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1 Introduction
Solving the viscoelastic fluid flow model is a great challenge due to the slow flow and
the hyperbolic nature of the constitutive equation [1]. Owing to the complex structure of
viscoelastic fluid, it is not solvable similarly to the Navier—Stokes equation. The difficulty
arises in performing correct numerical computations due to the hyperbolic character of
the constitutive equation, which does not include a dissipative (stabilizing) term for the
stress. As a result, a certain technique must be used to discretize the constitutive equation
for approximation. It was a great challenge for scientists and researchers to formulate a
new mathematical model that can describe the large deformation of the viscoelastic fluid
flow. In 1950, James G. Oldroyd was the first to develop a constitutive equation to model
the large deformation of the viscoelastic fluids in [2]. By using Oldroyd’s original work
many other constitutive equations have been formulated to describe different features of
the viscoelastic fluids, for example, the Phan—Thien—Tanner model, the Maxwell model,
the Jeffrey model, the Johnson—Segalman model, and so on [3-7].

Over the last decades, significant progress has been made in the development of numer-
ical approximation for the stable and accurate solutions of the viscoelastic flow problems.

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

L]
@ Sprlnger vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and

indicate if changes were made.


https://doi.org/10.1186/s13662-018-1916-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-018-1916-0&domain=pdf
mailto:hbzheng@math.ecnu.edu.cn

Hussain et al. Advances in Difference Equations (2018) 2018:461 Page 2 of 19

Currently, the literature on the FE method is burgeoning to approximate the viscoelas-
tic fluid flow model equations by using a variety of alternative stabilization formulations.
The most common among them are streamline-upwind Petrov—Galerkin (SUPG) meth-
ods [8], discontinuous Galerkin (DG) methods [9], decoupled FE methods [10], multigrid
methods [11], variational multiscale methods [12], and so on.

We consider the DG method for the mixed FE approximation of the viscoelastic fluid
flow. To the best of our knowledge, Reed and Hill [13] were the first who studied the DG
technique. To deal with the hyperbolic nature of the constitutive equation, Lesaint and
Raviart [14] analyzed the DG method on the neutron transport equation. Fortin and Fortin
[15] first introduced the DG method for the viscoelastic fluid flow. Baranger and Sandri
[16] analyzed the stability and error estimates for the steady-state viscoelastic flow by using
the DG method. Zhang et al. [17] studied and obtained unconditional error estimate for
the viscoelastic fluid flow with the DG method.

The Oseen fluid flow model is the reduced linearized form of the Newtonian fluid de-
scribed by the Navier—Stokes equation [18]. The nonlinear convective term of the Navier—
Stokes equation can be reduced to a linear system by replacing the unknown velocity with
a known velocity field. The non-Newtonian fluid flow obeying the Oldroyd-B model is the
combination of conservation of momentum equation and constitutive equation. Under the
assumption of the creeping flow, the nonlinearity vanishes in the momentum equation of
the Oldroyd-B model. So in the viscoelastic fluid flow model, the nonlinearity occurs only
in the constitutive equation [19], which can be reduced to a linear form by fixing veloc-
ity u with a known velocity field b(x). The resulting system of equations can be explicitly
described with the parameter space for «, X, and ||Vb||,, which guarantee the existence
and uniqueness condition for the solution of the continuous problem and its numerical
approximation [20-22]. To solve the Oseen viscoelastic fluid flow, many methods have
been formulated and discussed; the reader can see [23—26] and the references therein.

We study the mixed FE method to approximate the Oseen viscoelastic fluid flow, which
is developed to approximate both scalar (pressure) variables and vector (velocity) vari-
ables simultaneously. The mixed FE method in viscoelastic fluid flow [27] introduces two
spaces for the approximation of pressure and velocity. These two spaces must satisfy the
inf-sup or the Ladyzhenskaya—Babuska—Breezi (LBB) condition for the stability [28, 29].
Here in our interest, during the implementation of the mixed FE method, we prefer to
choose lowest equal-order FE triples p1 — p1 — plg4, to approximate the solution of linear
velocity, linear pressure, and discontinues stress. We claim that our choice in the sense of
FE will be more convenient to approximate the unknowns. However, these elements fail
to satisfy the inf-sup condition [30]. The violation of the inf-sup condition often leads to
nonphysical pressure oscillation. Therefore, a stabilization term might be introduced. Sta-
bilization methods are often used to overcome the difficulty associated with the stability of
the lowest order mixed FE method. The discussion about stabilization of mixed FE meth-
ods and the stability term is analyzed briefly in [31]. Moreover, the lowest equal-order FE
methods are easily implementable in a scientific computational sense as compared to the
higher-order FE. The lowest order FE and stabilization methods have been considered in
the Stokes equation [32], the Navier—Stokes equation [33, 34], and the Stokes—Darcy fluid
flow model [35]. So far, this method is novel to solve the Oseen viscoelastic fluids with the

