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Abstract
In the paper, fourth-order delay differential equations of the form

(r3(r2(r1y
′)′

)
′
)
′(t) + q(t)y(τ (t)) = 0

under the assumption

∫ ∞

t0

dt
ri(t)

<∞, i = 1, 2, 3,

are investigated. Our newly proposed approach allows us to greatly reduce a number
of conditions ensuring that all solutions of the studied equation oscillate. An example
is also presented to test the strength and applicability of the results obtained.
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1 Introduction
Consider the fourth-order linear delay differential equation

L4y(t) + q(t)y
(
τ (t)

)
= 0, t ≥ t0 > 0, (1.1)

where

L0y = y, Liy = ri(t)(Li–1y)′, i = 1, 2, 3, L4y = (L3y)′.

In the sequel, we will assume that:
(H1) ri ∈ C([t0,∞),R), i = 1, 2, 3 are positive and satisfy

πi(t0) :=
∫ ∞

t0

dt
ri(t)

< ∞;

(H2) q ∈ C([t0,∞),R) is nonnegative and does not vanish eventually;
(H3) τ ∈ C1([t0,∞),R), τ (t) ≤ t, and limt→∞ τ (t) = ∞.
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Under a solution of (1.1), we mean a nontrivial function y ∈ C1([Ty,∞),R) with Ty ≥ t0,
which has the property Liy ∈ C1([Ty,∞),R) for i = 1, 2, 3 and satisfies (1.1) on [Ty,∞). We
restrict our attention to those solutions of (1.1) which exist on some half-line [Ty,∞) and
satisfy the condition

sup
{∣∣y(t)

∣∣ : T ≤ t < ∞}
> 0 for all T ≥ Ty.

A solution y of (1.1) is said to be oscillatory if it is neither eventually positive nor eventually
negative. Otherwise, it is said to be nonoscillatory. The equation itself is termed oscillatory
if all its solutions oscillate.

The foundations of vibration theory for continuous media established in the first half of
the 18th century by the two close collaborators Daniel Bernoulli and Leonard Euler have
generated the investigation of linear fourth-order differential equations [23]. Since then,
the Euler–Bernoulli beam theory has shown to be of great practical importance due to its
wide applications in civil, mechanical and aeronautical engineering and has been outlined
in the literature over the years.

Being aware of the continuous interest in the study of self-excited oscillation phenomena
which occur in bridges, it is worth mentioning that an oversimplified model concerns
traveling waves in a suspension bridges [8, 18, 19]. Here, beams are used as the basis of
supporting of the bridge or as the main-frame foundation in axles. The governing equation
reads

∂2u
∂t2 + δ

∂u
∂t

+ γ
∂4u
∂x4 = 0,

where x is the coordinate along the beam axis, t is the time, u = u(x, t) is the lateral dis-
placement, δ is the viscous damping coefficient and γ is the stiffness coefficient per unit
length. To find the traveling wave solutions of this partial differential equation, we may
use the substitution of the form

u(x, t) = w(s), s = x – ct,

with period c and one has to solve the nonlinear fourth-order differential equation of the
form

γ w′′′′(s) + c2w′′(s) + δcw′(s) + f
(
w(s)

)
= 0.

As another important example on use of fourth-order equations, we mention the famous
Swift–Hohenberg equation

y(4)(t) + ky′′(t) + r(t)f
(
y(t)

)
= 0, k > 0,

which serves as a model of pattern formation in many physical, chemical or biological
systems [15].

It is also worth to mention the oscillatory muscle movement model represented by a
fourth-order delay differential equation, which can arise due to the interaction of a muscle
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with its inertial load [20]. An unexpected area where fourth-order differential equations
have occurred is in the context of number theory [4].

Because of the above motivating factors for the study of fourth-order differential equa-
tions, as well as because of the theoretical interest in generalizing and extending some
known results from those given for lower-order equations, the study of oscillation of such
equations has received considerable portion of attention. For a systematic summary of the
most significant efforts made as regards this theory, the reader is referred to the mono-
graphs of Elias [7], Kiguradze and Chanturia [13], and Swanson [21].

