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Abstract
In this paper, a class of mixed nonlinear impulsive differential equations is studied.
When the delay σ (t) is variable, each given interval is divided into two parts on which
the quotients of x(t – σ (t)) and x(t) are estimated. Then, by introducing binary auxiliary
functions and using the Riccati transformation, several Kamenev type interval
oscillation criteria are established. The well-known results obtained by Liu and Xu
(Appl. Math. Comput. 215:283–291, 2009) for σ (t) = 0 and by Guo et al. (Abstr. Appl.
Anal. 2012:351709, 2012) for σ (t) = σ0 (σ0 ≥ 0) are developed. Moreover, an example
illustrating the effectiveness and non-emptiness of our results is also given.
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1 Introduction
We consider the following mixed nonlinear impulsive differential equations with variable
delay:

(
r(t)Φα

(
x′(t)

))′ + p0(t)Φα

(
x(t)

)
+

n∑

i=1

pi(t)Φβi

(
x
(
t – σ (t)

))
= f (t), t ≥ t0, t �= τk ,

x
(
τ+

k
)

= akx(τk), x′(τ+
k
)

= bkx′(τk), k = 1, 2, . . . ,

(1)

where Φ∗(s) = |s|∗–1s, {τk} denotes the impulse moments, 0 ≤ t0 < τ1 < τ2 < · · · < τk < · · ·
and limk→∞ τk = ∞, {ak} and {bk} are real constant sequences and bk ≥ ak > 0 for k =
1, 2, . . . , σ (t) ∈ C([t0,∞)) and there exists a nonnegative constant σ0 such that 0 ≤ σ (t) ≤
σ0 for all t ≥ t0, r(t) ∈ C1([t0,∞), (0,∞)) is nondecreasing.

For some particular cases of (1), many authors have devoted work to the interval oscil-
lation problem (see [3–13]). Particularly, when α = 1, ak = bk = 1 and σ (t) = 0, (1) reduces
to the mixed type Emden–Fowler equation

(
r(t)x′(t)

)′ + p0(t)x(t) +
n∑

i=1

pi(t)Φβi

(
x(t)

)
= f (t), (2)
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which was given much attention due to the effect of modeling the growth of bacteria pop-
ulation with competitive species. For example, in [14] and [15], the authors established
interval oscillation theorems for (2) which improved the well-known criteria of [16] and
[17]. For additional studies of Emden–Fowler differential equations, see [18–20].

In [1], the authors considered (2) with impulse effects,

(
r(t)x′(t)

)′ + p0(t)x(t) +
n∑

i=1

pi(t)Φβi

(
x(t)

)
= f (t), t ≥ t0, t �= τk ,

x
(
τ+

k
)

= akx(τk), x′(τ+
k
)

= bkx′(τk), k = 1, 2, . . . ,

(3)

and established some interval oscillation results which extended those of [14, 15] and [21].
When σ (t) = 0, (1) becomes the following impulse equations without delay:

(
r(t)Φα

(
x′(t)

))′ + p0(t)Φα

(
x(t)

)
+

n∑

i=1

pi(t)Φβi

(
x(t)

)
= f (t), t ≥ t0, t �= τk ,

x
(
τ+

k
)

= akx(τk), x′(τ+
k
)

= bkx′(τk), k = 1, 2, . . . .

(4)

In [22], Özbekler and Zafer investigated (4). They considered the coefficients pi(t) (i =
1, 2, . . . , n) satisfying two cases: (i) pi(t) ≥ 0 for i = 1, 2, . . . , n and (ii) pi(t) ≥ 0 for i =
1, 2, . . . , m; pi(t) are allowed to be negative for i = m + 1, . . . , n and obtained several interval
oscillation results which recovered the early ones in [8] and [14].

When σ (t) is a nonnegative constant, i.e., σ (t) = σ0 (σ0 ≥ 0), by idea of [23], Guo et al.
[2] studied (1) and developed the results of [1, 22, 24].

Recently, in [25], the authors studied (1) with the assumption of delay σ (t) being variable.
They used Riccati transformation and univariate ω functions to obtain some generalized
interval oscillation results.

In this paper, we continue the discussion of the interval oscillation of (1). Unlike the
methods of [22, 25], we introduce a binary auxiliary function, divide each given interval
into two parts and then estimate the quotients of x(t –σ (t)) and x(t). Due to the considered
delay being variable, the results obtained here are the development of some well-known
ones, such as in [1] and [2]. Moreover, we also give an example to illustrate the effectiveness
and non-emptiness of our results.

2 Main results
First, we define a functional space C–(I,R) as follows:

C–(I,R) :=
{

y : I →R | I is a real interval, y is continuous on I \ {ti} and

y
(
t–
i
)

= y(ti), i ∈ N
}

.

In the following, we always assume:
(A) the exponents satisfy β1 > · · · > βm > α > βm+1 > · · · > βn > 0;

f (t), pi(t) ∈ C–([t0,∞),R), i = 0, 1, . . . , n; τk+1 – τk > σ0 for all k = 1, 2, . . . .
Let k(s) = max{i : t0 < τi < s}. For any given intervals [cj, dj] (j = 1, 2), we suppose that

k(cj) < k(dj) (j = 1, 2), then there exist impulse moments τk(cj)+1, . . . , τk(dj) in [cj, dj] (j = 1, 2)
and we have the following cases to consider.
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(S1) τk(cj) + σ0 < cj and τk(dj) + σ0 < dj;
(S2) τk(cj) + σ0 < cj and τk(dj) + σ0 > dj;
(S3) τk(cj) + σ0 > cj and τk(dj) + σ0 > dj;
(S4) τk(cj) + σ0 > cj and τk(dj) + σ0 < dj.
We further assume that there exist points δj ∈ (cj, dj) \ {τk} (j = 1, 2) which divide inter-

vals [cj, dj] into two parts [cj, δj] and [δj, dj]. In view of whether or not there are impulsive
moments of x(t) in [cj, δj] and [δj, dj], we should consider the following cases.