lowest equal-order FE.
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This paper focuses on stabilization of lowest equal-order FE triples for the approximate
solution of unknowns in the Oseen viscoelastic fluid flow model with the DG method.
The method introduces a stabilized term with respect to the pressure space to get around
the inf-sup condition. It has several important aspects; most notably, the new method
is free of nonstandard data structures, approximation of higher-order derivatives, and
specification of mesh-dependent parameters. Furthermore, the stabilized lowest equal-
order method can be cast in the framework of the Oseen viscoelastic fluid flow with all
the advantages discussed. The stability and optimal convergence order of the temporal
discretized scheme are derived. To show the validation of the theoretical analysis, three
numerical tests are executed, which reveal the efficiency of the Oseen viscoelastic fluid
flow model.

The rest of the paper is organized as follows. In Sect. 2, we introduce the governing equa-
tions for Oseen viscoelastic fluid flow model, the notations, and preliminaries. The varia-
tional formulation, spatial discretization, and some well-known lemmas are discussed in
Sect. 3. To justify the proposed lowest equal-order FE algorithm, the well-posedness and
optimal convergence analysis are derived in Sect. 4. The results of the numerical simula-
tions of three different experiments are illustrated in Sect. 5 to validate the efficiency and
accuracy of the stabilization method. Finally, in Sect. 6, we summarize this work by a short

conclusion.

2 Model equations
We consider the following two-dimensional (2D) steady-state (Johnson—Segalman) model
equations under the influence of applied forces and stress [36, 37]:

T+ A(u- V1) + Ag, (7, Vu) - 2aD(u) = 0, (2.1)

where A is the Weissenberg number [38]. The term g,(z, Vu) is defined as

l-a

1
g,(t,Vu) = (t(Vu) + (Vu)Tr) - %((VU)T + I(Vu)T), (2.2)
where a € [-1,1] is related to the material parameter. Specifically, the choice of a = 1 rep-
resents the Oldroyd-B constitutive model, which is the reduced form of the Johnson—
Segalman model. The momentum equation under the influence of the force f can be writ-

ten as
(u-Vu-V -1 =f,

where 1yt = —pI + Ty + T denotes the total stress tensor with the Newtonian and viscoelas-
tic parts 7y and 7. The Newtonian part is given by Ty = 2(1 — «)D(u), and the deformation
tensor is defined as

D(u) = %(Vu +(Vu)h).

The gradient of u is defined such that (Vu);; = g—;/‘ = u;;. The viscoelastic flow is essential
for understanding many problems in non-Newtonian fluid mechanics, especially those re-
lated to flow instabilities [36]. The factor (1 — «) represents the part of the total viscosity
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that is considered Newtonian. Hence « € (0, 1) describes the proportion of the total vis-
cosity that is considered to be viscoelastic in nature. For example, if a polymer is immersed
within a Newtonian carrier fluid, then « is related to the percentage of polymer in the mix.

Based on the full information, the momentum equation reads as

(u-V)u-21-a)V-D(u)-V -1+ Vp=Hf. (2.3)

Guillopé and Saut [20] proved equation (2.3) for the assumption of creeping flow

(u- V)u = 0. So the viscoelastic fluid flow follows as

21-a)V-D(w)-V -7+ Vp=H1. (2.4)

2.1 Model problem

We consider the steady-state model equations under the open, bounded, and connected
domain £2. For the velocity u, we impose the homogenous Dirichlet boundary condition.
In this case, there is no inflow boundary, and thus no boundary condition is required for

stress. Hence by summarizing the modeling equations are

T+ Au- V)T +Ag,(7,Vu) —2aD(u) =0 in £2, (2.5)
Vp-2(1-a)V-Du)-V-t=f in$2, (2.6)
V.u=0 ing, (2.7)
u=0 onl, (2.8)

where f denotes the body force, 7 is the polymeric stress tensor, u is the velocity vector
field, p is the pressure, and A is the Weissenberg number (defined as the product of the
relaxation time and a characteristic strain rate). Assume that p has zero mean value over
the domain £2. The existence and uniqueness of equations (2.5)—(2.8) are discussed in
[39, 40].

In the analysis, we consider the Oseen system as a linearization of viscoelastic model
equations. For the ease of presentation, we suppose homogeneous Dirichlet boundary

conditions with given velocity b(x).

