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Abstract
We study the local dynamics and bifurcations of a two-dimensional discrete-time
predator–prey model in the closed first quadrant R2

+. It is proved that the model has
two boundary equilibria: O(0, 0), A(α1–1

α1
, 0) and a unique positive equilibrium

B( 1
α2
, α1α2–α1–α2

α2
) under some restriction to the parameter. We study the local

dynamics along their topological types by imposing the method of linearization. It is
proved that a fold bifurcation occurs about the boundary equilibria: O(0, 0), A(α1–1

α1
, 0)

and a period-doubling bifurcation in a small neighborhood of the unique positive
equilibrium B( 1

α2
, α1α2–α1–α2

α2
). It is also proved that the model undergoes a

Neimark–Sacker bifurcation in a small neighborhood of the unique positive
equilibrium B( 1

α2
, α1α2–α1–α2

α2
) and meanwhile a stable invariant closed curve appears.

From the viewpoint of biology, the stable closed curve corresponds to the periodic or
quasi-periodic oscillations between predator and prey populations. Numerical
simulations are presented to verify not only the theoretical results but also to exhibit
the complex dynamical behavior such as the period-2, -4, -11, -13, -15 and -22 orbits.
Further, we compute the maximum Lyapunov exponents and the fractal dimension
numerically to justify the chaotic behaviors of the discrete-time model. Finally, the
feedback control method is applied to stabilize chaos existing in the discrete-time
model.
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1 Introduction
Different models have been invoked to understand the mechanism of competition be-
tween populations of two-species. In 1931, Volterra proposed a famous prey–predator
model which is represented by the following system of ordinary differential equations [1]:

Ẋ = aX – bXY ,

Ẏ = –cY + dXY ,

⎫
⎬

⎭
(1)

where X denotes the number of prey and Y denotes the number of predator. Moreover, a,
b, c, d are positive parameters. It has been shown that the number of prey grows exponen-
tially in the absence of predators, while the number of predators decreases exponentially
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in the absence of a prey population. The terms bXY and dXY explain the prey–predators
encounters which are conducive to predators and lethal to prey. It is noted that model (1)
then takes the following form, if one consider some harvesting effect [2]:

Ẋ = aX – bXY – γ X,

Ẏ = –cY + dXY – γ Y ,

⎫
⎬

⎭
(2)

and as a result the reasonable harvesting effect is favorable to prey population. There are
also some other prey–predator models which are more fascinating and effective for a num-
ber of interacting species greater than two or which assume a parasitic infection of the
populations [3, 4].

It is a well-known fact that discrete-time models described by difference equations
are more beneficial and reliable than continuous-time models whenever there are non-
overlapping generations in the populations. Moreover, these models also provide efficient
computational results for numerical simulations and provide a rich dynamics as compared
to the continuous ones [5–10]. In the last few years, many interesting papers have appeared
in the literature that discuss the stability, bifurcation and chaos phenomena in discrete-
time models (see [11–20] and the references cited therein).

This paper deals with the study of stability, bifurcations and chaos control of the follow-
ing discrete-time predator–prey model [21]:

Xn+1 = rXn(1 – Xn) – bXnYn,

Yn+1 = dXnYn.

⎫
⎬

⎭
(3)

It is noted that after using the following re-scaling transformations:

Xn = xn, Yn =
yn

b
,

the discrete-time model (3) then takes the form

xn+1 = α1xn(1 – xn) – xnyn,

yn+1 = α2xnyn,

⎫
⎬

⎭
(4)

where α1 = r > 0 and α2 = d > 0.
The rest of the paper is organized as follows: Sect. 2 deals with the study of the exis-

tence of equilibria and local stability along their different topological types of the discrete-
time model (4). In Sect. 3, we study the existence of bifurcations about equilibria of the
model (4). Section 4 deals with a bifurcation analysis about the unique positive equilib-
rium of the model (4). In Sect. 5, numerical simulations are presented to verify the the-
oretical results. This also includes the study of fractal dimensions which characterize the
strange attractors of the model (4). In Sect. 6, we study the chaos control by the feed-
back control method to stabilize chaos at unstable trajectories. A conclusion is given in
Sect. 7.
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2 Existence of equilibria and local stability of the discrete-time model (4)
Lemma 1 System (4) has at least two boundary equilibria and one unique positive equi-
librium in R

2
+. More precisely,

(i) for all parametric values α1 and α2, system (4) has the boundary equilibrium O(0, 0);
(ii) if α1 > 1 then system (4) has the boundary equilibrium A( α1–1

α1
, 0);

(iii) system (4) has a unique positive equilibrium B( 1
α2

, α1α2–α1–α2
α2

) if α1 > α2
α2–1 and α2 > 1.