As far as the oscillation theory of fourth-order differential equations is concerned, the
problem of investigating ways of factoring disconjugate operator L4y has been of special
interest.

Motivated by the famous work of George Pólya, Trench [22] showed that we can always
write the operator L4y in an equivalent canonical form

L4y(t) ≡ L̃4y(t) = p4(t)
(
p3

(
p2

(
p1(p0y)′

)′)′)′(t)

such that the functions pi ∈ C([t0,∞),R), i = 0, 1, 2, 3, 4 are positive,

∫ ∞

t0

ds
pi(s)

= ∞, i = 1, 2, 3,

and uniquely determined up to positive multiplicative constants with the product 1. The
explicit forms of the functions pi generally depend on whether the integrals πi (i = 1, 2, 3),
which we defined in (H1), are convergent or divergent. Consequently, the investigation of
the qualitative behavior of canonical fourth-order functional differential equations of the
form

L̃4y(t) + q(t)y
(
τ (t)

)
= 0, (1.2)

its generalizations or particular cases, especially with regard to their oscillatory properties,
has become the subject of intensive research; see, for instance, [1–3, 5, 11, 12, 16, 17, 24–
26] and the references cited therein.

The main advantage of studying (1.1) in canonical form (1.2) essentially lies in the di-
rect application of the well-known Kiguradze lemma [13, Lemma 1], which allows one to
classify the set of possible nonoscillatory solutions. In particular, if y is a positive solution
of the canonical equation (1.2), then there are only two possible cases for y:

y > 0, L̃1y > 0, L̃2y < 0, L̃3y > 0, L̃4y < 0,

y > 0, L̃1y > 0, L̃2y > 0, L̃3y > 0, L̃4y < 0,

for t large enough.
However, the formulas for the corresponding functions pi resulting from Trench’s theory

of canonical operators are in general too complicated to allow the practical application of
existing results obtained for canonical equations. Another possible approach elaborated
by several authors is to investigate the original equation, at the cost of the existence of
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additional classes of possible nonoscillatory solutions. In particular, the authors in [9, 10]
established oscillation results for (1.1) under assumptions

r1 = r2 = 1 and π3(t0) < ∞

and

r1 = r3 = 1 and π2(t0) < ∞,

respectively. Although the technique used in these papers is different, their results have
in common that the oscillation of the studied equation was ensured via four independent
conditions, eliminating nonoscillatory solutions pertaining to particular classes.

Very recently, Džurina and Jadlovská [6] investigated the oscillatory behavior of third-
order differential equations of the form

L3y(t) + q(t)y
(
τ (t)

)
= 0 (1.3)

under the condition

πi(t0) < ∞, i = 1, 2.

By careful observation, they pointed out that various conditions, traditionally imposed
in the existing results are redundant. This observation led to the gain of various two-
condition oscillation criteria for (1.3).

To the best of our knowledge, there is nothing known about the oscillation of (1.1) under
the assumption (H1). Inspired by the ideas adopted in [6], our primary goal is to fill this gap
by presenting simple criteria for the oscillation of all solutions of (1.1). Most importantly,
we stress that the nonexistence of eight possible classes of nonoscillatory solutions (see
Lemma 1) is shown only through two conditions. Our newly proposed approach could
hopefully serve as a reference in the less-developed theory for noncanonical equations.
Finally, we illustrate the importance of the results obtained via Euler-type equations.

2 Main results
For the sake of clarity, we list the functions to be used in the paper. That is, for t ≥ t∗ ≥ t0,
we put

π12(t) =
∫ ∞

t

π2(s)
r1(s)

ds, π23(t) =
∫ ∞

t

π3(s)
r2(s)

ds, π123(t) =
∫ ∞

t

π23(s)
r1(s)

ds,

Q(t, t∗) =
∫ t

t∗

1
r2(v)

∫ v

t∗

1
r3(u)

∫ u

t∗
q(s) ds du dv, Q̃(t, t∗) =

∫ t

t∗

q(s)π123(τ (s))
π3(τ (s))

ds.

As usual, all functional inequalities considered in this paper are supposed to be satis-
fied for all t large enough. In what follows, we need only to consider eventually positive
solutions of (1.1), since if y satisfies (1.1), then so does –y.