Problem (O) Find the solution of (z,u, p) such that

T+ A(b- V)t +Ag,(7,Vb)—2aD(u) =0 in £2, (2.9)
Vp-21-a)V-Dw)-V-7=f inf2, (2.10)
V.u=0 in$2, (2.11)
u=0 onl. (2.12)

We make the following assumption for b(x) [39]: there exists M > 0 such that

beHy(2), V-b=0, [bl<M, [|[Vb]sx<M<oo.
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2.2 Variational formulation

For the mathematical setting, we introduce some basic notations. For m € N, the norm
is associated with the Sobolev space W?(£2) by || - [|wm»; the particular case W2(£2)
is written as H™(§2) with the norm || - ||,, and seminorm | - |,,, [41]. The inner product
and norm in L%($2) are denoted by (-,-) and || - || = | - || 2, respectively. The L?(£2) norm
is denoted by || - [|1»; in the particular cases of L*(£2) and L>®(£2), the norms are denoted
by || - || and || - [lc. The function spaces for the velocity u, pressure p, and stress t are
introduced as follows:

X:=Hy(2)*:={veH (2)*:v=00nT},
Q:=L13(2)= {q eL*(2): / qdx = o},
2
S={r=(v)ty =115 € L*(2);0,j = 1,2}
N{r = ()b V1 € L*(£2)*?,¥b e X }.

To find the corresponding variational formulation of Problem (O), we take the inner prod-
uct of stress, velocity, and pressure test functions o, v, and g, respectively.
Given f € H™1(£2), find (t,u,p) € S x X x Q such that

(t,0) + A((b-V)1,0) + A(gi(7, Vb),0) - 20(D(m),0) =0 Vo €35, (2.13)
-,V -v) +2(1 - a)(D(w),D(v)) + (1,D(v)) = (f,v) VveX, (2.14)
(¢ V-u)=0 VgeQ. (2.15)

Note that the velocity and pressure spaces X and Q satisfy the inf—sup (or LBB) condition:

(q,V-v)
up

vex Vi

> Cligllo, VYg€Q,

where the constant C > 0 is independent of /. For further simplification, we multiply 2«
with equations (2.14)—(2.15) and add the resulting equations together with (2.13). Then,
we use the bilinear form A and B for convenience:

A((t,u,p),(0,v,9) = (t,0) + A(ga(r, Vb),0) — 2a(D(u), o)

+20(7,D(v)) +4a(1 - a)(D(u), D(v))

—-2a(p,V -v) +2a(q,V - u), (2.16)
AB(b,7,0)=A((b- V)7,0). (2.17)

By using the bilinear form A((+), () and B, -, -) equations (2.13)—(2.15) can be writ-
ten as

A((t,u,p), (0,v,9)) + xB(b,7,0) = 2u(f, V). (2.18)
An equivalent formulation of (2.18) can be written as

ZL((t,w,p),(0,v,9)) =2a(f,v) V(o,v,q) €Sx X xQ, (2.19)

Page 5 of 19
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where
g((r, w,p),(0,v,9)) =A((z,w,p), (0,v,9)) + AB(b,7,0).

3 Discontinuous FE approximation

The DG and SUPG methods [42, 43] are commonly used to solve the Oseen viscoelastic
fluid flow problems. For discontinuous stress, we use the DG method as an upwinding
technique. Let 7" denote a triangulation of £2 such that 2= {UK : K € T"}. Assume that
there exist positive constants r;, r such that

rih < hx < rypk,

where /i is the diameter of the triangle K, px is the diameter of the greatest ball included
in K, and & = max.» hg. Accordingly, we define discrete subspaces for the FE approxi-
mation of equation (2.19):

X":={ve XN C%2)%vik € PL(K)? YK € T},
Q":={ge QN C(2);qi € PI(K) VK e T"},

sh:={o € ;01 € PIK)*? VK € T},

where P; (K) denotes the space linear polynomial of degree set on K € T". Some notations
are introduced for approximating the discontinuous stress, which is analyzed elsewhere
[17, 37, 44]. We define 4K~ (b) = {x € dK;b(x) - n(x) < 0}, where 3K is the boundary of
K € T", n is the outward unit normal to 3K, and

ri={Jok:ker |\ T,

ri(b(x)) = lim r(x =+ sb(x)).