Now will study the local dynamics of (4) about O(0, 0), A( α1–1
α1

, 0) and B( 1
α2

, α1α2–α1–α2
α2

).
The Jacobian matrix J(̂x,̂y) of the discrete-time model (4) about equilibrium (̂x, ŷ) is given
by

J(̂x,̂y) =

(
α1(1 – 2̂x) – ŷ –̂x

α2̂y α2̂x

)

.

Its characteristic equation is

κ2 – p(̂x, ŷ)κ + q(̂x, ŷ) = 0, (5)

where

p(̂x, ŷ) = α1(1 – 2̂x) – ŷ + α2̂x,

q(̂x, ŷ) =
(
α1(1 – 2̂x) – ŷ

)
α2̂x + α2̂x̂y.

Lemma 2 For equilibrium O, the following statements hold:
(i) O is a sink if 0 < α1 < 1;

(ii) O is never a source;
(iii) O is a saddle if α1 > 1;
(iv) O is non-hyperbolic if α1 = 1.

Lemma 3 For A( α1–1
α1

, 0), the following statements hold:
(i) A( α1–1

α1
, 0) is a sink if α1 ∈ (1, 3) and 0 < α2 < α1

α1–1 ;
(ii) A( α1–1

α1
, 0) is a source if α1 > 3 and α2 > α1

α1–1 ;
(iii) A( α1–1

α1
, 0) is a saddle if α1 > 3 and 0 < α2 < α1

α1–1 ;
(iv) A( α1–1

α1
, 0) is non-hyperbolic if α2 = α1

α1–1 .

Hereafter we will investigate the local dynamics of the discrete-time model (4) about
B( 1

α2
, α1α2–α1–α2

α2
) by using Lemma 2.2 of [22]. The Jacobian matrix JB( 1

α2
, α1α2–α1–α2

α2
) of the

linearized system of the discrete-time model (4) about B( 1
α2

, α1α2–α1–α2
α2

) is

κ2 – pκ + q = 0, (6)

where

p =
2α2 – α1

α2
,

q =
α1(α2 – 2)

α2
.
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Moreover, the eigenvalues of JB( 1
α2

, α1α2–α1–α2
α2

) about B( 1
α2

, α1α2–α1–α2
α2

) are given by

κ1,2 =
p ± √

�

2

where

� = p2 – 4q

=
(

2α2 – α1

α2

)2

–
4α1(α2 – 2)

α2
.

Hereafter if � � 0, we will study the topological classification about B( 1
α2

, α1α2–α1–α2
α2

) of
the discrete-time model (4) as follows:

Lemma 4 For B( 1
α2

, α1α2–α1–α2
α2

), the following statements hold:
(i) B( 1

α2
, α1α2–α1–α2

α2
) is a locally asymptotically stable focus if

(
2α2 – α1

α2

)2

–
4α1(α2 – 2)

α2
< 0 and 0 < α1 <

α2

α2 – 2
;

(ii) B( 1
α2

, α1α2–α1–α2
α2

) is an unstable focus if

(
2α2 – α1

α2

)2

–
4α1(α2 – 2)

α2
< 0 and α1 >

α2

α2 – 2
;

(iii) B( 1
α2

, α1α2–α1–α2
α2

) is non-hyperbolic if

(
2α2 – α1

α2

)2

–
4α1(α2 – 2)

α2
< 0 and α1 =

α2

α2 – 2
.

Lemma 5 For B( 1
α2

, α1α2–α1–α2
α2

), the following statements hold:
(i) B( 1

α2
, α1α2–α1–α2

α2
) is locally asymptotically node if

(
2α2 – α1

α2

)2

–
4α1(α2 – 2)

α2
≥ 0 and 0 < α1 <

3α2

3 – α2
;

(ii) B( 1
α2

, α1α2–α1–α2
α2

) is unstable node if

(
2α2 – α1

α2

)2

–
4α1(α2 – 2)

α2
≥ 0 and α1 >

3α2

3 – α2
;

(iii) B( 1
α2

, α1α2–α1–α2
α2

) is non-hyperbolic if

(
2α2 – α1

α2

)2

–
4α1(α2 – 2)

α2
≥ 0 and α1 =

3α2

3 – α2
.
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3 Existence of bifurcations about equilibria of the discrete-time model (4)
In this section based on theoretical studies in Sect. 2, we will study the existence of bifur-
cations about equilibria. The existence of corresponding bifurcations about the equilibria
O(0, 0), A( α1–1

α1
, 0) and B( 1

α2
, α1α2–α1–α2

α2
) can be summarized as follows:

(i) From Lemma 2, we can see that when α1 = 1, one of the eigenvalues about the
equilibrium O(0, 0) is 1. So a fold bifurcation may occur when the parameter varies
in the small neighborhood of α1 = 1.

