kA + hαC

)]–1[I – r
(
kA + hαC

)]∥∥ < 1. (36)
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Finally, inequality (32) follows by Lemma 10. We conclude that method (17) is uncondi-
tionally stable. �

In the previous section, we showed the DM method (17) converges to a unique solution
of the discrete system (14). We will prove now that the DM method (17) converges also
the solution of the continuous problem (1).

Theorem 12 (Consistency) If v(x, t) ∈ C5,2(ΩT ) and f is continuously differentiable then
the discrete scheme (14) is consistent with equation (1).

Proof Let φ and ψ be the exact and approximation operators, respectively, corresponding
to equation (1). Obviously, these operators satisfy

φk
i =

∂vk
i

∂t
– K

∂αvk
i

∂|x|α – f
(
xi, tk , vk

i
)
, (37)

ψk
i =

V k+1
i – V k

i
τ

+
K
2

δ(α)
x
(
V k+1

m + V k
m
)

–
1
2
[
f
(
xi, tk+1, V k+1

i
)

+ f
(
xi, tk , V k

i
)]

, (38)

for each (i, k) ∈ IM–1 × IN–1. Using the smoothness of the functions v and f , along with the
consistency properties of the individual discrete operators and Taylor’s theorem, there
exist positive constants C1, C2, and C3 such that

∥∥
∥∥
∂vk

i
∂t

–
V k+1

i – V k
i

τ

∥∥
∥∥≤ C1τ , (39)

∥∥
∥∥

∂αvk
i

∂|x|α –
[

–
1
2
δ(α)

x
(
V k+1

m + V k
m
)]
∥∥
∥∥≤ C2

(
τ + h2), (40)

∥∥
∥∥f
(
xi, tk , vk

i
)

–
1
2
[
f
(
xi, tk+1, V k+1

i
)

+ f
(
xi, tk , V k

i
)]
∥∥
∥∥≤ C3τ , (41)

for each (i, k) ∈ IM–1 × IN–1. If C = max{C1, C2, C3} then ‖φk
i –ψk

i ‖ ≤ C(τ + h2), whence the
consistency of (14) readily follows. �

Finally, we prove the convergence of the discrete method.

Theorem 13 (Convergence) Let v(x, t) ∈ C5,2(ΩT ), and let f be continuously differentiable.
If f satisfies (4) and the hypotheses of Theorem (8) hold then the DM method (17) converges
to the unique solution of equation (1).

Proof Let V (p)
k be a term of any of the sequences {V (p)

k } or {V (p)
k } in (17), and let Vk and Wk

be the exact solutions of (14) and (1), respectively. We will show firstly that ‖V (p)
k – Wk‖ →

0 when p → ∞ and τ , h → 0+. Adding and subtracting the term Vk and using the triangle
inequality, it follows that ‖V (p)

k – Wk‖ ≤ ‖V (p)
k – Vk‖ + ‖Vk – Wk‖. Theorem 8 yields now

that

lim
p→∞

∥∥V (p)
k – Vk

∥∥ = 0, ∀k ∈ IN .



Flores et al. Advances in Difference Equations        (2019) 2019:317 Page 11 of 23

It only remains to show that the solutions of the discrete system (14) converge to those of
the continuous, that is,

lim
τ ,h→0+

‖Vk – Wk‖ = 0, ∀k ∈ IN . (42)

To that end, let Vk = (vk
0, vk

1, . . . , vk
M) and Wk = (wk

0, wk
1, . . . , wk

M). Using Lemma 12, the dis-
crete system (14), hypotheses of this theorem, and matrix C, we obtain that

(I + rKA)(Vk+1 – Wk+1) + O
(
τ + h2)

= (I – rKA)(Vk – Wk) + rhα
[
F(Vk+1) – F(Wk+1) + F(Vk) – F(Wk)

]

≤ (I – rKA)(Vk – Wk) + rhαC[Vk+1 – Wk+1] + rhαC[Vk – Wk], (43)

for each k ∈ IN–1. Then [I + rQ](Vk+1 – Wk+1) ≤ [I – rQ](Vk – Wk) + O(τ + h2), where
Q = KA – hαC. Now, inequality (22) guarantees that the I + rQ is positive. This implies
that