(S̄1) k(cj) < k(δj) < k(dj);
(S̄2) k(cj) = k(δj) < k(dj);
(S̄3) k(cj) < k(δj) = k(dj).
We define a interval delay function ([12]):

Dk(t) = t – τk – σ (t), t ∈ (τk , τk+1], k = 1, 2, . . . ,

and we assume there is a point tk ∈ (τk , τk+1] such that Dk(tk) = 0, Dk(t) < 0 for t ∈ (τk , tk)
and Dk(t) > 0 for t ∈ (tk , τk+1].

Moreover, for the relationship of the division point δj and the zero point tk(δj) of Dk(δj) on
[τk(δj), τk(δj)+1] we should have

( ¯̄S1) tk(δj) < δj;
( ¯̄S2) tk(δj) > δj; or
( ¯̄S3) tk(δj) = δj.

We only consider the case of combination of (S1) with (S̄1) and ( ¯̄S1). For the other cases,
the discussion will be omitted here.

Lemma 2.1 Assume that, for any T ≥ t0, there exist T < c1 – σ0 < c1 < δ1 < d1 and

f (t) ≤ 0, pi(t) ≥ 0, t ∈ [c1 – σ0, d1] \ {τk}, i = 0, 1, 2, . . . , n, (5)

and tk is a zero point of Dk(tk) in (τk , τk+1]. If x(t) is a positive solution of (1), then the ratio
x(t – σ (t))/x(t) will be estimated as follows:

(a) x(t–σ (t))
x(t) > t–τk –σ (t)

t–τk
, t ∈ (tk , τk+1] for k = k(c1) + 1, . . . , k(d1) – 1, k �= k(δ1);

(b) x(t–σ (t))
x(t) > t–τk

bk (t+σ (t)–τk ) , t ∈ (τk , tk] for k = k(c1) + 1, . . . , k(d1);

(c) x(t–σ (t))
x(t) > t–τk(δ1)–σ (t)

t–τk(δ1)
, t ∈ (tk(δ1), δ1];

(d) x(t–σ (t))
x(t) > t–τk(d1)–σ (t)

t–τk(d1)
, t ∈ (tk(d1), d1];

(e) x(t–σ (t))
x(t) > t–τk(δ1)–σ (t)

t–τk(δ1)
, t ∈ (δ1, τk(δ1)+1];

(f ) x(t–σ (t))
x(t) > t–τk(c1)–σ (t)

t–τk(c1)
, t ∈ [c1, τk(c1)+1].

Proof From (1), (5) and (A), we obtain, for t ∈ [c1, d1] \ {τk},

(
r(t)Φα

(
x′(t)

))′ = f (t) – p0(t)Φα

(
x(t)

)
–

n∑

i=1

pi(t)Φβi

(
x
(
t – σ (t)

)) ≤ 0.

Hence r(t)Φα(x′(t)) is nonincreasing on the interval [c1, d1] \ {τk}. Next, we give the proof
of case (a) only. For the other cases, the proof is similar and will be omitted.
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If tk < t ≤ τk+1, from Dk(t) > 0, we know (t – σ (t), t) ⊂ (τk , τk+1]. Thus there is no impulse
moment in (t –σ (t), t). Therefore, for any s ∈ (t –σ (t), t), there exists a ξk ∈ (τk , s) such that
x(s) – x(τ+

k ) = x′(ξk)(s – τk). Since x(τ+
k ) > 0, r(s) is nondecreasing, Φα(·) is an increasing

function and r(t)Φα(x′(t)) is nonincreasing on (τk , τk+1], we have

Φα

(
x(s)

) ≥ r(ξk)
r(s)

Φα

(
x(s)

)
>

r(ξk)
r(s)

Φα

(
x′(ξk)(s – τk)

)
=

r(ξk)Φα(x′(ξk))
r(s)

(s – τk)α

≥ r(s)Φα(x′(s))
r(s)

(s – τk)α = Φα

(
x′(s)(s – τk)

)
.

Therefore,

x′(s)
x(s)

<
1

s – τk
.

Integrating both sides of the above inequality from t – σ (t) to t, we obtain

x(t – σ (t))
x(t)

>
t – τk – σ (t)

t – τk
, t ∈ (tk , τk+1].

The proof is completed. �

Lemma 2.2 Assume that, for any T ≥ t0, there exist T < c2 – σ0 < c2 < δ2 < d2 and

f (t) ≥ 0, pi(t) ≥ 0, t ∈ [c2 – σ0, d2] \ {τk}, i = 0, 1, 2, . . . , n, (6)

and tk is a zero point of Dk(tk) in (τk , τk+1]. If x(t) is a negative solution of (1), then estima-
tions (a)–(f) in Lemma 2.1 are correct with the replacement of c1, d1 and δ1 by c2, d2 and
δ2, respectively.

The proof of Lemma 2.2 is similar to that of Lemma 2.1 and will be omitted.

Lemma 2.3 Assume that for any T ≥ t0 there exists T < c1 – σ0 < c1 < d1 and (5) holds. If
x(t) is a positive solution of (1) and u(t) is defined by

u(t) :=
r(t)Φα(x′(t))

Φα(x(t))
, t ∈ [c1, d1], (7)

then we have the following estimations of u(t):
(g) u(τk+1) ≤ r̃

(τk+1–τk )α , τk+1 ∈ [c1, d1], k = k(c1) + 1, . . . , k(d1) – 1, k �= k(δ1);
(h) u(τk(c1)+1) ≤ r̃

(τk(c1)+1–c1)α , τk(c1)+1 ∈ [c1, d1];
(i) u(τk(δ1)+1) ≤ r̃

(τk(δ1)+1–δ1)α , τk(δ1)+1 ∈ [c1, d1],
where r̃ = maxt∈[c1,d1]∪[c2,d2]{r(t)}.