(ii) From Lemma 3, we can easily see that if α2 = α1
α1–1 holds then one of the eigenvalues

about A( α1–1
α1

, 0) is 1. So a fold bifurcation occurs when the parameter varies in a
small neighborhood of α2 = α1

α1–1 . And we denote the parameters satisfying
α2 = α1

α1–1 as

FA( α1–1
α1

,0) =
{

(α1,α2) : α2 =
α1

α1 – 1
,α1,α2 > 0

}

.

(iii) From Lemma 4, we see that if α1 = α2
α2–2 holds then the eigenvalues of

JB( 1
α2

, α1α2–α1–α2
α2

) about B( 1
α2

, α1α2–α1–α2
α2

) are a pair of complex conjugate with
modulus 1. So a Neimark–Sacker bifurcation exists by the variation of parameter in
a small neighborhood of α1 = α2

α2–2 . Precisely we represent the parameters satisfying
α1 = α2

α2–2 as

NB( 1
α2

, α1α2–α1–α2
α2

)

=
{

(α1,α2) :
(

2α2 – α1

α2

)2

–
4α1(α2 – 2)

α2
< 0 and α1 =

α2

α2 – 2

}

.

(iv) From Lemma 5, we see that if α1 = 3α2
3–α2

holds we see that one of the eigenvalues of
JB( 1

α2
, α1α2–α1–α2

α2
) about B( 1

α2
, α1α2–α1–α2

α2
) is –1 and other is neither 1 nor –1. So a

period-doubling bifurcation exists by the variation of parameter in a small
neighborhood of α1 = 3α2

3–α2
. More precisely we can also represent the parameters

satisfying α1 = 3α2
3–α2

as

PB( 1
α2

, α1α2–α1–α2
α2

)

=
{

(α1,α2) :
(

2α2 – α1

α2

)2

–
4α1(α2 – 2)

α2
≥ 0 and α1 =

3α2

3 – α2

}

.

4 Bifurcations analysis
This section deals with the study of Neimark–Sacker bifurcation and period-doubling bi-
furcation, respectively, about the unique positive equilibrium B( 1

α2
, α1α2–α1–α2

α2
).

4.1 Neimark–Sacker bifurcation about B( 1
α2

, α1α2–α1–α2
α2

)
Here we study the Neimark–Sacker bifurcation of the discrete-time model (4) about
B( 1

α2
, α1α2–α1–α2

α2
). Consider the parameter α1 in a neighborhood of α∗

1 , i.e., α1 = α∗
1 + ε,

where ε � 1, then the discrete-time model (4) becomes

xn+1 =
(
α∗

1 + ε
)
xn(1 – xn) – xnyn,

yn+1 = α2xnyn.

⎫
⎬

⎭
(7)
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The characteristic equation of J
B( 1

α2
,

(α∗
1 +ε)α2–α∗

1 –ε–α2
α2

)
about B( 1

α2
, (α∗

1 +ε)α2–α∗
1 –ε–α2

α2
) of the

discrete-time model (7) is

κ2 – p(ε)κ + q(ε) = 0,

where

p(ε) =
2α2 – α∗

1 – ε

α2
, q(ε) =

(α∗
1 + ε)(α2 – 2)

α2
.

The roots of characteristic equation of J
B( 1

α2
,

(α∗
1 +ε)α2–α∗

1 –ε–α2
α2

)
about B( 1

α2
, (α∗

1 +ε)α2–α∗
1 –ε–α2

α2
) are

κ1,2 =
p(ε) ± ι

√
4q(ε) – p2(ε)
2

,

=
2α2 – α∗

1 – ε

2α2
± ι

2

√

4(α∗
1 + ε)(α2 – 2)

α2
–

(
2α2 – α∗

1 – ε

α2

)2

and

|κ1,2| =
√

q(ε),
d|κ1,2|

dε

∣
∣
∣
∣
ε=0

=
α2 – 2

2α2
> 0.

Additionally, we required that when ε = 0, κm
1,2 �= 1, m = 1, 2, 3, 4, which corresponds to

p(0) �= –2, 0, 1, 2, which is true by computation.
Let un = xn – x∗, vn = yn – y∗ then the equilibrium B( 1

α2
, α1α2–α1–α2

α2
) of the discrete-time

model (4) transforms into O(0, 0). By manipulation, one gets

un+1 =
(
α∗

1 + ε
)(

un + x∗)(1 – un – x∗) –
(
un + x∗)(vn + y∗) – x∗,

vn+1 = α2
(
un + x∗)(vn + y∗) – y∗,

⎫
⎬

⎭
(8)

where x∗ = 1
α2

, y∗ = α1α2–α1–α2
α2

. Hereafter when ε = 0, the normal form of system (8) is
studied. Expanding (8) about (un, vn) = (0, 0) by Taylor series, we get

un+1 = Γ11un + Γ12vn + Γ13u2
n + Γ14unvn,

vn+1 = Γ21un + Γ22vn + Γ23unvn,

⎫
⎬

⎭
(9)

where

Γ11 = α∗
1
(
1 – 2x∗) – y∗, Γ12 = –x∗, Γ13 = –α∗

1 , Γ14 = –1,

Γ21 = α2y∗, Γ22 = α2x∗, Γ23 = α2.