‖Vk+1 – Wk+1‖ ≤ ‖Λ‖‖Vk – Wk‖ + ‖Θ‖O(τ + h2), ∀k ∈ IN–1, (44)

where Λ = [I + rQ]–1[I – rQ] and Θ = [I + rQ]–1. Using induction, we obtain

‖Vk – Wk‖ ≤ ‖Λ‖k‖V0 – W0‖ + ‖Θ‖‖Λ‖k–1O
(
τ + h2), ∀k ∈ IN–1. (45)

The limit (42) is readily established now from the facts that ‖Λ‖ < 1 and ‖Θ‖ < 1. This
completes the proof. �

5 Numerical examples
In this section, we describe the computational implementation of the DM method to solve
Fisher’s equation with fractional diffusion. More concretely, we will consider the problem

∂v(x, t)
∂t

– K
∂αv(x, t)
∂|x|α = v(x, t)

[
1 – v(x, t)

]
, ∀(x, t) ∈ ΩT ,

such that

⎧
⎨

⎩
v(x, 0) = v0(x), ∀x ∈ Ω ,

v(x, t) = 0, ∀(x, t) ∈ ∂Ω × [0, T].
(46)

To that end, note that condition (4) requires for the functions c(x, t) and c(x, t) to be cal-
culated as

c(x, t) = sup

{
–

∂f (v)
∂v

: v̂ ≤ v ≤ ṽ
}

, (47)

c(x, t) = sup

{
∂f (v)
∂v

: v̂ ≤ v ≤ ṽ
}

. (48)

From equation (46), it follows that c(x, t) = c(x, t) = η = max{2γ – 1, 1}, where γ =
max{1, maxΩ v0(x)}. Using the uniform grid introduced in Sect. 2 along with the matrix
system (17), it follows that

BV (p)
k+1 = DV (p)

k + rhα
[
F
(
V (p–1)

k+1
)

+ F
(
V (p–1)

k
)]

, (49)
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with

B =

⎡

⎢⎢
⎢⎢⎢
⎢⎢
⎣

1 + r(Kgα
0 + hαη) gα

–1 . . . gα
–M

gα
1 1 + r(Kgα

0 + hαη) . . . gα
1–M

gα
2 gα

1 . . . gα
2–M

...
...

. . .
...

gα
M gα

M–1 . . . 1 + r(Kgα
0 + hαη)

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎦

, (50)

D =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢
⎣

1 – r(Kgα
0 + hαη) gα

–1 . . . gα
–M

gα
1 1 – r(Kgα

0 + hαη) . . . gα
1–M

gα
2 gα

1 . . . gα
2–M

...
...

. . .
...

gα
M gα

M–1 . . . 1 – r(Kgα
0 + hαη)

⎤

⎥⎥
⎥⎥
⎥⎥
⎥
⎦

. (51)

On the other hand, the vectors Vk and F (Vk) are given by

Vk =
(
V k

0 , V k
1 , . . . , V k

M
)�, (52)

F (Vk) =
(
ηV k

0 + V k
0
(
1 – V k

0
)
,ηV k

1 + V k
1
(
1 – V k

1
)
, . . . ,ηV k

M + V k
0
(
1 – V k

M
))�. (53)

Lemma 14 Let γ = max{1, maxΩ v0(x)}. Then the vectors Ṽ = γ (1, . . . , 1)� and V̂ =
(0, . . . , 0)� of RM+1 are respectively upper and lower solutions of the discretization of (46).

Proof From Lemma 3, it follows that
∑M

m=0 gα
i–m > 0, for each i ∈ IM . Using system (14), it

is clear that the Ṽ satisfies the inequality

1 + γ rK1

M∑

m=0

gα
i–m > 1 – γ rK1

M∑

m=0

gα
i–m. (54)

On the other hand, for V̂ the equality is satisfied since F(V̂) = (0, . . . , 0)�. �

Using the upper and lower solutions provided in Lemma 14, our implementation of the
DM method will make use of the iterative system

⎧
⎪⎪⎨

⎪⎪⎩

BV (p)
k+1 = DV (p)

k + rhα[F (V (p–1)
k+1 ) + F (V (p–1)

k )],

BV (p)
k+1 = DV (p)

k + rhα[F (V (p–1)
k+1 ) + F (V (p–1)

k )],

V (p)
0 = (V 0

0 , V 0
1 , . . . , V 0

M) = V (p)
0 ,

(55)

where (V (0)
k ,V (0)

k ) = (Ṽk , V̂k). Moreover, the next lemma establishes a condition to ensure
the converge.