Proof For t ∈ (τk , τk+1] ⊂ [c1, d1], k = k(c1) + 1, . . . , k(d1) – 1, there exists ςk ∈ (τk , t) such
that

x(t) – x
(
τ+

k
)

= x′(ςk)(t – τk).
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In view of x(τ+
k ) > 0 and the monotone properties of Φα(·), r(t)Φα(x′(t)) and r(t), we obtain

Φα

(
x(t)

)
> Φα

(
x′(ςk)

)
Φα(t – τk) ≥ r(t)

r(ςk)
Φα

(
x′(t)

)
(t – τk–1)α .

That is,

r(t)Φα(x′(t))
Φα(x(t))

<
r(ςk)

(t – τk)α
.

Letting t → τ–
k+1, we obtain conclusion (g). Using a similar analysis on (c1, τk(c1)+1] and

(δ1, τk(δ1)+1], we can get (h) and (i). The proof is completed. �

Lemma 2.4 Assume that, for any T ≥ t0, there exist c2, d2, δ2 /∈ {τk} such that T < c2 – σ0 <
c2 < δ2 < d2 and (6) hold. If x(t) is a negative solution of (1) and u(t) is defined by

u(t) :=
r(t)Φα(x′(t))

Φα(x(t))
, t ∈ [c2, d2], (8)

then the estimations (g)–(i) in Lemma 2.3 are correct with the replacement of c1, d1 and δ1

by c2, d2 and δ2, respectively.

The proof of Lemma 2.4 is similar to that of Lemma 2.3 and will be omitted.

Lemma 2.5 (cf. Lemma 1.1 in [22]) Let {β1, . . . ,βn} be the n-tuple satisfying (A). Then there
exists an n-tuple (η1,η2, . . . ,ηn) satisfying

(i)
n∑

i=1

βiηi = α, and

(ii)
n∑

i=1

ηi = λ < 1, 0 < ηi < 1.

(9)

In the following we will establish Kamenev type interval oscillation criteria for (1) by
the idea of Philos [26]. For the research of Kamenev/Philos-type oscillation criteria for
differential equations, see [27–31].

Let E = {(t, s) : t0 ≤ s ≤ t}, H1, H2 ∈ C1(E,R). Then a pair of functions H1, H2 is said to
belong to a function set H , denoted by (H1, H2) ∈ H , if there exist h1, h2 ∈ Lloc(E,R)
satisfying the following conditions:

(C1) H1(t, t) = H2(t, t) = 0, H1(t, s) > 0, H2(t, s) > 0 for t > s;
(C2) ∂

∂t H1(t, s) = h1(t, s)H1(t, s), ∂
∂s H2(t, s) = h2(t, s)H2(t, s).

For convenience in the expression below, we also use the following notation:

∫

[c,d]
:=

∫ τk(c)+1

c
+

k(d)–1∑

k=k(c)+1

(∫ tk

τk

+
∫ τk+1

tk

)
+

∫ tk(d)

τk(d)

+
∫ d

tk(d)

.
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Lemma 2.6 Assume that the conditions of Lemma 2.1 hold. Let x(t) be a positive solution
of (1) and u(t) be defined by (7). Then, for any (H1, H2) ∈ H , we have

∫

[c1,δ1]
ψ(t)H1(t, c1)

xα(t – σ (t))
xα(t)

dt

+
∫ δ1

c1

H1(t, c1)
[

p0(t) –
r(t)

(1 + α)1+α

∣∣h1(t, c1)
∣∣1+α

]
dt

≤
k(δ1)∑

i=k(c1)+1

bα
i – aα

i
aα

i
H1(τi, c1)u(τi) – H1(δ1, c1)u(δ1) (10)

and
∫

[δ1,d1]
ψ(t)H2(d1, t)

xα(t – σ (t))
xα(t)

dt

+
∫ d1

δ1

H2(d1, t)
[

p0(t) –
r(t)

(1 + α)1+α

∣
∣h2(d1, t)

∣
∣1+α

]
dt

≤
k(d1)∑

i=k(δ1)+1

bα
i – aα

i
aα

i
H2(d1, τi)u(τi) + H2(d1, δ1)u(δ1), (11)

where ψ(t) = η
–η0
0 |f (t)|η0

∏n
i=1 η

–ηi
i (pi(t))ηi with η0 = 1 –

∑n
i=1 ηi and η1,η2, . . . ,ηn are posi-

tive constants satisfying conditions of Lemma 2.5.

Proof Differentiating u(t) and in view of (1), we obtain, for t �= τk ,

u′(t) = –

[ n∑

i=1

pi(t)Φβi–α

(
x
(
t – σ (t)

))
+

|f (t)|
Φα(x(t – σ (t)))

]
Φα(x(t – σ (t)))

Φα(x(t))

–
α

r1/α(t)
∣
∣u(t)

∣
∣1+1/α – p0(t). (12)

Let

v0 = η–1
0

|f (t)|
Φα(x(t – σ (t)))

, vi = η–1
i pi(t)Φβi–α

(
x
(
t – σ (t)

))
, i = 1, 2, . . . , n,

where η1,η2, . . . ,ηn are chosen to satisfy conditions of Lemma 2.5 with η0 = 1 –
∑n

i=1 ηi for
given β1, . . . ,βn and α. Employing the arithmetic–geometric mean inequality (see [32])

n∑

i=0

ηivi ≥
n∏

i=0

vηi
i ,

we have, from (12),

u′(t) ≤ –ψ(t)
xα(t – σ (t))

xα(t)
–

α

r1/α(t)
∣
∣u(t)

∣
∣1+1/α – p0(t), (13)

where

ψ(t) = η
–η0
0

∣∣f (t)
∣∣η0

n∏

i=1

η
–ηi
i

(
pi(t)