Now, let

η =
2α2 – α∗

1
2α2

,

ζ =
1
2

√

4α∗
1 (α2 – 2)

α2
–

(
2α2 – α∗

1
α2

)2

,
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and the invertible matrix T defined by

T =

(
Γ12 0

η – Γ11 –ζ

)

.

Using the following translation:

(
un

vn

)

=

(
Γ12 0

η – Γ11 –ζ

)(
Xn

Yn

)

,

(9) gives

(
Xn+1

Yn+1

)

=

(
η –ζ

ζ η

)(
Xn

Yn

)

+

(
Φ(Xn, Yn)
Ψ (Xn, Yn)

)

, (10)

where

Φ(Xn, Yn) = Π11Xn
2 + Π12XnYn,

Ψ (Xn, Yn) = Π21Xn
2 + Π22XnYn,

(11)

and

Π11 = Γ12Γ13 + Γ14(η – Γ11),

Π12 = –ζΓ14,

Π21 =
η – Γ11

ζ

[
Γ12(Γ13 – Γ23) + Γ14(η – Γ11)

]
,

Π22 = Γ12Γ23 – Γ14(η – Γ11)).

In addition,

ΦXnXn |(0,0) = 2Π11, ΦXnYn |(0,0) = Π12, ΦYnYn |(0,0) = 0,

ΦXnXnXn |(0,0) = ΦXnXnYn |(0,0) = ΦXnYnYn |(0,0) = ΦYnYnYn |(0,0) = 0,

and

ΨXnXn |(0,0) = 2Π21, ΨXnYn |(0,0) = Π22, ΨYnYn |(0,0) = 0,

ΨXnXnXn |(0,0) = ΨXnXnYn |(0,0) = ΨXnYnYn |(0,0) = ΨYnYnYn |(0,0) = 0.

In order for (10) to undergo a Neimark–Sacker bifurcation, it is mandatory that the fol-
lowing discriminatory quantity, i.e., χ �= 0 (see [22–32]),

χ = – Re

[
(1 – 2κ̄)κ̄2

1 – κ
τ11τ20

]

–
1
2
‖τ11‖2 – ‖τ02‖2 + Re(κ̄τ21), (12)
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where

τ02 =
1
8
[
ΦXnXn – ΦYnYn + 2ΨXnYn + ι(ΨXnXn – ΨYnYn + 2ΦXnYn )

]∣
∣
(0,0),

τ11 =
1
4
[
ΦXnXn + ΦYnYn + ι(ΨXnXn + ΨYnYn )

]∣
∣
(0,0),

τ20 =
1
8
[
ΦXnXn – ΦYnYn + 2ΨXnYn + ι(ΨXnXn – ΨYnYn – 2ΦXnYn )

]∣
∣
(0,0),

τ21 =
1

16
[
ΦXnXnXn + ΦXnYnYn + ΨXnXnYn + ΨYnYnYn

+ ι(ΨXnXnXn + ΨXnYnYn – ΦXnXnYn – ΦYnYnYn )
]∣
∣
(0,0).

(13)

After calculating, we get

τ02 =
1
4
[
Π11 + Π22 + ι(Π21 + Π12)

]
,

τ11 =
1
2

[Π11 + ιΠ21],

τ20 =
1
4
[
Π11 + Π22 + ι(Π21 – Π12)

]
,

τ21 = 0.

(14)

Based on this analysis and the Neimark–Sacker bifurcation theorem discussed in [30, 31],
we arrive at the following theorem.

Theorem 1 If χ �= 0 then the discrete-time model (4) undergoes a Neimark–Sacker bifur-
cation about B( 1

α2
, α1α2–α1–α2

α2
) as (α1,α2) go through NB( 1

α2
, α1α2–α1–α2

α2
). Additionally, an at-

tracting (resp. repelling) closed curve bifurcates from B( 1
α2

, α1α2–α1–α2
α2

) if χ < 0 (resp. χ > 0).

Remark According to bifurcation theory discussed in [30, 31], the bifurcation is called
a supercritical Neimark–Sacker bifurcation if the discriminatory quantity χ < 0. In the
following section, numerical simulations guarantee that a supercritical Neimark–Sacker
bifurcation occurs for the discrete-time model (4).