Lemma 15 Suppose that the following condition is satisfied:

rK
M∑

k=0

gα
k – 1 <

η

2
τ < rK

M∑

k=0

gα
k . (56)
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Then the sequences {V (p)
k } and {V (p)

k } obtained by (55) converge to the unique solution of
(46) between V̂k and Ṽk .

Proof The proof follows from Theorem 8. �

The following is a trivial consequence of the previous lemma.

Theorem 16 (Positivity and boundedness) Suppose that condition (56) is satisfied. Then
the discrete model (46) is capable of preserving the positivity and the boundedness from
above by 1 of the numerical approximations.

Next, we provide some computational simulations to confirm the validity of the approx-
imations obtained through the DM method. In view of the lack of known exact solutions
for the fully fractional model considered in this work, we compare our results with those of
other techniques available in the literature. Beforehand, we must mention that our compu-
tational implementation of the DM monotone method will hinge on the use of lower and
upper solutions for the problem under investigation. They will be used as starting approx-
imations at each iteration in order to generate the sequences (23). As stopping criterion,
we will set a maximum difference in the infinity norm equal to 1 × 10–10 or a maximum
number of iterations equal to 20. It is important to point out that this maximum number of
iterations was never reached in our simulations. In fact, the maximum error was obtained
usually in 8 iterations of the DM method.

Example 17 Let Ω = (0,π ) and T = 1, and we will consider the problem

∂v(x, t)
∂t

– K
∂αv(x, t)
∂|x|α = sin

(
v(x, t)

)
, ∀(x, t) ∈ ΩT ,

such that

⎧
⎨

⎩
v(x, 0) = sin x, ∀x ∈ Ω ,

v(x, t) = 0, ∀(x, t) ∈ ∂Ω × [0, 1].
(57)

For convenience, we let K = 0.1. Computationally, we fix the parameters h = π/200 and
τ = 0.016. Figure 1 shows the approximate solution of problem (57) at the times t = 0.3
(solid), 0.5 (dashed), 1 (dashed–dotted) and 5 (dotted), using α = 1.2, 1.4, 1.6, and 1.8. The
behavior of the solutions is in qualitative agreement with those results obtained in [36].
Moreover, our simulations show that the solutions tend to a stationary solution as t in-
creases, and that this solution is approximately reached at time t = 5. In order to validate
the code of our DM method, we will set various combinations of the values of the param-
eters h and τ , and let α = 1.8. For comparisons, we will use the explicit finite-difference
approximation (EFDA), the implicit finite-difference approximation (IFDA) method and
the fractional method of lines (FMoL) reported in [36], as well as the DM method of this
work. The results are provided in Tables 1–3, for the times T = 0.3, 1, and 3, respectively.
The results indicate that the DM methods yields approximations which are in qualitative
agreement with those obtained through the EFDA, IFDA, and FMoL. It is worth men-
tioning that we have conducted more experiments considering different nodes of Ω and
different approximation times. The results obtained using the EFDA, IFDA, FMoL, and
DM method (not shown here in order to avoid redundancy) are in qualitative agreement.
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Figure 1 Approximate solution of the problem (57) using the DMmethod, at the times t = 0.3 (solid), 0.5
(dashed), 1 (dashed–dotted) and 5 (dotted). Various values of α were used, namely, (a) α = 1.2, (b) α = 1.4, (c)
α = 1.6, and (d) α = 1.8. The solutions were calculated over Ω = (0,π ), and using K = 0.1. Computationally, we
let h = π /200 and τ = 0.016

Next, we will perform an analysis of convergence of the DM method, considering nor-
mal diffusion and long times. To that end, we will consider problem (46) with K = 1, and
employ the exact traveling-wave solution

v(x, t) =
[

1 + C exp

(
1√
6

x –
5
6

t
)]–2

, ∀(x, t) ∈R×R+. (58)

In our simulations, we will modify the methodology proposed in this work to account for
exact Dirichlet boundary conditions, prescribing them through (58). Moreover, we will
employ the maximum-norm error between the exact solution of (46) at the time T , and
the corresponding numerical solution calculated using the DM method, namely,

