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Abstract
The construction of implicit Runge–Kutta–Nyström (RKN) method is considered in
this paper. Based on the symmetric, symplectic, and exponentially fitted conditions, a
class of implicit RKN integrators is obtained. The new integrators called ISSEFMRKN
integrate exactly differential systems whose solutions are linear combinations of
functions from the set {exp(λt), exp(–λt),λ ∈C}. In addition, their final stages also
preserve the quadratic invariants {exp(2λt), exp(–2λt)}. Especially, we derived two
methods: ISSEFMRKNs1o2 and ISSEFMRKNs2o4 which are of order 2 and 4,
respectively. And the method ISSEFMRKNs2o4 has variable nodes. The derived
method ISSEFMRKNs2o4 reduces to the classical RKN method (Qin and Zhu in
Comput. Math. Appl. 22(9):85–95, 1991) as λh → 0. The numerical results show that
our methods possess the efficiency and competence compared with some implicit
RKN methods in the literature. Especially, ISSEFMRKNs2o4 improves the accuracy
compared with unmodified method ISSEFRKNs2o4 proposed in (Zhai and Chen in
Numer. Algebra Control Optim. 9(1):71–84, 2019).
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1 Introduction
In this paper we focus on the initial value problems (IVP) related to systems of second-
order ODEs of the form

y′′ = f (t, y), y(t0) = y0, y′(t0) = y′
0, t ∈ [0, tend], (1)

whose solutions exhibit an oscillatory character. In applied sciences, such as molecular
dynamics, orbital mechanics, and electronics, many problems of this type arise. For these
problems, high accuracy of integration is often the first requirement. There are many re-
searchers focusing on this problems. Until now there have been broadly two categories of
approaches to numerical integration of IVP (1): indirect and direct. On the one hand, if
we introduce a new variable u to represent the first derivative y′, then IVP (1) comes into
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a partitioned system of first-order equations

y′ = u, u′ = f (t, y), y(t0) = y0, u(t0) = y′
0. (2)

Thus it can be solved by the general purpose Runge–Kutta (RK) methods or partitioned
Runge–Kutta (PRK) methods (see Refs. [4, 5, 21, 22, 28, 29]). One disadvantage of this
procedure is that we need to solve a problem with more variables than the original prob-
lem. Therefore, in 1925 Nyström designed a method called Runge–Kutta–Nyström (RKN)
method to deal with the second-order problem (1) directly. Since then, plenty of studies
have been dedicated to the design of RKN methods. What followed are some variations
of the standard RKN methods, such as [6, 9, 16, 23, 24, 27, 30, 31] and so on.

As is known, the symplectic Runge–Kutta–Nyström methods share the pronounced
property of being zero-dissipative, which is an important requirement for solving oscil-
latory problem. Simos and Vigo-Aguiar [26] then considered symplectic methods of RKN
type which are adapted to certain types of oscillators. The term symplecticity essentially
means area preserving in a phase space. Approximate solutions generated by symplectic
methods are conservative even at finite resolution, in contrast with numerical methods
that generate approximate solutions that are conservative only in the limit as the time step
size approaches zero. Symplectic methods have been applied to many problems such as
pendulum, Morse oscillator, harmonic oscillator, Lennard–Jones oscillator, Kepler’s orbit
problem, and so on. In addition, it is pointed out in Chap. V and Chap. XI of [10] that sym-
metric methods show a better long time behavior than non-symmetric ones when applied
to reversible differential systems, as it is the case for conservative mechanical systems. So,
some symmetric and symplectic RKN methods have been proposed such as [20].

However, they do not consider exponential fitting conditions. Exponentially fitted meth-
ods share very good behaviors when the solution of the problem can be expressed as
linear combinations of functions from {exp(λt), exp(–λt),λ ∈ C}, or equivalently, from
{sin(ωt), cos(ωt),ω ∈ R} with λ = iω, i2 = –1. The construction of exponentially fitted
RK(N) methods is originally due to Paternoster [19]. After this, the exponentially fitted
methods drew a lot of attention. As a result, there are many different types of exponen-
tially fitted RK(N) methods such as [7, 8, 12, 16, 25, 26, 32].

In the last decade, much work related to symmetric, symplectic, and exponentially fitted
conditions has emerged. These methods show a better behavior than the other methods
which do not possess these three conditions together. The main work focuses on explicit
methods for their easy implementation. However, the implicit methods are more suitable
for solving stiff ODEs than the explicit methods. There are some researchers working on
the implicit RKN methods, such as [13–15, 18]. Especially, in [33], the authors derived
an implicit symmetric, symplectic, and exponentially fitted RKN integrator. Exactly, this
method is not a true exponential fitting method. For the final stage coefficient b1, there are
two different expressions. The authors chose θ = ±

√
3

6 to make them as close as possible. In
this paper, we want to avoid this from happening. So we investigate the modified Runge–
Kutta–Nyström satisfying symmetric, symplectic, and EF conditions. Consequently, we
can obtain unique expression of every coefficient which is not true for ISSEFRKN. The
new method called ISSEFMRKN also reduces to the classical symplectic, symmetric RKN
integrator when the parameter z approaches zero.