)ηi .
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Multiplying both sides of (13) by H1(t, c1) and integrating it from c1 to δ1, we have

∫

[c1,δ1]
H1(t, c1)u′(t) dt ≤ –

∫

[c1,δ1]
ψ(t)H1(t, c1)

xα(t – σ (t))
xα(t)

dt

– α

∫

[c1,δ1]
H1(t, c1)

|u(t)|1+1/α

r1/α(t)
dt

–
∫ δ1

c1

H1(t, c1)p0(t) dt. (14)

Noticing that the impulse moments τk(c1)+1, τk(c1)+2, . . . , τk(δ1) are in [c1, δ1] and using the
integration by parts formula on the left-hand side of the above inequality, we obtain

∫

[c1,δ1]
H1(t, c1)u′(t) dt =

k(δ1)∑

i=k(c1)+1

(
1 –

bα
i

aα
i

)
H1(τi, c1)u(τi) + H1(δ1, c1)u(δ1)

–
∫

[c1,δ1]
H1(t, c1)h1(t, c1)u(t) dt. (15)

Substituting (15) into (14), we obtain

∫

[c1,δ1]
ψ(t)H1(t, c1)

xα(t – σ (t))
xα(t)

dt

≤
k(δ1)∑

i=k(c1)+1

(
bα

i
aα

i
– 1

)
H1(τi, c1)u(τi) – H1(δ1, c1)u(δ1)

–
∫ δ1

c1

p0(t)H1(t, c1) dt +
∫

[c1,δ1]
H1(t, c1)V

(
u(t)

)
dt,

where V (u(t)) = [|h1(t, c1)||u(t)| – α

r1/α (t) |u(t)|1+1/α]. We easily see that

V
(
u(t)

) ≤ sup
u∈R

V
(
u(t)

)
=

r(t)
(1 + α)1+α

∣
∣h1(t, c1)

∣
∣1+α .

Thus, we obtain (10).
Multiplying both sides of (13) by H2(d1, t) and using a similar analysis to the above, we

can obtain (11). The proof is completed. �

Lemma 2.7 Assume that the conditions of Lemma 2.2 hold. Let x(t) be a negative solution
of (1) and u(t) be defined by (8). Then for any (H1, H2) ∈ H we have

∫

[c2,δ2]
ψ(t)H1(t, c2)

xα(t – σ (t))
xα(t)

dt

+
∫ δ2

c2

H1(t, c2)
[

p0(t) –
r(t)

(1 + α)1+α

∣
∣h1(t, c2)

∣
∣1+α

]
dt

≤
k(δ2)∑

i=k(c2)+1

bα
i – aα

i
aα

i
H1(τi, c2)u(τi) – H1(δ2, c2)u(δ2) (16)
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and

∫

[δ2,d2]
ψ(t)H2(d2, t)

xα(t – σ (t))
xα(t)

dt

+
∫ d2

δ2

H2(d2, t)
[

p0(t) –
r(t)

(1 + α)1+α

∣
∣h2(d2, t)

∣
∣1+α

]
dt

≤
k(d2)∑

i=k(δ2)+1

bα
i – aα

i
aα

i
H2(d1, τi)u(τi) – H2(d2, δ2)u(δ2), (17)

where ψ(t) is defined as in Lemma 2.6.

The proof of Lemma 2.7 is similar to that of Lemma 2.6 and will be omitted.
For two constants ν1,ν2 /∈ {τk} with ν1 < ν2 and k(ν1) < k(ν2), using function ϕ ∈

C([ν1,ν2],R) and function φ ∈ C–([ν1,ν2],R), we define a functional Q : C([ν1,ν2],R) →R

by

Qν2
ν1 [ϕ] :=

r̃(bα
k(ν1)+1 – aα

k(ν1)+1)ϕ(τk(ν1)+1)
aα

k(ν1)+1(τk(ν1)+1 – ν1)α
+

k(ν2)∑

k=k(ν1)+2

r̃(bα
k – aα

k )ϕ(τk)
aα

k (τk – τk–1)α
, (18)

where
∑n

m = 0 if m > n, and a functional L : C–([ν1,ν2],R) →R by

Lν2
ν1 [φ] :=

∫ τk(ν1)+1

ν1

φ(t)
(t – τk(ν1) – σ (t))α

(t – τk(ν1))α
dt

+
k(ν2)–1∑

k=k(ν1)+1

[∫ tk

τk

φ(t)
(t – τk)α

bα
k (t – τk + σ (t))α

dt +
∫ τk+1

tk

φ(t)
(t – τk – σ (t))α

(t – τk)α
dt

]

+
∫ tk(ν2)

τk(ν2)

φ(t)
(t – τk(ν2))α

bα
k(ν2)(t – τk(ν2) + σ (t))α

dt

+
∫ ν2

tk(ν2)

φ(t)
(t – τk(ν2) – σ (t))α

(t – τk(ν2))α
dt, (19)

where tk are zero points of Dk(t) on [τk , τk+1] for k = k(ν1) + 1, . . . , k(ν2).
For convenience in the expression below, we define, for j = 1, 2,

Π
δj
cj

[
H1(t, cj)

]
:= Lδj

cj

[
ψ(t)H1(t, cj)

]
+

∫ δj

cj

H1(t, cj)
[

p0(t) –
r(t)

(1 + α)1+α

∣
∣h1(t, cj)

∣
∣1+α

]
dt

and

Π
dj
δj

[
H2(dj, t)

]
:= Ldj

δj

[
ψ(t)H2(dj, t)

]
+

∫ dj

δj

H2(dj, t)
[

p0(t) –
r(t)

(1 + α)1+α

∣
∣h2(dj, t)

∣
∣1+α

]
dt,

where ψ(t) = η
–η0
0 |f (t)|η0

∏n
i=1 η

–ηi
i (pi(t))ηi .
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Theorem 2.1 Assume that, for any T ≥ t0, there exist T < c1 – σ0 < c1 < d1 ≤ c2 – σ0 < c2 <
d2 and (5) and (6) hold. If there exists a pair of (H1, H2) ∈ H such that

Π
δj
cj [H1(t, cj)]
H1(δj, cj)

+
Π

dj
δj

[H2(dj, t)]

H2(dj, δj)
>

Qδj
cj [H1(·, cj)]
H1(δj, cj)

+
Qdj

δj
[H2(dj, ·)]

H2(dj, δj)
, j = 1, 2, (20)

then (1) is oscillatory.