4.2 Period-doubling bifurcation about B( 1
α2

, α1α2–α1–α2
α2

)
This section deals with the study of period-doubling bifurcation of the discrete-time
model (4) about the unique positive equilibrium B( 1

α2
, α1α2–α1–α2

α2
). Consider α∗

1 as a bi-
furcation parameter, then the discrete-time model (4) becomes

xn+1 =
(
α1 + α∗

1
)
xn(1 – xn) – xnyn,

yn+1 = α2xnyn,

⎫
⎬

⎭
(15)

where α∗
1 � 1. Let un = xn – x∗, vn = yn – y∗. Then we transformed B(x∗, y∗), where x∗ = 1

α2
,

y∗ = α1α2–α1–α2
α2

of (15) into origin. By calculating we get

un+1 = Γ̂11un + Γ̂12vn + Γ̂13u2
n + Γ̂14unvn + Υ01unα

∗
1 + Υ02u2

nα
∗
1 ,

vn+1 = Γ̂21un + Γ̂22vn + Γ̂23unvn,

⎫
⎬

⎭
(16)
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where

Γ̂11 = α1
(
1 – 2x∗) – y∗, Γ̂12 = –x∗, Γ̂13 = –α∗

1 , Γ14 = –1,

Υ01 = 1 – 2x∗, Υ02 = –1,

Γ̂21 = α2y∗, Γ̂22 = α2x∗, Γ̂23 = α2.

Now, construct an invertible matrix T

T =

(
Γ̂12 Γ̂12,

1 – Γ̂11 κ2 – Γ̂11

)

,

and use the translation

(
un

vn

)

=

(
Γ̂12 Γ̂12

1 – Γ̂11 κ2 – Γ̂11

)(
Xn

Yn

)

,

(16) gives

(
Xn+1

Yn+1

)

=

(
–1 0
0 κ2

)(
Xn

Yn

)

+

(
Φ̂(un, vn,α∗

1 )
Ψ̂ (un, vn,α∗

1 )

)

, (17)

where

Φ̂
(
un, vn,α∗

1
)

=
Γ̂13(κ2 – Γ̂11)
Γ̂12(1 + κ2)

u2
n +

Γ̂14(κ2 – Γ̂11) – Γ̂12Γ̂23

Γ̂12(1 + κ2)
unvn

+
Υ01(κ2 – Γ̂11)
Γ̂12(1 + κ2)

unα
∗
1 +

Υ02(κ2 – Γ̂11)
Γ̂12(1 + κ2)

u2
nα

∗
1 ,

Ψ̂
(
un, vn,α∗

1
)

=
Γ̂13(1 + Γ̂11)
Γ̂12(1 + κ2)

u2
n +

Γ̂14(1 + Γ̂11) + Γ̂12Γ̂23

Γ̂12(1 + κ2)
unvn

+
Υ01(1 + Γ̂11)
Γ̂12(1 + κ2)

unα
∗
1 +

Υ02(1 + Γ̂11)
Γ̂12(1 + κ2)

u2
nα

∗
1 ,

u2
n = Γ̂12

2(X2
n + 2XnYn + Y 2

n
)
,

unvn = –Γ̂12(1 + Γ̂11)X2
n +

(
Γ̂12(κ2 – Γ̂11) – Γ̂12(1 + Γ̂11)

)
XnYn

+ Γ̂12(κ2 – Γ̂11)Y 2
n ,

unα
∗
1 = Γ̂12Xnα

∗
1 + Γ̂12Ynα

∗
1 ,

u2
nα

∗
1 = Γ̂12

2(X2
nα∗

1 + 2XnYnα
∗
1 + Y 2

n α∗
1
)
.

(18)

Hereafter we determine the center manifold W c(0, 0) of (17) about (0, 0) in a small neigh-
borhood of α∗

1 . By center manifold theorem, there exists a center manifold W c(0, 0) that
can be represented as follows:

W c(0, 0) =
{

(Xn, Yn) : Yn = c0α
∗
1 + c1X2

n + c2Xnα
∗
1 + c2α

∗
1

3 + O
((|Xn| +

∣
∣α∗

1
∣
∣
)3)},
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where O((|Xn| + |α∗
1 |)3) is a function with order at least three in their variables (Xn,α∗

1 ),
and

c0 = 0,

c1 =
(1 + Γ̂11)[Γ̂12Γ̂13 – Γ̂14(1 + Γ̂11) – Γ̂12Γ̂23]

1 – κ2
2

,

c2 =
Υ01(1 + Γ̂11)

1 – κ2
2

,

c3 = 0.