ετ ,h = max
{∣∣v(xi, tK ) – V K

i
∣
∣ : i ∈ IM

}
. (59)

We also define the following standard rates:

ρτ = log2

(
ε2τ ,h

ετ ,h

)
, ρh = log2

(
ετ ,2h

ετ ,h

)
. (60)

Example 18 Consider problem (46) with normal diffusion and K = 1. Fix Ω = (–200, 200),
and use function (58) to prescribe exactly the initial and boundary data on Ω . Under these
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Table 1 Values of the approximate solution of problem (57) at different values of x and T = 0.3, using
Ω = (0,π ), α = 1.8, and K = 0.1. Computationally, we used different combinations of values of h and
τ . The results were obtained using the EFDA, IFDA, and FMoL reported in [36], as well as the DM
method introduced in the present manuscript

Method

x EFDA IFDA FMoL DMmethod

h = π /200, τ = 0.016
0.3142 0.40643185 0.40591753 0.40722026 0.40523810
0.6283 0.75093552 0.75000260 0.75219110 0.74870365
0.9425 1.01391315 1.01236366 1.01519975 1.01087353
1.2566 1.17543235 1.17356309 1.17739215 1.17196504
1.5708 1.22928866 1.22798315 1.23181079 1.22597857
1.8850 1.17482175 1.17399495 1.17730057 1.17196504
2.1991 1.01388718 1.01274958 1.01539033 1.01087353
2.5133 0.75121711 0.75012166 0.75238197 0.74870365
2.8274 0.40650703 0.40608269 0.40746642 0.40523810
h = π /400, τ = 0.008
0.3142 0.40798803 0.40800055 0.40803064 0.40790925
0.6283 0.75305289 0.75306981 0.75312693 0.75290589
0.9425 1.01613053 1.01613171 1.01623145 1.01593914
1.2566 1.17754898 1.17754418 1.17768450 1.17733677
1.5708 1.23163392 1.23163641 1.23173842 1.23140839
1.8850 1.17754907 1.17755395 1.17763565 1.17733677
2.1991 1.01614381 1.01611409 1.01622990 1.01593914
2.5133 0.75305404 0.75304748 0.75313106 0.75290589
2.8274 0.40798587 0.40798503 0.40803474 0.40790925
h = π /800, τ = 0.004
0.3142 0.40923740 0.40924090 0.40925669 0.40924443
0.6283 0.75497993 0.75499925 0.75502314 0.75500177
0.9425 1.01843426 1.01845552 1.01849042 1.01846144
1.2566 1.17998806 1.18000297 1.18004151 1.18000806
1.5708 1.23410056 1.23411599 1.23414084 1.23410729
1.8850 1.18000780 1.18001024 1.18003866 1.18000806
2.1991 1.01846042 1.01846591 1.01848874 1.01846144
2.5133 0.75499623 0.75500746 0.75502307 0.75500177
2.8274 0.40924316 0.4092445549 0.40925683 0.40924443

circumstances, Table 4 provides a temporal numerical convergence analysis of the DM
method at various values of T . The results confirm that the method possesses linear or-
der of temporal convergence, in agreement with Theorem 13. In turn, Table 5 shows the
spatial convergence analysis of the DM method. Again, the results confirm the conclusion
of Theorem 13.

Finally, we compare the performance and the robustness of the methods used in Example
17 using an exact solution for a fractional problem. To that end, we will follow closely the
approach of [37] to prove the robustness of our the DM method. As in that work, we will
consider the problem (1) defined over ΩT = (0, 1) × (0, 1), and fix the reaction function as

f (x, t, v) =
3K
4
[
1 + (2π )α

]
sin(2πx) –

K
4
[
1 + (6π )α

]
sin(6πx)

+ αtα–1 sin3(2πx) – Kv, ∀(x, t, v) ∈ ΩT ×R. (61)

In this case, the exact solution of the problem for α ∈ (1, 2] is given by

v(x, t) = tα sin3(2πx), ∀(x, t) ∈ (0, 1) × (0, 1]. (62)
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Table 2 Values of the approximate solution of problem (57) at different values of x and T = 1, using
Ω = (0,π ), α = 1.8, and K = 0.1. Computationally, we used different combinations of values of h and
τ . The results were obtained using the EFDA, IFDA, and FMoL reported in [36], as well as the DM
method introduced in the present manuscript