Proof Assume, to the contrary, that x(t) is a nonoscillatory solution of (1). If x(t) is a pos-
itive solution, we choose the interval [c1, d1] to consider.

From Lemma 2.6, we obtain (10) and (11). Applying the estimation (a)–(f ) into the left
side, meanwhile (g)–(i) into the right side, of (10) and (11), we get

Πδ1
c1

[
H1(t, c1)

] ≤ Qδ1
c1

[
H1(·, c1)

]
– H1(δ1, c1)u(δ1) (21)

and

Π
d1
δ1

[
H2(d1, t)

] ≤ Qd1
δ1

[
H2(d1, ·)] + H2(d1, δ1)u(δ1). (22)

Dividing (21) and (22) by H1(δ1, c1) and H2(d1, δ1), respectively, and adding them, we get

Π
δ1
c1 [H1(t, c1)]
H1(δ1, c1)

+
Π

d1
δ1

[H2(d1, t)]
H2(d1, δ1)

≤ Qδ1
c1 [H1(·, c1)]
H1(δ1, c1)

+
Qd1

δ1
[H2(d1, ·)]

H2(d1, δ1)
,

which contradicts (20) for j = 1.
If x(t) is a negative solution of (1), we choose interval [c2, d2] and can get a contradiction

to (20) for j = 2. The details will be omitted.
The proof is complete. �

Remark 2.1 When σ (t) = 0, i.e., the delay disappears and α = 1 in (1), Theorem 2.1 reduces
to Theorem 2.2 in [1].

Remark 2.2 When σ (t) = σ0, i.e., the delay is constant, Theorem 2.1 reduces to Theo-
rem 2.8 in [2].

In Eq. (19), zero points tk of Dk(t) appear at upper limit (or lower limit) of integrals.
However, these zero points are generally not easy to solve from Dk(t) = 0, which will lead
to difficult in the calculation of (19). To overcome this difficulty we need to re-estimate
x(t –σ (t))/x(t) on (tk , τk+1], (τk , tk), (tk(dj), dj) and (τk(dj), tk(dj)) in Lemma 2.1 and Lemma 2.2.

If x(t) is a positive solution of (1), from (a) in Lemma 2.1, we have, for k = k(c1) +
1, . . . , k(d1) – 1, k �= k(δ1),

x(t – σ (t))
x(t)

>
t – τk – σ (t)

t – τk
>

t – τk – σ (t)
t

, t ∈ (tk , τk+1]. (23)

From (b) in Lemma 2.1, we have, for k = k(c1) + 1, . . . , k(d1),

x(t – σ (t))
x(t)

>
t – τk

bk(t + σ (t) – τk)
> 0 >

t – τk – σ (t)
t

, t ∈ (τk , tk]. (24)
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Combining (23) with (24), we obtain estimation of xα(t – σ (t))/xα(t) on (τk , τk+1] for k =
k(c1) + 1, . . . , k(d1) – 1, k �= k(δ1),

(ā)
xα(t – σ (t))

xα(t)
> Φα

(
t – τk – σ (t)

t

)
, t ∈ (τk , τk+1].

Similarly, from (b) and (c) in Lemma 2.1, we have

(b̄)
xα(t – σ (t))

xα(t)
> Φα

(
t – τk(δ1) – σ (t)

t

)
, t ∈ (τk(δ1), tk(δ1)] ∪ (tk(δ1), δ1],

from (b) and (d) in Lemma 2.1, we have

(c̄)
xα(t – σ (t))

xα(t)
> Φα

(
t – τk(d1) – σ (t)

t

)
, t ∈ (τk(d1), tk(d1)] ∪ (tk(d1), d1],

and from (e) and (f ) in Lemma 2.1, we have

(d̄)
xα(t – σ (t))

xα(t)
> Φα

(
t – τk(δ1) – σ (t)

t – τk(δ1)

)
, t ∈ [δ1, τk(δ1)+1],

and

(ē)
xα(t – σ (t))

xα(t)
> Φα

(
t – τk(c1) – σ (t)

t – τk(c1)

)
, t ∈ [c1, τk(c1)+1].

If x(t) is a negative solution of (1), from Lemma 2.2, we can get similar estimations to
the above for t ∈ [c2, d2].

For convenience, we define functional L̃ : C–([cj, dj],R) →R, for j = 1, 2, by

L̃δj
cj [φ] :=

∫ τk(cj)+1

cj

φ(t)Φα

( t – τk(cj) – σ (t)
t – τk(cj)

)
dt

+
k(δj)–1∑

k=k(cj)+1

∫ τk+1

τk

φ(t)Φα

(
t – τk – σ (t)

t

)
dt

+
∫ δj

τk(δj)

φ(t)Φα

( t – τk(δj) – σ (t)
t

)
dt

and

L̃dj
δj

[φ] :=
∫ τk(δj)+1

δj

φ(t)Φα

( t – τk(δj) – σ (t)
t – τk(δj)

)
dt

+
k(dj)–1∑

k=k(δj)+1

∫ τk+1

τk

φ(t)Φα

(
t – τk – σ (t)

t

)
dt

+
∫ dj

τk(δj)

φ(t)Φα

( t – τk(δj) – σ (t)
t

)
dt.
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Further, we define, for j = 1, 2,

Π̃
δj
cj

[
H1(t, cj)

]
:= L̃δj

cj

[
ψ(t)H1(t, cj)

]
+

∫ δj

cj

H1(t, cj)
[

p0(t) –
r(t)

(1 + α)1+α

∣
∣h1(t, cj)

∣
∣1+α

]
dt

and

Π̃
δj
cj

[
H2(dj, t)

]
:= L̃δj

cj

[
ψ(t)H2(dj, t)

]
+

∫ δj

cj

H2(dj, t)
[

p0(t) –
r(t)

(1 + α)1+α

∣∣h2(dj, t)
∣∣1+α

]
dt,

where ψ(t) = η
–η0
0 |f (t)|η0

∏n
i=1 η

–ηi
i (pi(t))ηi .