£—0

Also, for any (z,0) € [ [H'(K)]*, we define

(T’G)h = Z (T’O-)K;

KeTh

(0= 2 fa (T ®) - blds

KeTh

(<ti>>2,b = (Ti’Ti>h,b’

1/2
2
I llorn = (Z Irlo,aK) :

KeTh

The term ((b - V)7,0) is approximated by means of an operator B" on (X", S",S"), which
is stated in [36] by

B'(b,7",0") = (b-V)7",0"), + 112)(V - be", ") + [ = 7", 0™),

=—((b- V)o", th)h - (1/2)(V -bo, rh) + (rh‘,oh‘ - o}”)h,b,

=(b- V)" o"), + (" -1, 0™) ifV-b=0. (3.1)

hb’
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Thus

i ho_hy _ e _h-\2
B'(b, 7", <") = (112)((c" - ")), , = 0. (3.2)
Due to the choice of lowest equal-order FE triples, the scheme is not stable in discrete
formulation. Hence it needs a stabilization term to circumvent the inf-sup condition. To
ensure stabilization, we introduce a symmetric, nontrivial, and bilinear stabilization term

that is free of penalizing parameter. It is proposed and applied in [29, 33, 45-48]:
G(p"q") = (- mp", (1 - Mq"),

where IT : L2(£2) — Ry is the standard L2-projection into the piecewise constant space Ro
associated with the partition T”, and I is the identity. The projection operator IT has the
following properties:

IIpllo = Clipllo, lp = Ipllo < Chlipll1. (3.3)

Throughout the paper, we use C to denote a generic positive constant whose value may
change from place to place, but it remains independent of the mesh size 4. To the best
of our knowledge, so far, this method has never been presented in the literature on the
Oseen viscoelastic fluids. We state some lemmas that result from [29, 32, 34, 35] directly
to specify the bounds.

Lemma 3.1 Let Q" and X" be the spaces. Then there exist positive constants C; and C,

such that
i h
'V -v'dQ
wp L2V VAL i - conlvpl, e @ 69
Vhexh v 1
Proof Thanks to [29]. O

Lemma 3.2 There exists a positive nonzero constant C such that
Ch|Vp"], < |p" - 1P|, (3.5)
Proof Thanks to [29]. g

Now, the stabilized scheme for the approximation of the Oseen viscoelastic fluid flow
problem for the lowest equal-order triples is formed in the discrete way as

Problem (Op,) Find (u", v, p") € (X" x §" x Q") such that, for all (¢”,v", 4") € (§" x X" x
Q")

Z((rh,uh,ph), (ah,vh,qh)) =2a(f, vh), (3.6)
and hence

(0 0), (0 V) = (74,0%) + 2 ea(r", VB), o) ~ 2 (D(u)0")

+2a (", D(v")) + 4a(1 - &) (D(u"), D(v"))
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—2a(p", V- V') + 20(q", V - u")
+ ZaG(ph, qh) +AB" (b, , oh). (3.7)
We finish this section with the inverse inequalities and some approximation facts [44].

If @ € X" is defined as the interpolant of u in X, 7" € Q" is the orthogonal projection of
p € Q,and 7" € §" is the orthogonal projection of T on T" in S, then we have:

Ju—a"], +h|V(a-&")|, < Ch|ull, (3.8)
lp-7"|, < Chlpls, (3.9)
|t 2", + H|V(z - ") |, < CH*Il2. (3.10)

The inverse estimates are defined as [23, 44]

Ve[, < crt|"], t"est (3.11)

0’

[ lo,0s < CH'? 2 hesh. (312)

"o
4 Existence and uniqueness of Problem (Op,) and error bound

In this section, we analyze the existence and uniqueness of the developed stabilized
scheme with the lowest equal-order triples for the FE approximation of the Oseen vis-
coelastic problem.

Theorem 4.1 Let f € HY(2). If 1 — 2AMd > 0. Then there exists a unique solution
(", u",p") e (S" x X" x Q") of (3.6).

Proof Equation (3.6) is equivalent to

Z((" " p"), (0" V", 4"))
:F(oh,vh,qh) V(ah,vh,qh) eS" x X" x Qh, (4.1)

where F : S* x X" — R is the functional defined by
F(Uh,vh,qh) =2a (f, vh).
By simple calculation the functional F can be bounded as

F(o" v, q")| < 2|4 V"],

<2a/fll-1[|(o" V", " (4.2)

) ‘H(ththQh)’

1
where (", V", @)l s xn gy = (o™ 15 + IV 17 + 114" 113) 2

We prove that the bilinear form .Z((-,-,-), (-,-,-)) is continuous in (§* x X" x Q"). By
using (3.11) we have

B'(b,7",6") = ((b- V)7",0"), + (" =", 0"),

= C[”bHOOHVThHO,h “Uh”o + ”bHOOH 7/ Ho,rh Hahuo,rh]
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= CM[[ Voo g + blloe (2 2 [ ) (0™ )]
= CM(I <o) lo" g + Mmoo ]

< i 2] o, 3)
It is easy to get

*ea(z", Vb),0") = 2411 Vblloo " o |"

<24t | o', .
By combining all the bounded terms we have

Z((x"uh, ), (o",v", "))
= [ ol o+ 28an] <", o]
+20 [ D) oo [ + 2o =" | D(V)

+4a(l-a)[D(u")], | D(+")

lo

lo

+ 2ad| " ||V, + 2ad " [ [ VY]

+2alp" 4", + M~ <" 0"
= " w2 st 1"V a5ty (45)
which proves the continuity.