(19)

Therefore, we consider the map (17) restricted to W c(0, 0) as follows:

f (xn) = –xn + h1x2
n + h2xnα

∗
1 + h3x2

nα
∗
1 + h4xnα

∗
1

2 + h5x3
n + O

((|Xn| +
∣
∣α∗

1
∣
∣
)4), (20)

where

h1 =
1

1 + κ2

[
Γ̂12Γ̂13(κ2 – Γ̂11) – (1 + Γ̂11)

(
Γ̂14(κ2 – Γ̂11) – Γ̂12Γ̂23

)]
,

h2 =
1

1 + κ2

[
Υ01(κ2 – Γ̂11)

]
,

h3 =
1

1 + κ2

[
(2c2Γ̂12Γ̂13 + Υ01c1 + Υ02Γ̂12)(κ2 – Γ̂11)

+ c2
(
Γ̂14(κ2 – Γ̂11) – Γ̂12Γ̂23

)
(κ2 – 2Γ̂11 – 1)

]
,

h4 =
1

1 + κ2

[
Υ01c2(κ2 – Γ̂11)

]
,

h5 =
c1

1 + κ2

[
2Γ̂12Γ̂13(κ2 – Γ̂11) +

(
Γ̂14(κ2 – Γ̂11) – Γ̂12Γ̂23

)
(κ2 – 2Γ̂11 – 1)

]
.

(21)

In order for the map (20) to undergo a period-doubling bifurcation, we require that the
following discriminatory quantities are non-zero:

Λ1 =
(

∂2f
∂xn∂α∗

1
+

1
2

∂f
∂α∗

1

∂2f
∂x2

n

)∣
∣
∣
∣
(0,0)

,

Λ2 =
(

1
6

∂3f
∂x3

n
+

(
1
2

∂2f
∂x2

n

)2)∣
∣
∣
∣
(0,0)

.

After calculating we get

Λ1 =
(α2 – 2)(15 – 7α2)

α2(9 – 4α2)
�= 0

and

Λ2 =
4α2

2 – 18α2 + 27
(9 – 4α2)2 .

From the above analysis and Theorem in [30, 31], we have the following theorem.
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Theorem 2 If Λ2 �= 0, the map (15) undergoes a period-doubling bifurcation about the
unique positive equilibrium B( 1

α2
, α1α2–α1–α2

α2
) when α∗

1 varies in a small neighborhood of
O(0, 0). Moreover, if Λ2 > 0 (resp. Λ2 < 0), then the period-2 points that bifurcate from
B( 1

α2
, α1α2–α1–α2

α2
) are stable (resp. unstable).

5 Numerical simulations
In this section, some simulations are given to verify the obtained results. If α2 = 3.5 then
from non-hyperbolic condition α1 = α2

α2–2 of Lemma 4 one gets α1 = 2.33333. From a theo-
retical point of view the equilibrium B( 1

α2
, α1α2–α1–α2

α2
) is a locally asymptotically stable fo-

cus if α1 < 2.33333. To see this if α1 = 1.779 < 2.33333, then it is clear from Fig. 1(a) that the
equilibrium B( 1

α2
, α1α2–α1–α2

α2
) is a locally asymptotically stable focus. That means that all

the orbits attract towards the unique positive equilibrium. Similarly for the other values of
the parameter α1, it is also observed that the equilibrium B( 1

α2
, α1α2–α1–α2

α2
) of the discrete-

time model (4) is a locally asymptotical focus (see Figs. 1(b)–1(l)). But when α1 goes

Figure 1 Phase portraits of the discrete-time model (4)
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through 2.33333, equilibrium B( 1
α2

, α1α2–α1–α2
α2

) of the discrete-time model (4) is unstable
focus. Meanwhile an attracting closed invariant curve bifurcates from B( 1

α2
, α1α2–α1–α2

α2
) of

the discrete-time model (4). In particular the existence of an attracting closed invariant
curve implies that the discrete-time model (4) undergoes a supercritical Neimark–Sacker
bifurcation about B( 1

α2
, α1α2–α1–α2

α2
). To see this if α1 = 2.34 > 2.33333 then the eigenvalues

of JB( 1
α2

, α1α2–α1–α2
α2

) about B( 1
α2

, α1α2–α1–α2
α2

) are

κ1,2 = 0.6657142857142857 ± 0.7481187289816109ι, (22)

and a non-degenerate condition for the existence of Neimark–Sacker bifurcation of the
discrete-time model (4), i.e., α2–2

2α2
= 0.5341880341880343 > 0 hold. Moreover, after some

manipulations from Mathematica one gets

τ02 = –0.08285714285714288 + 0.33608110810276415ι,

τ11 = 0.1671428571428572 + 0.29810285171472284ι,

τ20 = –0.08285714285714288 – 0.03797825638804131ι,

τ21 = 0.