Using similar proof method to that of Theorem 2.1 and applying estimations (ā)–(ē), we
can obtain following theorem.

Theorem 2.2 Assume that, for any T ≥ t0, there exist T < c1 – σ0 < c1 < d1 ≤ c2 – σ0 < c2 <
d2 and (5) and (6) hold. If there exists a pair of (H1, H2) ∈ H such that

Π̃
δj
cj [H1(t, cj)]
H1(δj, cj)

+
Π̃

dj
δj

[H2(dj, t)]

H2(dj, δj)
>

Qδj
cj [H1(·, cj)]
H1(δj, cj)

+
Qdj

δj
[H2(dj, ·)]

H2(dj, δj)
, j = 1, 2, (25)

then (1) is oscillatory.

3 Example
In this section, we give an example to illustrate the effectiveness and non-emptiness of our
results.

Example 3.1 Consider the following equation:

x′′(t) + μ1p1(t)Φ 5
2

(
x
(
t – σ (t)

))
+ μ2p2(t)Φ 1

2

(
x
(
t – σ (t)

))
= f (t), t �= τk ,

x
(
τ+

k
)

= akx(τk), x′(τ+
k
)

= bkx′(τk), k = 1, 2, . . . ,
(26)

where Φ∗(s) = |s|∗–1s, σ (t) = 1
3 sin2(π t), μ1, μ2 are positive constants and τk : τn,1 = 8n + 3

2 ,
τn,2 = 8n + 5

2 , τn,3 = 8n + 11
2 , τn,4 = 8n + 13

2 , n ∈N.
Let

p1(t) = p2(t) =

⎧
⎪⎪⎨

⎪⎪⎩

(t – 8n), t ∈ [8n, 8n + 3],

3, t ∈ [8n + 3, 8n + 5],

(8n + 8 – t), t ∈ [8n + 5, 8n + 8],

and

f (t) =

⎧
⎨

⎩
(t – 8n)(t – 8n – 4)3, t ∈ [8n, 8n + 4],

(t – 8n – 4)3(8n + 8 – t), t ∈ [8n + 4, 8n + 8].

For any t0 > 0, we choose n large enough such that t0 < 8n and let [c1, d1] = [8n+1, 8n+3],
[c2, d2] = [8n + 5, 8n + 7], δ1 = 8n + 2 and δ2 = 8n + 6. We see that there has a zero point of
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Dk(t) on each interval of [c1, δ1], [δ1, d1], [c2, δ2] and [δ2, d1]. By approximate calculation,
we get t1 ≈ 8n + 1.709, t2 ≈ 8n + 2.710, t3 ≈ 8n + 5.709 and t4 ≈ 8n + 6.710. Moreover,
from conditions α = 1, β1 = 5/2 and β2 = 1/2, we can choose η1 = 1/3, η1 = 1/3 and η0 =
1 – η1 – η2 = 1/3. So, the conditions of Lemma 2.5 are satisfied.

Letting H1(t, s) = H2(t, s) = (t – s)2 and h1(t, s) = –h2(t, s) = 2
t–s . By simple calculation, we

have, for t ∈ [c1, δ1],

∫ δ1

c1

H1(t, c1)
[

p0(t) –
r(t)

(1 + α)1+α

∣
∣h1(t, c1)

∣
∣1+α

]
dt

=
∫ 8n+2

8n+1
(t – 8n – 1)2

(
0 –

22

22(t – 8n – 1)2

)
dt = –1.

Let

φ1(t) := ψ(t)H1(t, c1) = η
–η0
0

∣∣f (t)
∣∣η0

2∏

i=1

η
–ηi
i

(
pi(t)

)ηi (t – c1)2

= 3 3√μ1μ2(t – 8n)(t – 8n – 4)(t – 8n – 1)2.

Then

Lδ1
c1

[
φ1(t)

]
=

∫ 8n+ 3
2

8n+1
φ1(t)

t – 8n + 3
2 – 1

3 sin2(π t)
t – 8n + 3

2
dt

+
∫ t1

8n+ 3
2

φ1(t)
t – 8n – 3

2

bn,1(t – 8n – 3
2 + 1

3 sin2(π t))
dt

+
∫ 8n+2

t1

φ1(t)
t – 8n – 3

2 – 1
3 sin2(π t)

t – 8n – 3
2

dt

= 3 3√μ1μ2

(∫ 3
2

1

t(4 – t)(t – 1)2(t + 3
2 – 1

3 sin2(π t))
t + 3

2
dt

+
∫ 1.709

3
2

t(4 – t)(t – 1)2(t – 3
2 )

bn,1(t – 3
2 + 1

3 sin2(π t))
dt

+
∫ 2

1.709

t(4 – t)(t – 1)2(t – 3
2 – 1

3 sin2(π t))
t – 3

2
dt

)

≈ 3 3√μ1μ2

(
2.373 +

0.2551
bn,1

)
.

Therefore,

Πδ1
c1

[
H1(t, c1)

]
= 3 3√μ1μ2

(
2.373 +

0.2551
bn,1

)
– 1.