Lemma 1 Assume that (H1)–(H3) hold and y is an eventually positive solution to (1.1).
Then there exists a t1 ∈ [t0,∞) such that y satisfies one of the following cases:

case (1): y > 0, L1y > 0, L2y > 0, L3y > 0, L4y ≤ 0,
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case (2): y > 0, L1y > 0, L2y > 0, L3y < 0, L4y ≤ 0,

case (3): y > 0, L1y > 0, L2y < 0, L3y > 0, L4y ≤ 0,

case (4): y > 0, L1y > 0, L2y < 0, L3y < 0, L4y ≤ 0,

case (5): y > 0, L1y < 0, L2y > 0, L3y > 0, L4y ≤ 0,

case (6): y > 0, L1y < 0, L2y > 0, L3y < 0, L4y ≤ 0,

case (7): y > 0, L1y < 0, L2y < 0, L3y > 0, L4y ≤ 0,

case (8): y > 0, L1y < 0, L2y < 0, L3y < 0, L4y ≤ 0,

for t ≥ t1.

Proof The proof is obvious and so we omit it. �

We start with a simple condition ensuring the nonexistence of solutions of types (1)–
(4). As will be shown later, this condition is already included in those eliminating positive
decreasing solutions.

Lemma 2 Assume that (H1)–(H3) hold. Let y be an eventually positive solution of (1.1). If

Q(∞, t0) = ∞, (2.1)

then cases (1)–(4) from Lemma 1 are impossible.

Proof First of all, it is important to note that if both (H1) and (2.1) hold, then

∫ ∞

t0

1
r3(u)

∫ u

t0

q(s) ds du =
∫ ∞

t0

q(s) ds = ∞. (2.2)

Now, assume on the contrary that y(t) is an eventually positive solution of (1.1) satisfying
one of the cases (1)–(4) from Lemma 1 and pick a t1 ∈ [t0,∞) such that y(τ (t)) > 0 for
t ≥ t1. Since y is increasing, there exist a constant c > 0 and a t2 ≥ t1 such that y(τ (t)) ≥ c
for t ≥ t2. Using this inequality in (1.1), we get

–L4y(t) ≥ cq(t) for t ≥ t2. (2.3)

Integrating (2.3) from t2 to t, we find

–L3y(t) + L3y(t2) ≥ c
∫ t

t2

q(s) ds. (2.4)

If we assume that y belongs either to case (1) or case (3), then from (2.2) and (2.4), we
obtain

L3y(t2) ≥ c
∫ t

t2

q(s) ds → ∞ as t → ∞, (2.5)

which contradicts the fact that L3y is nonincreasing.
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Next, assume that case (2) holds. Then (2.4) becomes

–L3y(t) ≥ c
∫ t

t2

q(s) ds,

that is,

–(L2y)′(t) ≥ c
r3(t)

∫ t

t2

q(s) ds. (2.6)

Integrating (2.6) from t2 to t, we have

L2y(t2) – L2y(t) ≥ c
∫ t

t2

1
r3(u)

∫ u

t2

q(s) ds du, (2.7)

which, by virtue of (2.2), gives

L2y(t2) ≥ c
∫ t

t2

1
r3(u)

∫ u

t2

q(s) ds du → ∞ as t → ∞, (2.8)

which clearly contradicts the fact that L2y is decreasing.
Finally, let us assume that case (4) holds. In the same way as in the previous case, we

arrive at (2.7), namely,

–(L1y)′(t) ≥ c
r2(t)

∫ t

t2

1
r3(u)

∫ u

t2

q(s) ds du.

Integrating this inequality from t2 to t, we get

L1y(t2) – L1y(t) ≥ c
∫ t

t2

1
r2(v)

∫ v

t2

1
r3(u)

∫ u

t2

q(s) ds du dv = cQ(t, t2), (2.9)

which in view of (2.1) yields

L1y(t2) ≥ cQ(t, t2) → ∞ as t → ∞,

which contradicts the fact that L1y is decreasing.
The proof is complete. �

In the following result, a simple condition ensuring that any nonoscillatory solution con-
verges to zero as t → ∞ is established.