Method

x EFDA IFDA FMoL DMmethod

h = π /200, τ = 0.016
0.3142 0.71389626 0.72323636 0.71312860 0.71947583
0.6283 1.24037640 1.24612454 1.24780762 1.24680145
0.9425 1.59030472 1.58819777 1.59121579 1.58946310
1.2566 1.78102704 1.77545588 1.77773300 1.77701456
1.5708 1.83207836 1.83457607 1.83648052 1.83573913
1.8850 1.77206738 1.77552773 1.77783878 1.77713605
2.1991 1.58670064 1.58831821 1.59176807 1.59042740
2.5133 1.24770350 1.24628205 1.25101528 1.24589045
2.8274 0.73840275 0.72338189 0.72768746 0.72902617
h = π /400, τ = 0.008
0.3142 0.71745620 0.71869375 0.71739547 0.71825673
0.6283 1.24936024 1.24673018 1.24695142 1.24680021
0.9425 1.58920413 1.58824503 1.59047160 1.58896095
1.2566 1.77024701 1.77730806 1.77781163 1.77740204
1.5708 1.83278407 1.83479204 1.83502709 1.83480527
1.8850 1.77106482 1.77732094 1.77759317 1.77762806
2.1991 1.59178365 1.59003758 1.58984672 1.58824720
2.5133 1.24907602 1.24506232 1.24630048 1.24686015
2.8274 0.71260986 0.71746539 0.71745204 0.71730264
h = π /800, τ = 0.004
0.3142 0.71796578 0.71802674 0.71796470 0.71807628
0.6283 1.24570889 1.24680373 1.24670367 1.24678390
0.9425 1.58941153 1.58926493 1.58922784 1.58920036
1.2566 1.77697364 1.77729566 1.77740225 1.77726490
1.5708 1.83511650 1.83472546 1.83480026 1.83478660
1.8850 1.77683902 1.77746225 1.77748929 1.77744028
2.1991 1.58896130 1.58906777 1.58887466 1.58902267
2.5133 1.24620755 1.24649110 1.24657834 1.24679221
2.8274 0.71796274 0.71889936 0.71803795 0.71814852

Example 19 Let Ω = (0, 1), K = 0.1 and T = 1, and consider problem (1) with reaction
function given by (61). For illustration purposes, Fig. 2 shows the approximation to the
solution v(x, t) of this problem as a function of x and t. We used the DM method to produce
the approximations, fixing h = τ = 0.01. Various values of α were employed, namely, (a) α =
1.01, (b) α = 1.2, (c) α = 1.4, (d) α = 1.6, (e) α = 1.8, and (f ) α = 2. Figure 3 provides graphical
summaries of the temporal convergence and efficiency analyses of the methods used in
Example 19. In these analyses, we employed the exact solution (62) of problem (1) with
reaction function (61). The results show that the DM method is a first-order convergent
technique in time, which yields smaller errors for fixed values of τ . Moreover, the DM
method is a more efficient technique according to out results. These results show that the
DM method is a more efficient and robust technique than the EFDA, IFDA, and FMoL. It is
worth pointing out that we also carried out analysis of spatial performance and robustness.
The results (not shown here in view of the redundancy) yield the same conclusions on the
DM method.

Before closing this section, we must declare that the simulations were carried out us-
ing an implementation of our method in ©Matlab 8.5.0.197613 (R2015a) on a ©Sony Vaio
PCG-5L1P laptop computer with Kubuntu 16.10 as operating system. In terms of compu-
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Table 3 Values of the approximate solution of problem (57) at different values of x and T = 3, using
Ω = (0,π ), α = 1.8, and K = 0.1. Computationally, we used different combinations of values of h and
τ . The results were obtained using the EFDA, IFDA, and FMoL reported in [36], as well as the DM
method introduced in the present manuscript