To prove the weak coercivity, suppose that there is a positive constant 7", independent
of &, such that for all (rh,uh,ph) eS" x X" x Q"

h yh o h h yh h
w a2 T ] 19
(o vh,ghyeShx Xhx Qh |||(0' VL g )”'

Firstly, for all p" € Q" C Q, let w € X be such that (V - w,p") = ||ph||(2) and |wll; < T1Ip" |lo.
Assigning the value in FE approximation for normalization of w” € X" of w 29, 32, 34,
49], assume that

W, <7l )
Thanks to [29],

[ Va2 =l - cla - mp 12, @8)
By substituting v = u” — £w", 4" = p”, and ¢” = t” into (4.1) with & € R we have

ZL((" " p"), (7" u" - W, p))

=Z(("u"p"), (", p") + 2 (", pP), (0,-£w", 0)). (4.9)

The right-hand side of (4.9) can be bounded in the following way.

Page 9 of 19
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First term of (4.9). Thanks to (3.2), (3.7), and (4.4), we have
Z((rh,uh’ph)’ (_L,h’uh,ph))
= 7o + 2(ga(x", V), 7") + 41 - ) | D(u") |5
+ 20 || - H)ph ||§ + ()»/2)((11“+ _h >2’b
= |7y - 2aMd " g + 41 - o) | D(u*)]

b

la

+2a || - H)ph ||§ + (A/Z)((rh+ _h >z'b. (4.10)

)
(
+2a (I - MP"|% + G2 - ),
> (1-2AMd) | "] + 4er(1 - )| D(w")

)

Second term of (4.9).

Z(("u"p"), (0.-5w",0))
= —4a(1 - ) (D(u"), D(W")) - 2£ (t", D(W")) + 20£ (p", V - W"). (4.11)

To estimate the right-hand side of equation (4.11), using (3.8), (4.7), (4.8), and Young’s
inequality, we have

4a(1 - @) (D(u"), D(W")) < 4a(1 - )& [D(") |, |DW") ],
<4a(1- )t |D(W") |, 10]2" |,

- 4a(l-a)?E7¢
< c

206 (e, D(wW")) = 20 " | D(W")

[P g + 40 il 5

lo

<2075 ", |7"],

2
0’

< 20877 2|2+ 2Ciat |
1
and

208 (p",V - W) 2 205 (1|, - G| - P [[£],)
= 205 C[p | - 205G |1 - "1
CZ
= 20£C |p" o - 205 ¢ lu-my" o205 Cillp"
Substituting all the bounds into (4.11), we obtain
Z((e" ", p"), (0,-£w",0))
4a(1 - oz)z“g‘TO2

1
> e s - R o

C2
+4asC || - 20k é |- mp"|;. (4.12)

Page 10 of 19
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As a result, combining the bounded terms (4.10)—(4.12), it is easy to see that

L(( o, p), (2" u - ew!, p)
1
> (1 —2AMd - 2agroza> I s

da(l-a)?ETY

+ (s01-0 - O Y g

C2
raacCilp/ |+ 2a(1-6 2 ) fu- mpl;
2 G| oo+ Gl D() [+ G5l
2 C (" w2 G
From equation (4.7) we have
[+ [w—gw"], +[£"],
<[+ Iully + & [w*], + 12",
<[+ Il + €70 ]p" |, + 2]

= ("o + Iulh + " ])-
Then it is easy to see that

L(( P, (2" u - gw!, p)

= |t P N o - et P

which completes the proof of coercivity.

Page 11 of 19

(4.13)

(4.14)

(4.15)

O

Theorem 4.2 If 1 - 20Md > 0, (t",u”, p") € (S" x X" x Q") satisfies equation (3.6), and

(t,u,p) € (S x X x Q) satisfies (2.19), then we have the estimate

|7 ="l + [u=u"l, + o -p"], = Ch.