Theorem 1 Assume that (H1)–(H3) hold. If

∫ ∞

t0

Q(t, t0)
r1(t)

dt = ∞, (2.10)

then any solution y of (1.1) is oscillatory or limt→∞ y(t) = 0.
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Proof Assume that y is a nonoscillatory solution of (1.1) on [t0,∞). Without loss of gen-
erality, we may take a t1 ≥ t0 such that y(t) > 0 and y(τ (t)) > 0 for t ≥ t1. By Lemma 1, eight
possible cases may occur for t ≥ t1.

Since (2.10) together with (H1) implies that
∫ ∞

t0
Q(t, t0) dt cannot be bounded, by

Lemma 2, cases (1)–(4) are impossible.
Let one of the cases (5)–(8) hold. Since y is decreasing, there exists a finite nonnegative

limit y(∞) = limt→∞ y(t) = c. Assume on the contrary that c > 0. Then there exists a t2 ≥
t1 such that y(τ (t)) ≥ c for t ≥ t2 and inequality (2.3) is satisfied. Then one can arrive
at contradiction (2.5) in cases (5) and (7), and contradiction (2.8) in case (6). Thus, we
conclude that c = 0.

If we assume that case (8) holds, then we get (2.9), that is,

–L1y(t) ≥ cQ(t, t2)

or

–y′(t) ≥ c
r1(t)

Q(t, t2).

Integrating the above inequality from t2 to t, we obtain

y(t2) ≥ c
∫ t

t2

Q(s, t2)
r1(s)

ds.

However, the integral on the right-hand side of the above inequality tends to ∞ as t → ∞
due to (2.10), which contradicts the fact that y is decreasing.

The proof is complete. �

In the sequel, we present various two-condition oscillation criteria for (1.1).

Theorem 2 Assume that (H1)–(H3) hold and τ is nondecreasing. If

lim sup
t→∞

A(t, t1) > 1 (2.11)

for any t1 ≥ t0, where

A(t, t1) := min
{
π1(t)Q(t, t1),π3(t)Q̃(t, t1)

}
,

then (1.1) is oscillatory.

Proof Assume that y is a nonoscillatory solution of (1.1) on [t0,∞). Without loss of gen-
erality, we may take a t1 ≥ t0 such that y(t) > 0 and y(τ (t)) > 0 for t ≥ t1. By Lemma 1, eight
possible cases may occur for t ≥ t1.

At first, it is useful to note that, in view of (H1), it is necessary for the validity of (2.11) that

Q(∞, t0) = Q̃(∞, t0) = ∞. (2.12)

From Lemma 2, the above condition ensures that cases (1)–(4) from Lemma 1 are impos-
sible. We shall consider the remaining possible cases (5)–(8) separately.



Grace et al. Advances in Difference Equations        (2019) 2019:118 Page 8 of 15

Assume that case (5) holds. From the monotonicity of L2y, we deduce that

–L1y(t) ≥ L1y(∞) – L1y(t) =
∫ ∞

t

1
r2(s)

L2y(s) ds ≥ L2y(t)π2(t),

that is,

–y′(t) ≥ L2y(t)
π2(t)
r1(t)

.

Integrating the above inequality from t to ∞, we get

y(t) ≥ L2y(t)
∫ ∞

t

π2(s)
r1(s)

ds = L2y(t)π12(t). (2.13)

Using (2.13) and the increasing property of L2y in (1.1), there exist a constant c > 0 and a
t2 ≥ t1 such that

–L4y(t) = q(t)y
(
τ (t)

) ≥ q(t)L2y
(
τ (t)

)
π12

(
τ (t)

) ≥ cq(t)π12
(
τ (t)

)
for t ≥ t2.