Method

x EFDA IFDA FMoL DMmethod

h = π /200, τ = 0.016
0.3142 1.57368789 1.57372511 1.57392168 1.57372919
0.6283 2.16380277 2.16386523 2.16399150 2.16385886
0.9425 2.33655001 2.33663342 2.33667019 2.33661347
1.2566 2.38754579 2.38764530 2.38762011 2.38761337
1.5708 2.39918437 2.39929592 2.39922930 2.39925392
1.8850 2.38753659 2.38766383 2.38756809 2.38761337
2.1991 2.33650970 2.33667395 2.33654916 2.33661347
2.5133 2.16369084 2.16393561 2.16376674 2.16385886
2.8274 1.57350732 1.57381573 1.57361994 1.57372919
h = π /400, τ = 0.008
0.3142 1.57438633 1.57437820 1.57435879 1.57435676
0.6283 2.16341461 2.16340869 2.16339364 2.16339412
0.9425 2.33597962 2.33597699 2.33597013 2.33597013
1.2566 2.38702266 2.38702177 2.38701950 2.38701864
1.5708 2.39869212 2.39869098 2.39869138 2.39868980
1.8850 2.38702107 2.38701906 2.38702156 2.38701864
2.1991 2.33597346 2.33597038 2.33597368 2.33597013
2.5133 2.16339880 2.16339599 2.16339738 2.16339412
2.8274 1.57436187 1.57436096 1.57436143 1.57435676
h = π /800, τ = 0.004
0.3142 1.57400608 1.57400734 1.57400844 1.57400710
0.6283 2.16262828 2.16262984 2.16263132 2.16263025
0.9425 2.33531356 2.33531372 2.33531405 2.33531388
1.2566 2.38648630 2.38648729 2.38648785 2.38648734
1.5708 2.39820239 2.39820243 2.39820257 2.39820244
1.8850 2.38648651 2.38648731 2.38648785 2.38648734
2.1991 2.33531397 2.33531392 2.33531389 2.33531387
2.5133 2.16263007 2.16263026 2.16263073 2.16263025
2.8274 1.57400875 1.57400804 1.57400742 1.57400710

Table 4 Table of absolute errors in the maximum norm and temporal rates of convergence for
various values of the parameters τ and h. We used f (u) = u(1 – u), and the exact solution (58) of
model (46). We employed also Ω = (–200, 200) and various values of T

h = 1 h = 0.5 h = 0.25

τ ετ ,h ρτ ετ ,h ρτ ετ ,h ρτ

T = 1
0.2/20 2.67829504× 10–2 – 1.02746832× 10–2 – 6.86107201× 10–3 –
0.2/21 1.39736652× 10–2 0.93860442 5.19210974× 10–3 0.98470113 3.27302120× 10–3 1.06781106
0.2/22 6.96832376× 10–3 1.00382692 2.42698608× 10–3 1.09715504 1.33351771× 10–3 1.29538596
0.2/23 2.87272809× 10–3 1.27839021 1.00672149× 10–3 1.26950121 5.21640040× 10–4 1.35411047
0.2/24 1.27134635× 10–3 1.17606433 4.28389417× 10–4 1.23266988 2.19716822× 10–4 1.24740928
T = 10
0.2/20 3.61963008× 10–2 – 1.88368494× 10–2 – 8.75622547× 10–3 –
0.2/21 1.94607648× 10–2 0.89527385 9.56993064× 10–3 0.97697731 4.18864496× 10–3 1.06382550
0.2/22 8.08362730× 10–3 1.26749370 4.53126541× 10–3 1.07859447 1.88939130× 10–3 1.14856208
0.2/23 3.64953553× 10–3 1.14728994 2.03288428× 10–3 1.15638590 8.88224791× 10–4 1.08892478
0.2/24 1.74324598× 10–3 1.06593671 9.01840414× 10–4 1.17258403 4.32223831× 10–4 1.03914622
T = 50
0.2/20 3.96849776× 10–2 – 1.67291610× 10–2 – 9.28669337× 10–3 –
0.2/21 2.02824578× 10–2 0.96836050 8.20627788× 10–3 1.02756518 4.77745217× 10–3 0.95892357
0.2/22 9.28799326× 10–3 1.12679366 3.90749860× 10–3 1.07048265 2.17094911× 10–3 1.13791552
0.2/23 4.43068565× 10–3 1.06783695 1.77641225× 10–3 1.13727893 1.02809201× 10–3 1.07835652
0.2/24 2.08820809× 10–3 1.08526449 7.96579516× 10–4 1.15707614 5.00554256× 10–4 1.03837103
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Table 5 Table of absolute errors in the maximum norm and spatial rates of convergence for various
values of the parameters τ and h. We used f (u) = u(1 – u), and the exact solution (58) of model (46).
We employed also Ω = (–200, 200) and various values of T