(4.16)

Proof Subtracting equation (3.6) from equation (2.19), for all (", v", 4") € (8" x X" x Q"),

we have
Z((c - thu-s,p ), (" V) = 2067 ")
By adding and subtracting the projection terms (7%, @", ") we get

L((F - w" - g - pP), (o" V', q"))

= Z((fh —r," —u,p -p) (Uh,vh,qh)) +2aG(p, qh).

(4.17)

(4.18)



Hussain et al. Advances in Difference Equations (2018) 2018:461 Page 12 of 19

Using the weak coercivity bound (4.6), error orthogonality, and (4.18) we get

T - a5 - P |

L(& - w - ot ph - ph), (0" v 4")
= sup h yh h
(o,vh,gh)eShx X" x Qh |||(G Vo, q )|||
L((T" -, 0" —u,p" - p), (6" V', q") + 20G(p, ")
= sup P .
(o vh,gh)eSh x Xh x Qh ”|(0 Vo, q )|||

From (3.3) we have that

20G(p,q") < C2aG(p.p)"| 4", (4.19)

From (4.5) we have

L((F - —up-p), (7 - @ - P - )
=C(l#"-zlo+ [8" — ], + |8" -l + 20 (1 = T)p ] )
x [[(o"v"a") || (4.20)

As a result,

Tl a -t -

- C(I7" = llo + 8" —ully + 7" = pllo + 2 || (I = Mpllo) (", ¥", g") |l
< sup

(o v gyl s Xhx Qh lIl(o”, 4, g™l

C ., - . -
= 2 (1#" =lo + [8" —ul, + |8" - plly + [ = Dp],).
To end the proof, we use the triangle inequality to obtain (4.16) O

5 Numerical tests

This section illustrates the numerical simulation results in support of the proposed stabi-
lized lowest equal-order FE scheme and its theoretical analysis performed in Theorem 4.2
for the Oseen viscoelastic fluid flow model. For numerical evaluation, we design and ex-
amine three different experiments, that is, a nonphysical example with an exact solution,
a viscoelastic cavity flow problem, and a benchmark 4-to-1 contraction channel flow [27].
In the analytical solution test, we demonstrate the optimal convergence order by assuming
an exact solution. The second experiment elucidates the viscoelastic cavity flow to show
the characteristics of the pressure contour and its behavior. The flow speed, behavior of
the contours, streamlines patterns, and the pressure oscillation are examined by the 4-to-1
contraction channel flow. To show the distinguishing features of the new stabilized model,
we compare newly formulated method for the lowest equal-order FE triples p1 — p1 —plg,
with the standard MINI element triples p1b — p1 — p1l4,. All numerical tests are performed
by using public domain software Freefem++ [50]. The figures and graphs are drawn by
using Tecplot and MATLAB, respectively.
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5.1 Analytical solution test
The theoretical convergence rates are verified by considering fluid flow across a unit
square with known solution. To test the numerical stability of the new stabilized method,
we considered the lowest equal-order FE triples p1 — p1 — plq, for velocity, pressure, and
stress. Different authors used this experimental pattern for the Stokes and Navier—Stokes
equations [11, 44, 51].

In this example, the known function b(x) is chosen to be the exact solution of the veloc-
ity u. Moreover, the true solution of the problem for velocity u = (1, u;), pressure p, and

polymeric stress t is given by

—10(x4—2x3+x2)(2y3—3y2+y)
u= ( 3 2.2,k 03,2 )’
10(2x° 3%~ +x)(y* -2y +y*)

p=-10.02x - 1)(2y — 1),
T = 2aD(u).

The right-hand sides and initial and boundary conditions are derived by model Problem
(O) with parameters a =0, A = 5.0, and « = 0.5.

In Tables 1-3, we illustrate the distinguished feature of the lowest equal-order FE
method for the Oseen viscoelastic fluid flow model by comparing the results with the stan-
dard FE p1b — p1 — plq, triples. We listed the H'-norm error for velocity, L*-norm error
for pressure, and L?>-norm error for stress with varying spacing 4 = 1/8,1/16,1/32,1/64.
Table 1 represents the computations of the errors for the standard FE with p1b - pl — plg,

Table 1 The illustration of the error for the Oseen viscoelastic fluid flow with standard FE
p1b-pl —plgg triples

h lu=u"lly lp=p"lo T -7"lo
/4 0.22122 0.20562 0.12221
/8 0.10267 0.06430 0.04332
/16 0.04883 0.02187 0.01579
/32 0.02390 0.00724 0.00621
/64 001185 0.00247 0.00253

Table 2 The illustration of the error for the Oseen viscoelastic fluid flow without stabilization term for
the FEp1 - p1 - plyg triples

h lu=u"lli llp=pllo Nz ="l
4 023599 178225  0.1898]