Integrating the above inequality from t2 to t, we have

L3y(t2) ≥ L3y(t) + c
∫ t

t2

q(s)π12
(
τ (s)

)
ds. (2.14)

Taking (H1) and (2.12) into account, it is easy to see that

∞ = Q̃(∞, t0) =
∫ ∞

t0

q(s)π123(τ (s))
π3(τ (s))

ds ≤
∫ ∞

t0

q(s)π12
(
τ (s)

)
ds. (2.15)

Using (2.15) in (2.14), we arrive at a contradiction with the fact that L3y is nonincreasing.
Assume that case (6) holds. From the monotonicity of L3y, we have

L2y(t) – L2y(∞) = –
∫ ∞

t

1
r3(s)

L3y(s) ds ≥ –L3y(t)π3(t). (2.16)

Therefore,

(
L2y
π3

)′
(t) =

L3y(t)π3(t) + L2y(t)
π2

3 (t)r3(t)
≥ 0,

which implies that L2y/π3 is nondecreasing. Using further this property, we obtain

–L1y(t) ≥
∫ ∞

t

1
r2(s)

L2y(s) ds ≥ L2y(t)
π3(t)

∫ ∞

t

π3(s)
r2(s)

ds =
L2y(t)
π3(t)

π23(t). (2.17)

Hence,

(
–

L1y
π23

)′
(t) =

–L2y(t)π23(t) – L1y(t)π3(t)
π2

23(t)r2(t)
≥ 0
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and so –L1y/π23 is nondecreasing. Finally, we arrive at

y(t) ≥ –
∫ ∞

t

1
r1(s)

L1y(s) ds ≥ –
L1y(t)
π23(t)

∫ ∞

t

π23(s)
r1(s)

ds = –
L1y(t)
π23(t)

π123(t).

Using (2.17) in the above inequality, we get

y(t) ≥ L2y(t)
π3(t)

π123(t). (2.18)

Therefore,

–L4y(t) = q(t)y
(
τ (t)

) ≥ q(t)π123(τ (t))
π3(τ (t))

L2y
(
τ (t)

)
.

Integrating this inequality from t1 to t and using the monotonicity of L2y, we find

–L3y(t) ≥
∫ t

t1

q(s)π123(τ (s))
π3(τ (s))

L2y
(
τ (s)

)
ds

≥ L2y
(
τ (t)

)∫ t

t1

q(s)π123(τ (s))
π3(τ (s))

ds ≥ L2y(t)Q̃(t, t1). (2.19)

From (2.16) and (2.19), we obtain

–L3y(t) ≥ –L3y(t)Q̃(t, t1)π3(t).

Dividing the above inequality by –L3y and taking the lim sup on both sides of the resulting
inequality, one arrives at a contradiction with (2.11).

Assume that case (7) holds. From the decreasing property of L1y, we get

y(t) ≥ y(t) – y(∞) = –
∫ ∞

t

1
r1(s)

L1y(s) ds ≥ –π1(t)L1y(t).

Thus,

(
y
π1

)′
(t) =

L1y(t)π1(t) + y(t)
π2

1 (t)r1(t)
≥ 0,

which means that y/π1 is nondecreasing. Integrating (1.1) from t1 to t and using the mono-
tonicity of y, we conclude that

L3y(t1) = L3y(t) +
∫ t

t1

q(s)y
(
τ (s)

)
ds ≥ y(t1)

π1(t1)

∫ t

t1

q(s)π1(s) ds. (2.20)

On the other hand, using (H1) and (2.15), it is easy to see that, for any constant k > 0,

∞ =
∫ ∞

t1

q(s)π12(s) ds ≤ k
∫ ∞

t1

q(s)π1(s) ds.

This in view of inequality (2.20) contradicts the fact that L3y is nonincreasing.
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Assume that case (8) holds. Integrating (1.1) from t1 to t, we have

–L3y(t) ≥
∫ t

t1

q(s)y
(
τ (s)

)
ds ≥ y

(
τ (t)

)∫ t

t1

q(s) ds.