Similarly, for t ∈ [δ1, d1], we have

φ2(t) := ψ(t)H2(d1, t) = 3 3√μ1μ2(t – 8n)(8n + 4 – t)(8n + 3 – t)2,
∫ d1

δ1

H2(d1, t)
[

p0(t) –
r(t)

(1 + α)1+α

∣∣h2(d1, t)
∣∣1+α

]
dt = –1,
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and

Ld1
δ1

[
φ2(t)

]
= 3 3√μ1μ2

(∫ 5
2

2

t(4 – t)(3 – t)2(t – 3
2 – 1

3 sin2(π t))
t – 3

2
dt

+
∫ 2.71

5
2

t(4 – t)(3 – t)2(t – 5
2 )

bn,2(t – 5
2 + 1

3 sin2(π t))
dt

+
∫ 3

2.71

t(4 – t)(3 – t)2(t – 5
2 – 1

3 sin2(π t))
t – 5

2
dt

)

≈ 3 3√μ1μ2

(
2.964 +

0.078
bn,2

)
.

Therefore,

Π
d1
δ1

[
H2(d1, t)

]
= 3 3√μ1μ2

(
2.964 +

0.078
bn,2

)
– 1.

Since

H1(δ1, c1) = (δ1 – c1)2 = 1, H2(d1, δ1) = (d1 – δ1)2 = 1,

the left-hand side of inequality (20) is

Π
δ1
c1 [H1(t, c1)]
H1(δ1, c1)

+
Π

d1
δ1

[H2(d1, t)]
H2(d1, δ1)

≈ 3 3√μ1μ2

(
5.337 +

0.255
bn,1

+
0.078
bn,2

)
– 2.

Because r̃1 = r̃2 = 1, τk(c1)+1 = τk(δ1) = τn,1 = 8n + 3
2 ∈ (c1, δ1) and τk(δ1)+1 = τk(d1) = τn,2 =

8n + 5
2 ∈ (δ1, d1), it is easy to see that the right-hand side of inequality (20) for j = 1 is

Qδ1
c1 [H1(·, c1)]
H1(δ1, c1)

+
Qd1

δ1
[H2(d1, ·)]

H2(d1, δ1)
=

bn,1 – an,1

4an,1
+

bn,2 – an,2

4an,2
.

Thus (20) is satisfied with j = 1 if

3 3√μ1μ2

(
5.337 +

0.255
bn,1

+
0.078
bn,2

)
> 2 +

bn,1 – an,1

4an,1
+

bn,2 – an,2

4an,2
.

When j = 2, with the same argument as above we see that the left-hand side of inequality
(20) is

Π
δ2
c2 [H1(t, c2)]
H1(δ2, c2)

+
Π

d2
δ2

[H2(d2, t)]
H2(d2, δ2)

= 3 3√μ1μ2

(∫ 3
2

1

t(4 – t)(t – 1)2(t + 3
2 – 1

3 sin2(π t))
t + 3

2
dt

+
∫ 1.709

3
2

t(4 – t)(t – 1)2(t – 3
2 )

bn,3(t – 3
2 + 1

3 sin2(π t))
dt

+
∫ 2

1.709

t(4 – t)(t – 1)2(t – 3
2 – 1

3 sin2(π t))
t – 3

2
dt
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+
∫ 5

2

2

t(4 – t)(3 – t)2(t – 3
2 – 1

3 sin2(π t))
t – 3

2
dt

+
∫ 2.71

5
2

t(4 – t)(3 – t)2(t – 5
2 )

bn,4(t – 5
2 + 1

3 sin2(π t))
dt

+
∫ 3

2.71

t(4 – t)(3 – t)2(t – 5
2 – 1

3 sin2(π t))
t – 5

2
dt

)
– 2

≈ 3 3√μ1μ2

(
5.337 +

0.255
bn,3

+
0.078
bn,4

)
– 2,

and the right-hand side of inequality (20) is

Qδ2
c2 [H1(·, c2)]
H2(δ2, c2)

+
Qd2

δ2
[H2(d2, ·)]

H2(d2, δ2)
=

bn,3 – an,3

4an,3
+

bn,4 – an,4

4an,4
.

Therefore, (20) is satisfied for j = 2, if

3 3√μ1μ2

(
5.337 +

0.255
bn,1

+
0.078
bn,2

)
> 2 +

bn,3 – an,3

4an,3
+

bn,4 – an,4

4an,4
.

Hence, by Theorem 2.1, Eq. (26) is oscillatory, if

⎧
⎨

⎩
3 3√μ1μ2(5.337 + 0.255

bn,1
+ 0.078

bn,2
) > 2 + bn,1–an,1

4an,1
+ bn,2–an,2

4an,2
,

3 3√μ1μ2(5.337 + 0.255
bn,1

+ 0.078
bn,2

) > 2 + bn,3–an,3
4an,3

+ bn,4–an,4
4an,4

.
(27)

Acknowledgements
The authors sincerely thank the editors and reviewers for their valuable suggestions and useful comments that have led
to the present improved version of the original manuscript.

Funding
This work has been supported by the NNSF of China [Grant No. 11561019], the Science and Technology Planning Projects
of Guangdong Province [Grant No. 2017A030303085] and of Zhanjiang City [Grant No. 2016A01001], the Key Subject
Program of Lingnan Normal University [Grant No. 1171518004] and the Special Funds for the Cultivation of Guangdong
College Students’ Scientific and Technological Innovation [Grant No. pdjh0304].

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Each of the authors, XZ, CL and RC contributed to each part of this study equally and read and approved the final version
of the manuscript.

Author details
1Department of Mathematics, Lingnan Normal University, Zhanjiang, P.R. China. 2Department of Mathematics,
Guangdong Ocean University, Zhanjiang, P.R. China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 26 July 2018 Accepted: 12 December 2018

References
1. Liu, X., Xu, Z.: Oscillation criteria for a forced mixed type Emden–Fowler equation with impulses. Appl. Math. Comput.