τ = 5× 10–4 τ = 2.5× 10–4 τ = 1.25× 10–4

h εt,h ρh εt,h ρh εt,h ρh

T = 1
2/20 2.72891640× 10–3 – 7.38903899× 10–4 – 1.92801667× 10–4 –
2/21 6.08617515× 10–4 2.16472044 1.53496126× 10–4 2.26718449 4.23532511× 10–5 2.18657290
2/22 1.23264181× 10–4 2.30378222 3.31398131× 10–5 2.21156488 9.55526103× 10–6 2.14810553
2/23 2.40756903× 10–5 2.35610456 6.97944970× 10–6 2.24738027 2.24943767× 10–6 2.08673089
2/24 5.35953443× 10–6 2.16739758 1.57552357× 10–6 2.14728195 5.00208668× 10–7 2.16896243
T = 10
2/20 2.80627843× 10–3 – 7.48551627× 10–4 – 2.18637328× 10–4 –
2/21 5.82837716× 10–4 2.26749201 1.66642570× 10–4 2.16734482 5.11309655× 10–5 2.09627056
2/22 1.29375821× 10–4 2.17152622 3.94539680× 10–5 2.07851469 1.13824890× 10–5 2.16738120
2/23 2.71945685× 10–5 2.25017758 9.26898876× 10–6 2.08968655 2.60012534× 10–6 2.13016299
2/24 6.35975778× 10–6 2.09627481 2.13604753× 10–6 2.11746820 6.21903759× 10–7 2.06381793
T = 50
2/20 2.87820224× 10–3 – 7.53867720× 10–4 – 2.24422947× 10–4 –
2/21 6.50328970× 10–4 2.14592637 1.66761373× 10–4 2.17652624 5.03484551× 10–5 2.15620078
2/22 1.53265284× 10–4 2.08513874 3.84354956× 10–5 2.11727398 1.18548423× 10–5 2.08647103
2/23 3.65707445× 10–5 2.06726905 9.18431827× 10–6 2.06519473 2.82647735× 10–6 2.06839944
2/24 8.84445865× 10–6 2.04784425 2.22227666× 10–6 2.04713420 6.81731460× 10–7 2.05172967

tational times, we are aware that better results may be obtained with more modern equip-
ment, more modest Linux/Unix distributions and lower-level programming languages.

6 Discussion
Historically, the DM method has been employed successfully to solve numerically and
analytically various types of ordinary and partial differential equations [1–3, 12]. As the
theory of fractional calculus developed throughout the years, the need to employ reliable
techniques to guarantee the existence and uniqueness of relevant solutions of fractional
systems directed the attention of researchers to the methods available for integer-order
models. In that way, the DM method found applications in the investigation of differential
equations of fractional order in time. As we noted, in the literature there are many reports
on the adaptation of the DM method to both ordinary and partial differential equations
with temporal derivatives of fractional order [24, 38, 39]. In those models, the fractional
temporal derivatives are usually understood in the sense of Caputo or Riemann–Liouville.
However, the use of the DM method for the case of Riesz fractional derivatives in space is
an open problem which merits attention. In that sense, the present manuscript is one of
the first reports in which this problem is tackled satisfactorily.

On the other hand, it is important to point out that the main contributions of this work
do not report on the design of novel numerical schemes. Indeed, finite differences are
employed to obtain a discrete form of the equation under investigation. Here, it is worth
recalling that there are various computational approaches to implement finite-difference
schemes, depending on the nature of the numerical model. For example, for nonlinear
systems, the Newton of quasi-Newton methods (like the well-known Broyden technique)
are some standard approaches to that end [40, 41]. In the case of Newton’s method, the
Jacobian matrix of the reaction functions and its corresponding inverse need to be calcu-
lated at each iteration at a high computational cost. On the other hand, Broyden’s method
requires the calculation of the approximate inverse of the Jacobian matrix. Moreover, this
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Figure 2 Approximate solution of the problem (1) with reaction function (61) using the DMmethod, with
differentiation order (a) α = 1.01, (b) α = 1.2, (c) α = 1.4, (d) α = 1.6, (e) α = 1.8, and (f) α = 2. The solutions
were calculated over Ω = (0, 1), and using K = 0.1 and T = 1. Computationally, we let h = τ = 0.01

method is not self-correcting. Other techniques to solve finite-difference schemes are the
methods of Gauss–Seidel, Jacobi, and successive over-relaxation, though they are used to
solve linear systems of algebraic equations.