(23)

In view of (22) and (23) the value of the discriminatory quantity from (12) is χ =
–0.11221718590370466 < 0. Therefore if α1 = 2.34 > 2.33333 then the discrete-time model
(4) undergoes a supercritical Neimark–Sacker bifurcation and in fact a stable invariant
close curve appears, which is presented in Fig. 2(a). Similarly for other choices of bifur-
cation parameter the value of discriminatory quantity is less than 0 (see Table 1) and
their corresponding attracting close invariant curves are depicted in Figs. 2(b)–2(o). In
the context of biology, attracting closed invariant curve bifurcations from the supercrit-
ical Neimark–Sacker bifurcation imply that host and parasitoid populations will coexist
under periodic or quasi-periodic oscillations with long time.

Hereafter we will provide the numerical simulation in order to verify the theoret-
ical results obtained in Sect. 4.2 by fixing α2 = 1.53 and varying 1.5 ≤ α1 ≤ 18.5.
Fixing α2 = 1.53, then from the non-hyperbolic condition (iii) of Lemma 5 one gets
α1 = 3.1224489795918364. From a theoretical point of view the unique positive equilib-
rium point (0.6535947712418301, 0.08163300653594788) of (4) is stable if α1 <
3.1224489795918364; bifurcation occurs if α1 = 3.1224489795918364, and there is a
period-doubling bifurcation if α1 > 3.1224489795918364.

From Figs. 3(a)–3(b), we see that the equilibrium point is stable if α1 <
3.1224489795918364, and loses its stability at the period-doubling bifurcation parame-
ter value α1 = 3.1224489795918364. The maximum Lyapunov exponents corresponding
to Figs. 3(a)–3(b) are plotted in Fig. 3(c). Moreover, 3D bifurcation diagrams are also plot-
ted in Figs. 4(a)–4(c). The phase portraits which are associated with Figs. 3(a)–3(b) are
depicted in Figs. 5(a)–5(f ), which indicates that the discrete-time model (4) exhibits a
complex dynamics such as period-2, -4, -11, -13, -15 and -22 orbits.
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Figure 2 Phase portraits of the discrete-time model (4)

5.1 Fractal dimension
The fractal dimension which characterized the strange attractors of the discrete-time sys-
tem is defined by (see [33, 34])

dL = j +
∑j

i=1 κj

|κj| , (24)
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Table 1 Numerical values of χ for α1 > 2.33333

Value of bifurcation parameter when α1 > 2.33333 Numerical value of χ

2.34 –0.11221718590370466 < 0
2.343 –0.17385157491789316 < 0
2.37 –0.17587912984797172 < 0
2.34567 –0.23250816667811489 < 0
2.4 –0.23591771770576037 < 0
2.467 –0.24392011825143836 < 0
2.5 –0.24740313673037914 < 0
2.59 –0.25764617193199524 < 0
3.1 –0.3335331833515125 < 0
3.22 –0.35545528698159623 < 0

where κ1,κ2, . . . ,κn are Lyapunov exponents and j is the largest integer such that
∑j

i=1 κj ≥ 0 and
∑j+1

i=1 κj < 0. For our under consideration discrete-time model (4), the
fractal dimension takes the following form:

dL = 1 +
κ1

|κ2| , κ1 > 0 > κ2. (25)

If α2 = 1.53 then after some manipulation two Lyapunov exponents are κ1 =
1.3153221370247266 (resp. κ1 = 1.2928270741698256) and κ2 = –0.3806816141489094
(resp. κ2 = –0.40393818528093656) for α1 = 1.63 (resp. α1 = 1.7). So the fractal dimension
for the discrete-time model (4) is

dL = 1 +
1.3153221370247266
0.3806816141489094

= 4.455176420761466 for α1 = 1.63,

dL = 1 +
1.2928270741698256

0.40393818528093656

= 4.200556721991193 for α1 = 1.7.

(26)

The strange attractors for the above fixed parametric values are also plotted and presented
in Figs. 6(a)–6(b), which illustrate that the discrete model (4) has a complex dynamical
behavior as the parameter α1 increases.

6 Chaos control
In this section, we will study the chaos control by applying the state feedback control
method [35, 36]. By adding a feedback control law as the control force un to the discrete-
time model (4), the controlled model (4) takes the following form:

xn+1 = α1xn(1 – xn) – xnyn + un,

yn+1 = α2xnyn,

un = –k1
(
xn – x∗) – k2

(
yn – y∗),

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(27)

where the feedback gains are denoted by k1 and k2 and (x∗, y∗) is the unique positive equi-
librium point, i.e., (x∗, y∗) = B( 1