1/

1/8 0.12375 0.96397 0.06659
1716 006110 0.54778 0.02502
1/
1/

32 0.03027 0.34309 0.01015
64  0.01507 0.25734 0.00429

Table 3 The illustration of the error for the Oseen viscoelastic fluid flow with stabilization term for
the FE p1 —p1 - plyg triples

h lu=u"li lp=p"l0 NIt ="l
/4 044815 123944 028020
/8 018149 040238 010445
/16 007026 012950 003951
/32002955 004116 001484
/64 001348 001318 000565
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Figure 1 The illustration of the order of convergence. (a) H'-norm error for velocity; (b) [2-norm error for
pressure; (c) L2-norm error for stress

triples. Table 2 demonstrates the results for the approximation of the Oseen viscoelastic
fluid model by FE p1 — p1 — pl4, triples without stabilization term. Table 3 shows the error
obtained from the approximate values with stabilization term by using FE p1 — p1 — plq,
triples.

To verify the desirable feature of the method, we compare the convergence orders in
Fig. 1 for the three methods by using the log—log plots of the data listed in Tables 1-3.
The experiment shows that, for all three methods, the order of convergence of velocity
and stress is optimal as /1 decreases. From Tables 1-3 and Fig. 1 we can observe that the
velocity H!-norm error and stress L2-norm error obtain an optimal convergence order,
whereas the pressure L?-norm error is affected without stabilization term. The accuracy
of the convergence order of the pressure is ensured by adding a stabilization term, which is
illustrated in Table 3. This experimental test concludes that the technique we have adopted
can be applied successfully for the Oseen viscoelastic fluid flow model.

5.2 The viscoelastic cavity flow
In this test, we apply the stabilization method in the famous problem for testing numerical
validity is known as the “lid-driven cavity” The aforementioned problem is chosen because
some standard data are available for comparison. Cavity flows has been used in many test
cases for testing the incompressible fluid dynamics algorithm for the Stokes flow [52]. To
investigate the pressure oscillation, we perform the viscoelastic cavity flow experiment for
standard FE p1b — p1 — plg, triples, FE p1 — p1 — plg, triples without stabilization, and FE
pl—pl—ply, triples with stabilization. Moreover, we compare the pressure lines of lowest
equal-order triples with standard FE methods.

The fluid is enclosed in a unit square domain with the boundary condition for velocity
u = (1,0) on the upper boundary and the homogeneous Dirichlet condition on the re-
maining boundaries. The parameters value are chosen as follows: a =0, A = 5.0, f = 0, and
o = 0.5. In this numerical formulation, b(x) denotes a known vector function used to lin-
earize the nonlinear viscoelastic fluid flow model into reduced Oseen model equations.
We output the data by computing the velocity vector field u = (i1, u,) for there different
FE triples known as p1b — p1 — ply, standard or MINI elements, p1 — p1 — plq4; without
stabilization, and p1 — p1 — pl4, with stabilization. Furthermore, the computed solution
u = (41, u,) is used as the known solution b(x) = (b1, b,) to reduce the nonlinear term as
linear. The resulting effect makes the viscoelastic fluid flow model as the Oseen fluid flow
model.
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&

(a) (b) (c)

Figure 2 The pressure lines for the Oseen viscoelastic cavity flow. (a) Standard FE p1b—p1 - pl4g triples;
(b) FE p1 = p1 - plyg triples without stabilization term; (c) FE p1 - p1 - p1qq triples with stabilization term

Figure 3 The 4-to-1 contraction domain with 1
sample contraction mesh

> &

Figure 2(a) represents a standard method for the approximation of the mixed FE triples
plb—pl—plyg, where the pressure lines on the top corners are regular. For comparison of
the lowest equal order, we present the numerical result in Fig. 2(b) without addition of a
stabilization term. It can be seen that the pressure is poorly oscillated and obtain irregular
shape. It is easy to observe that after adding a stabilization term in Fig. 2(c), the pressure
lines are appeared in similar precision with Fig. 2(a). Based on this experiment, it is clear
that the stabilization term ensures the stability of the scheme for the lowest equal-order

triples to the approximation of the Oseen viscoelastic fluid flow model.