In light of these comments, the discrete monotone iterative method is an approach that
has been used to solve many finite-difference schemes for both ordinary and partial dif-
ferential equations of integer order. However, the conditions under which the discrete
monotone iterative method guarantees the existence and uniqueness of solutions, stabil-
ity, and convergence of the computational approach may differ from the respective con-
ditions for the respective finite-difference scheme. This is perhaps one of the reasons why
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Figure 3 Log–log plots of convergence (left column) and numerical efficiency (right column) of the EFDA
(solid), IFDA (dashed), FMoL (dashed–dotted) and DMmethod (dotted), using various values of α , namely,
α = 1.2 (top row), α = 1.4 (middle row), and α = 1.8 (bottom row). The analysis considers problem (1) with
reaction function (61), for which the exact solution is given by (62) with K = 0.1. For the simulations, we used
Ω = 1 and T = 1

the literature lacks reports on the discrete monotone iterative method for parabolic partial
differential equations with fractional derivatives in space.

Like those computational methods mentioned in the previous paragraphs to solve sys-
tems finite-difference equations, the DM method is a computational technique to solve
finite-difference schemes. This approach is based on the use of a Picard-like iterative lin-
ear system at each iteration. Under suitable conditions on the reaction function and model
parameters, the iterative system may generate monotone sequences which converge to the
solution of the (nonlinear or linear) problem. To that end, the use of ordered upper and
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lower solutions of the continuous model is required. Moreover, the implementation of the
DM method possess the following advantages:

• The linear character of the DM method can be computationally implemented using
iterative techniques for the solution of linear algebraic systems.

• The iterations are monotone sequences, which implies that the error is reduced at
each new iteration. Moreover, a suitable criterion of convergence can be readily
proposed in terms of the upper and lower solutions at each iteration. In that sense,
the method is self-improving.

• Monotonicity of the sequences allows establishing the existence and uniqueness of
solutions. This is a clear advantage with respect to arbitrary nonlinear
computational methods.

• The solution is bounded between the upper and the lower solutions. This is an
important property of the DM method for problems where the positivity and the
boundedness are important features of the solutions.

• The theorem on convergence states that the convergence rate of the discrete
monotone method is of order O(τ + h2), as expected from the finite-difference
discretization. It is important to remember that, in general, the monotone method
does not accelerate the convergence rate. The advantage of this iterative method lies
in that fewer iterations are required to achieve a certain error level. This feature of
our technique was obviously established by our simulations.

7 Conclusions
In this work, for the first time in the literature, the discrete monotone method is devel-
oped for reaction–diffusion partial differential equations with fractional diffusion of the
Riesz type. The system under investigation considers homogeneous Dirichlet boundary
conditions, and is discretized using a Crank–Nicolson technique. The discrete monotone
method is used then. We establish that the technique has a unique solution. Moreover,
the consistency, the stability and the convergence of the method are rigorously estab-
lished. The implementation for the case of the space-fractional Fisher’s equation is an-
alyzed in detail. We provided an extensive series of comparisons against other numerical
methods available in the literature. Moreover, we showed detailed numerical analyses of
convergence in time and in space against fractional and integer-order models, and we pro-
vided studies on the robustness and the numerical performance of the discrete monotone
method.

Before closing this work, it is important to point out that still many avenues of research
remain open after the completion of this article. For example, the investigation of more
complicated parabolic systems with fractional diffusion in space is still an open problem
in investigation. Indeed, there exist many generalizations of the classical Fisher’s equation
which consider the presence of advection/convection terms, like the Burgers–Fisher and
the Burgers–Huxley equations [42]. In that sense, this manuscript could be a motivation
to propose and analyze monotone iterative techniques to solve more general fractional
parabolic system. On the other hand, it is worthwhile to mention that recent papers have
focused on some meaningful applications of hyperbolic fractional systems to the investi-
gation of systems of long-range interactions [43, 44] and fractional [45–48] and even in
nonfractional wave equations [49–51]. In that sense, the use of monotone iterative tech-
niques may find interesting applications to the investigation of meaningful physical phe-
nomena.
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