α2
, α1α2–α1–α2

α2
) of the discrete-time model (4). The Jacobian



Khan Advances in Difference Equations         (2019) 2019:56 Page 15 of 23

Figure 3 (a), (b) Bifurcation diagram of the discrete-time model (4) with α1 ∈ [1.5, 18.5], α2 = 1.53 and initial
value is (0.2, 0.15). (b) Maximum Lyapunov exponent corresponding to (a) and (b)
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Figure 4 Bifurcation diagram in 3D for α1 ∈ [1.5, 18.5], α2 = 1.53 and initial value is (0.2, 0.15)
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Figure 5 Phase portraits for values of α1 corresponding to Figs. 3(a)–3(b)

matrix Jc of the controlled system (27) is

Jc
(
x∗, y∗) =

(
a11 – k1 a12 – k2

a21 a22

)

, (28)

where a11 = α2–α1
α2

, a12 = – 1
α2

, a21 = α1α2 – α1 – α2, a22 = 1. The characteristic equation of
Jc(x∗, y∗) about (x∗, y∗) is

κ2 – tr
(
Jc
(
x∗, y∗))κ + det

(
Jc
(
x∗, y∗)) = 0, (29)
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Figure 6 Strange attractor of the discrete-time model (4) for α1 = 1.63 (resp. α1 = 1.7) with (0.2, 0.25)

where

tr
(
Jc
(
x∗, y∗)) = a11 + a22 – k1,

det
(
Jc
(
x∗, y∗)) = a22(a11 – k1) – a21(a12 – k2).

⎫
⎬

⎭
(30)

Let κ1 and κ2 be the roots of (29) then

κ1 + κ2 = a11 + a22 – k1, (31)

κ1κ2 = a22(a11 – k1) – a21(a12 – k2). (32)

The solutions of the equations κ1 = ±1 and κ1κ2 = 1 determine the lines of marginal sta-
bility. These conditions confirm that |κ1,2| < 1. Suppose that κ1κ2 = 1, then from (32) one
gets

l1 :
α2 – α1

α2
– k1 + (α1α2 – α1 – α2)

(
1
α2

+ 1
)

– 1 = 0. (33)
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Now assuming that κ1 = 1 then from (31) and (32) one gets

l2 : (α1α2 – α1 – α2)
(

k2 +
1
α2

)

= 0. (34)

Finally, assume that κ1 = –1, then again from (31) and (32) one gets

l3 : 2k1 – (α1α2 – α1 – α2)
(

k2 +
1
α2

)

– 2
(

1 +
α2 – α1

α2

)

= 0. (35)

Then the lines l1, l2 and l3 in the (k1, k2) plane determine a triangular region which gives
|κ1,2| < 1 (see Fig. 7(a)).

In order to check how the implementation of feedback control method works and how
to control chaos at an unstable state, we have performed numerical simulations. Fig-
ures 7(b)–7(c) show that about the unique positive equilibrium the chaotic trajectories
are stabilized.

7 Conclusion
This work deals with the study of local dynamics, bifurcations and chaos control of a
discrete-time predator–prey model (4) in R

2
+. It is proved that the model has the bound-

ary equilibria O(0, 0), A( α1–1
α1

, 0) and a unique positive equilibrium B( 1
α2

, α1α2–α1–α2
α2

). We
have investigated local stability along their topological types about O(0, 0), A( α1–1

α1
, 0),

B( 1
α2

, α1α2–α1–α2
α2

) by imposing the method of linearization and conclusions are presented
in Table 2. We proved that about A( α1–1

α1
, 0) there exists a fold bifurcation when the pa-

rameters of the discrete model (4) are located in the following set:

FA( α1–1
α1

,0) =
{

(α1,α2) : α2 =
α1

α1 – 1
,α1,α2 > 0

}

.

We have also shown that about B( 1
α2

, α1α2–α1–α2
α2

) the discrete-time model (4) undergoes
both a Neimark–Sacker bifurcation and a period-doubling bifurcation when the parame-
ters, respectively, are located in the following sets:

NB( 1
α2

, α1α2–α1–α2
α2

)

=
{

(α1,α2) :
(

2α2 – α1

α2

)2

–
4α1(α2 – 2)

α2
< 0 and α1 =

α2

α2 – 2

}

,

PB( 1
α2

, α1α2–α1–α2
α2

)

=
{

(α1,α2) :
(

2α2 – α1

α2

)2

–
4α1(α2 – 2)

α2
≥ 0 and α1 =

3α2

3 – α2

}

.

Numerical simulations have verified not only the theoretical results but also exhib-
ited a complex dynamical behavior such as the period-2, -4, -11, -13, -15 and -22 or-
bits. Further, we have computed maximum Lyapunov exponents numerically. Finally,
the feedback control method is applied to stabilize chaos existing in the discrete-time
model (4).
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Figure 7 Control of chaotic trajectories of the controlled discrete-time model (27) for α1 = 1.53, α2 = 3.75
with initial values (0.2, 0.25) (a) stability region in (k1, k2)-plan. (b)–(c) Time series for states xn and yn ,
respectively
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