Dividing both sides of the above inequality by r3(t) and integrating the resulting inequality
again from t1 to t, we get

–L2y(t) ≥
∫ t

t1

y(τ (u))
r3(u)

∫ u

t1

q(s) ds du ≥ y
(
τ (t)

)∫ t

t1

1
r3(u)

∫ u

t1

q(s) ds du. (2.21)

Similarly, we obtain

–L1y(t) ≥ y
(
τ (t)

)∫ t

t1

1
r2(v)

∫ v

t1

1
r3(u)

∫ u

t1

q(s) ds du dv

= y
(
τ (t)

)
Q(t, t1) ≥ y(t)Q(t, t1) ≥ –L1y(t)π1(t)Q(t, t1), (2.22)

that is,

1 ≥ π1(t)Q(t, t1),

which clearly contradicts (2.11).
The proof is complete. �

Theorem 3 Assume that (H1)–(H3) hold and τ is nondecreasing. If

lim inf
t→∞

∫ t

τ (t)
B(s, t1) ds >

1
e

(2.23)

for any t1 ≥ t0, where

B(t, t1) := min

{
Q(t, t1)

r1(t)
,

Q̃(t, t1)
r3(t)

}
,

then (1.1) is oscillatory.

Proof Assume that y is a nonoscillatory solution of (1.1) on [t0,∞). Without loss of gen-
erality, we may take a t1 ≥ t0 such that y(t) > 0 and y(τ (t)) > 0 for t ≥ t1. By Lemma 1, eight
possible cases may occur for t ≥ t1.

First, note that it is necessary for the validity of (2.23) that

∫ ∞

t0

B(t, t1) dt = ∞,

which in view of (H1) implies that (2.12) holds. From Lemma 2, we see that the above
condition ensures that cases (1)–(4) from Lemma 1 are impossible. We will consider the
remaining possible cases (5)–(8) separately.
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Since cases (5) and (7) can be treated exactly as in the proof of Theorem 2, we omit this
part of the proof. Assume that case (6) holds. Proceeding as in the proof of Theorem 2
case (6), we arrive at (2.19), i.e.,

–L3y(t) ≥ L2y
(
τ (t)

)∫ t

t1

q(s)π123(τ (s))
π3(τ (s))

ds,

that is,

x′(t) +
Q̃(t, t1)

r3(t)
x
(
τ (t)

) ≤ 0, (2.24)

where we set x(t) = L2y(t) > 0. It follows from (2.23) that

lim inf
t→∞

∫ t

τ (t)

Q̃(s, t1)
r3(s)

ds >
1
e

,

however, by [14, Theorem 2.1.1], this condition ensures that inequality (2.24) does not
possess a positive solution, which is a contradiction with our initial assumption.

Assume that case (8) holds. Proceeding as in the proof of Theorem 2 case (8), we arrive
at (2.22), i.e.,

–L1y(t) ≥ y
(
τ (t)

)
Q(t, t1) (2.25)

or

y′(t) +
Q(t, t1)

r1(t)
y
(
τ (t)

) ≤ 0.

Similar to case (7), we arrive at a contradiction.
The proof is complete. �

The last criterion is obtained by employing the classical Riccati transformation tech-
nique.

Theorem 4 Assume that (H1)–(H3) hold. If, for all sufficiently large t1 ≥ t0,

lim sup
t→∞

∫ t

t1

(
q(s)π123(s) –

π23(s)
4r1(s)π123(s)

)
ds = ∞ (2.26)

and

lim sup
t→∞

∫ t

t1

(
π1(v)
r2(v)

∫ v

t1

1
r3(u)

∫ u

t1

q(s) ds du –
1

4π1(v)r1(v)

)
dv = ∞, (2.27)

then (1.1) is oscillatory.

Proof Suppose for the sake of contradiction that y is a nonoscillatory solution of (1.1) on
[t0,∞). Without loss of generality, we may take a t1 ≥ t0 such that y(t) > 0 and y(τ (t)) > 0
for t ≥ t1. By Lemma 1, eight possible cases may occur for t ≥ t1. From (2.27), we see that

∫ ∞

t0

π1(v)
r2(v)

∫ v

t1

1
r3(u)

∫ u

t1

q(s) ds du dv = ∞,
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which in view of (H1) implies that Q(∞, t0) = ∞. Thus, by Lemma 2, cases (1)–(4) from
Lemma 1 are impossible. Therefore, it is enough to consider cases (5)–(8).

Assume that case (5) holds. From (2.26), we have

∫ ∞

t0

q(s)π123(s) ds = ∞.

Then, proceeding as in the proof of Theorem 2 case (5), we arrive at the contradiction.
Assume that case (6) holds. Let us define the function

w(t) =
L3y(t)

y(t)
< 0.