215, 283–291 (2009)



Zhou et al. Advances in Difference Equations         (2019) 2019:16 Page 15 of 15

2. Guo, Z., Zhou, X., Wang, W.S.: Interval oscillation criteria of second order mixed nonlinear impulsive differential
equations with delay. Abstr. Appl. Anal. 2012, Article ID 351709 (2012)

3. Wong, J.S.W.: Oscillation criteria for a forced second order linear differential equation. J. Math. Anal. Appl. 231,
235–240 (1999)

4. Li, W.T.: Interval oscillation theorems for second-order quasi-linear nonhomogeneous differential equations with
damping. Appl. Math. Comput. 147, 753–763 (2004)

5. Wong, Q.: Interval criteria for oscillation of second-order nonlinear differential equations. J. Comput. Appl. Math. 205,
231–238 (2007)

6. Wong, Q., Yang, Q.: Interval criteria for oscillation of second-order half-linear differential equations. J. Math. Anal. Appl.
291, 224–236 (2004)

7. Çakmak, D.: Interval integral averaging technique for the interval oscillation criteria of certain second-order nonlinear
differential equations. J. Math. Anal. Appl. 300, 408–425 (2004)

8. Liu, X., Xu, Z.: Oscillation of a forced super-linear second order differential equation with impulses. Comput. Math.
Appl. 53, 1740–1749 (2007)

9. Özbekler, A., Zafer, A.: Forced oscillation of super-half-linear impulsive differential equations. Comput. Math. Appl. 54,
785–792 (2007)

10. Özbekler, A., Zafer, A.: Interval criteria for the forced oscillation of super-half-linear differential equations under
impulse effects. Math. Comput. Model. 50, 59–65 (2009)

11. Zhou, X., Guo, Z., Wang, W.S.: Interval oscillation criteria for nonlinear impulsive delay differential equations with
damping term. Appl. Math. Comput. 249, 32–44 (2014)

12. Zhou, X., Wang, W.S.: Interval oscillation criteria for nonlinear impulsive differential equations with variable delay.
Electron. J. Qual. Theory Differ. Equ. 2016, 101 (2016)

13. Agarwal, R.P., Anderson, D.R., Zafer, A.: Interval oscillation criteria for second-order forced delay dynamic equations
with mixed nonlinearities. Comput. Math. Appl. 59, 977–993 (2010)

14. Sun, Y.G., Wong, J.S.W.: Oscillation criteria for second order forced ordinary differential equations with mixed
nonlinearities. J. Math. Anal. Appl. 334, 549–560 (2007)

15. Sun, Y.G., Meng, F.W.: Interval criteria for oscillation of second-order differential equations with mixed nonlinearities.
Appl. Math. Comput. 15, 375–381 (2008)

16. Nazr, A.H.: Sufficient conditions for the oscillation of forced super-linear second-order differential equations with
oscillatory potential. Proc. Am. Math. Soc. 126, 123–125 (1998)

17. Kong, Q.: Interval criteria for oscillation of second-order linear ordinary differential equations. J. Math. Anal. Appl. 229,
258–270 (1999)

18. Li, T., Rogovchenko, Y.V.: Oscillation of second-order neutral differential equations. Math. Nachr. 288, 1150–1162
(2015)

19. Li, T., Rogovchenko, Y.V.: Oscillation criteria for second-order superlinear Emden–Fowler neutral differential equations.
Monatshefte Math. 184, 489–500 (2017)

20. Li, T., Rogovchenko, Y.V.: On asymptotic behavior of solutions to higher-order sublinear Emden–Fowler delay
differential equations. Appl. Math. Lett. 67, 53–59 (2017)

21. Yang, Q.: Interval oscillation criteria for a forced second order nonlinear ordinary differential equations with oscillatory
potential. Appl. Math. Comput. 135, 49–64 (2003)

22. Özbekler, A.: Oscillation of solutions of second order mixed nonlinear differential equations under impulsive
perturbations. Comput. Math. Appl. 61, 933–940 (2011)

23. Huang, M., Feng, W.: Forced oscillations for second order delay differential equations with impulses. Comput. Math.
Appl. 59, 18–30 (2010)

24. Guo, Z., Zhou, X., Ge, W.: Interval oscillation criteria for second-order forced impulsive differential equations with
mixed nonlinearities. J. Math. Anal. Appl. 381, 187–201 (2011)

25. Zhou, X., Wang, W.S., Chen, R.Y.: Interval oscillation criteria for nonlinear impulsive differential equations with variable
delay. Appl. Math. Lett. 75, 89–95 (2018)

26. Philos, C.G.: Oscillation theorems for linear differential equations of second order. Arch. Math. 53, 482–492 (1989)
27. Agarwal, R.P., Zhang, C., Li, T.: New Kamenev-type oscillation criteria for second-order nonlinear advanced dynamic

equations. Appl. Math. Comput. 225, 822–828 (2013)
28. Agarwal, R.P., Bohner, M., Li, T., Zhang, C.: A Philos-type theorem for third-order nonlinear retarded dynamic

equations. Appl. Math. Comput. 249, 527–531 (2014)
29. Bohner, M., Li, T.: Kamenev-type criteria for nonlinear damped dynamic equations. Sci. China Math. 58, 1445–1452

(2015)
30. Bohner, M., Hassan, T.S., Li, T.: Fite–Hille–Wintner-type oscillation criteria for second-order half-linear dynamic

equations with deviating arguments. Indag. Math. 29, 548–560 (2018)
31. Yang, J., Li, T.: A Philos-type theorem for second-order neutral delay dynamic equations with damping. Adv. Differ.

Equ. 2016, 44 (2016)
32. Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1964)


	The Kamenev type interval oscillation criteria of mixed nonlinear impulsive differential equations under variable delay effects
	Abstract
	Keywords

	Introduction
	Main results
	Example
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