5.3 The 4-to-1 contraction channel flow

The third example is the well-known benchmark problem for viscoelastic fluid flow “4-
to-1 contraction channel flow problem,” which has enormous application in polymeric
liquid industries. The 4-to-1 channel flow has been extensively used to show the con-
vergence, stability, behavior of the streamlines of the contraction channel, and the be-
havior of pressure [10, 24, 53]. The domain of this problem is constructed in such a way
that the channel lengths are sufficiently long for a fully developed Poiseuille flow at both
inflow and outflow boundaries. Similar to our experiment, the diagram of the flow ge-
ometry is demonstrated in Fig. 3. The computations are performed on a uniformly re-
fined version of the mesh shown in Fig. 4 with Axp;, = 0.0625 and Ay, = 0.015625, with
Fin ={(,y) :2=0,0<y<1}and oy = {(x,y) : x = 8,0 <y < 0.25}. For the velocity inflow

in the boundary and velocity outflow in the boundary;, it is declared by

1
Uy = 5(1 —yz), u, =0 on I},

1
Uy :2<E—y2), Uy =0 on lyy.
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(a) (b) (c)

Figure 4 Streamlines and magnitudes of the velocity u. (a) Standard FE p1b - p1 - p14g triples; (b) FE
p1-p1-plyg triples without stabilization term; (c) FE p1 - p1 - plqg triples with stabilization term

For stress, on I,

—aA(a + 1)(—y/16)?

U= @ (e -1
o o = —a(-y/16)
2T @2 )2 (—y/16)2 - 1
—aA(a - 1)(-y/16)?
022 =

(@ - 1)A2(-y/16)2 - 1"

Symmetry conditions for the velocity on the solid walls of the concentration are imposed
at the bottom of the computational domain. No-slip boundary condition is assumed in
the other boundaries of the contraction channel. Besides, the physical parameters «, X,
and a are sequentially chosen 1, 8/9, 0.7, and 1. Furthermore, we compute b; and b, by
following the procedure similar to that mentioned in Sect. 5.2. This formulation have three
cases in this section, namely, p1b — p1 — p1 standard, p1 — p1 — pl4, without stabilization,
and p1 — p1 - ply4g with stabilization. For all cases, we use the solution of #; and u;, as the
known solution of b, and b, to compute the approximate solution.

Figure 4(a) illustrates the streamlines and flow speed of the standard FE triples p1b—p1 -
plygg. Figure 4(b) shows the streamlines without stabilization term for the FE triples p1 —
p1-plyg, and Fig. 4(c) presents the streamlines with stabilization term for the FE p1 - p1 -
plygg triples. We can observe that without the addition of the stabilization term as shown
in Fig. 4(b), the approximate value of the streamlines and vortex for the FE p1 — p1 — plq,
triples is different and shows some irregularities. However, Fig. 4(a) and Fig. 4(c) appear
similar in manner. The behavior of the streamlines and vortex confirm the theoretical
results for the approximation of the Oseen viscoelastic fluid flow with the lowest equal-
order FE triples.

In Fig. 5(a), we plot the pressure contours with standard Galerkin FE known as p1b —
p1 — plyg. To check the validity of the stabilization term, we plot the data without adding
stabilization term in Fig. 5(b). We can clearly observe that the contours of this plot attain an
irregular shape and so-called pressure oscillation. On the other hand, we display the results
of the contour with stabilization term in Fig. 5(c), which is assumed as a stable scheme.
Furthermore, the contour displayed in Fig. 5(b) without stabilization term is different from
the rest of the figures. These results also affirm the theoretical analysis for the pressure
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Figure 5 The pressure contours for pressure field p. (a) Standard FE p1b—p1 - p1qg triples; (b) FE
p1-p1-plyg triples without stabilization term; (c) FE p1 - p1 - plqg triples with stabilization term

stabilization under the lowest equal-order FE triples for the approximation of the Oseen

viscoelastic fluid flow.

6 Conclusion and future work

In this contribution, a stabilized method for lowest equal-order finite elements (FE) triples
pl —pl — ply, for the Oseen viscoelastic fluid flow is presented. In the standard Galerkin
finite element method, the inf—sup (or LBB) condition is substantial while we circumvent
the difficulty for the FE triples p1 — p1 —plq, by adding a stabilization term essentially in the
Oseen viscoelastic fluid flow model. This technique is new for the lowest equal-order FE
triples for the reduced linearized viscoelastic fluid flow model. We proposed a stabilized
FE algorithm and derived the well-posedness of the scheme. The desired error estimate is
proved, and the optimal convergence order is obtained. In support of the given method,
three numerical tests have been successfully implemented. In the analytical solution test,
we demonstrate the optimal convergence order for lowest equal order. The second exper-
iment elucidates the viscoelastic cavity flow to show the characteristics of the pressure
contour and its behavior. The flow speed, behavior of the contours, streamlines patterns,
and the pressure oscillation are examined by the “4-to-1 contraction channel flow.” This
method can be extended to the streamline-upwind Petrov—Galerkin (SUPG) method for

approximation of the Oseen viscoelastic fluid flow in the future studies.
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