Combining (2.16) and (2.18), we obtain

y(t) ≥ L3y(t)π123(t),

which yields

–1 ≤ w(t)π123(t) < 0. (2.28)

Also, proceeding as in the proof of Theorem 2 case (6), we derive from (2.16) and (2.17)
that

y′(t) ≥ –L3y(t)
π23(t)
r1(t)

. (2.29)

By (1.1), (2.29), and the monotonicity of y, we conclude that

w′(t) =
L4y(t)

y(t)
–

L3y(t)y′(t)
y2(t)

≤ –q(t)
y(τ (t))

y(t)
–

(L3y(t))2π23(t)
r1(t)y2(t)

≤ –q(t) – w2(t)
π23(t)
r1(t)

.

Multiplying the above inequality by π123 and integrating the resulting inequality from t1

to t, we get

w(t)π123(t) – w(t1)π123(t1) +
∫ t

t1

w(s)
π23(s)
r1(s)

ds +
∫ t

t1

q(s)π123(s) ds

+
∫ t

t1

w2(s)
π23(s)π123(s)

r1(s)
ds ≤ 0.

Therefore, by virtue of (2.28),

∫ t

t1

(
q(s)π123(s) –

π23(s)
4r1(s)π123(s)

)
ds ≤ w(t1)π123(t1) + 1,

which contradicts (2.26).
Assume that case (7) holds. Note that

∫ ∞

t0

q(s)π123(s) ds = ∞
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is necessary for (2.26). Then, for any k > 0, we have

∞ =
∫ ∞

t0

q(s)π123(s) ds ≤ k
∫ ∞

t1

π12(s) ds.

Proceeding as in the proof of Theorem 2 case (7), we arrive at the contradiction.
Assume that case (8) holds. Let us define the function

v(t) =
L1y(t)

y(t)
< 0.

From (2.21), we obtain

–L2y(t) ≥ y(t)
∫ t

t1

1
r3(u)

∫ u

t1

q(s) ds du.

On the other hand, from (2.25), we see that

–1 ≤ v(t)π1(t) < 0. (2.30)

Then

v′(t) =
L2y(t)

r2(t)y(t)
–

(L1y(t))2

r1(t)y2(t)
≤ –

1
r2(t)

∫ t

t1

1
r3(u)

∫ u

t1

q(s) ds du –
v2(t)
r1(t)

.

Now, multiplying both sides of the above inequality by π1(t) and integrating the resulting
inequality from t1 to t, we get

v(t)π1(t) – v(t1)π1(t1) +
∫ t

t1

v(s)
r1(s)

ds +
∫ t

t1

π1(x)
r2(x)

∫ x

t1

1
r3(u)

∫ u

t1

q(s) ds du dx

+
∫ t

t1

v2(s)
π1(s)
r1(s)

ds ≤ 0.

Hence, in view of (2.30),

∫ t

t1

(
π1(x)
r2(x)

∫ x

t1

1
r3(u)

∫ u

t1

q(s) ds du –
1

4π1(x)r1(x)

)
dx ≤ v(t1)π1(t1) + 1,

which contradicts (2.27).
The proof is complete. �

We conclude the paper by providing an example that illustrates the applicability and
strength of the results obtained.

Example 1 Let us consider the fourth-order differential equation of Euler type

(
t2(t2(t2y′(t)

)′)′)′ + q0t2y(λt) = 0, t ≥ 1, (Ex)

where q0 > 0 and λ ∈ (0, 1]. It is easy to verify that condition (2.10) is satisfied and by
Theorem 1, we conclude that any nonoscillatory solution of (Ex) converges to zero as t
approaches infinity.
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By Theorem 2, we see that (Ex) is oscillatory if

q0 > 6.

The same conclusion follows from Theorem 3 if λ < 1 and

q0 ln
1
λ

>
1
e

,

and from Theorem 4, if

q0 >
9
2

.

Thus, Theorem 4 provides a stronger result than Theorem 2. Both theorems, however, do
not depend on the value λ. In fact, Theorem 3 is more efficient for almost all values of λ,
namely for λ ∈ (0, 0.9215).
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