The remainder of the paper is organized as follows. We set up symmetric, symplectic,
and EF conditions for our modified RKN methods in Sect. 2. In Sect. 3 we derive a class of
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two-stage implicit symmetric symplectic exponentially fitted RKN (EFRKN) integrators.
In Sect. 4 we present some numerical experiments that show the accuracy and efficiency
of the new method when they are compared with other implicit RKN integrators given in
[1, 20, 23, 24, 27, 33]. Finally, Sect. 5 is devoted to some conclusions.

2 Symmetric, symplectic, exponential fitting conditions
In this paper, we focus on the following s-stage modified implicit RKN method for the
second-order ODEs (1):

⎧
⎪⎪⎨

⎪⎪⎩

Yi = y0 + ciγihy′
0 + h2 ∑s

j=1 aijf (t0 + cjh, Yj), i = 1, . . . , s,

y1 = y0 + g2hy′
0 + h2 ∑s

i=1 b̄if (t0 + cih, Yi),

y′
1 = y′

0 + h
∑s

i=1 bif (t0 + cih, Yi).

(3)

This modified RKN method can be expressed by the Butcher tableau

c e γ A

1 g2 b̄T

1 bT

=

c1 1 γ1 a11 · · · a1s
...

...
...

...
. . .

...
cs 1 γs as1 · · · ass

1 g2 b̄1 · · · b̄s

1 b1 · · · bs
Note that scheme (3) coincides with the classical s-stage RKN formula when the coeffi-
cients g2 = 1, γi = 1, i = 1, . . . , s, and the remaining coefficients are constant. The objective
of this section is to find out when the modified RKN scheme (3) is symmetric, symplectic,
exponentially fitted respectively. In the following subsections, we put forward these three
important properties one by one.

2.1 Symmetric conditions
The concept of adjoint method is the hinge of symmetry. First, let us give the defini-
tion of adjoint method. We denote a one-step method for second-order ODEs (1) as
Φh : (y0, y′

0)T �→ (y1, y′
1)T.

Definition 2.1 The adjoint method Φ∗
h of a one-step method Φh is the inverse map of the

original method with reversed time step –h, i.e., Φ∗
h := Φ–1

–h . In other words, y1 = Φ∗
h (y0) is

implicitly defined by Φ–h(y1) = y0. A method for which Φ∗
h = Φh is called symmetric (see

[11]).

In the case of s-stage RKN methods (3), a set of sufficient conditions for the methods to
be symmetric are given by

ci = 1 – cs+1–i, bi = bs+1–i,

b̄i = g2bs+1–i – b̄s+1–i, ciγi = g2 – cs+1–iγs+1–i,

aij = as+1–i,s+1–j – cs+1–iγs+1–ibs+1–j + g2bs+1–j – b̄s+1–j.

(4)

This can be obtained following the procedure in [32] and many other papers. In this paper
we consider methods (3) whose coefficients are z-dependent, as we do for EF type methods



Zhai et al. Advances in Difference Equations        (2018) 2018:463 Page 4 of 16

[28, 29] or adapted type methods [25, 26]. Then the conditions for the methods to be
symmetric are given by

ci(z) = 1 – cs+1–i(–z), bi(z) = bs+1–i(–z),

b̄i(z) = g2(–z)bs+1–i(–z) – b̄s+1–i(–z),

ci(z)γi(z) = g2(–z) – cs+1–i(–z)γs+1–i(–z),

aij(z) = as+1–i,s+1–j(–z) – cs+1–i(–z)γs+1–i(–z)bs+1–j(–z) + g2(–z)bs+1–j(–z) – b̄s+1–j(–z),

where z = iωh, ω is the principal frequency of the problem. We assume that the coefficients
of methods (3) are even functions of h, as we frequently encounter in the case of EFRKN
methods, so that these conditions reduce to (4).

2.2 Symplectic conditions
The second important property used in this paper is symplecticity. Now, we turn to the
symplectic conditions for scheme (3). Symplecticity is defined for a Hamiltonian system.
On many occasions, the problem under consideration takes the form of a Hamiltonian
system

ṗ = –
∂

∂q
U(t, q), q̇ = M–1p,

with the Hamiltonian H(t, p, q) = 1
2 pTM–1p + U(t, q), where M is a symmetric positive def-

inite constant matrix. This system is equivalent to the second-order equation (1) with
f (t, q) = –M–1 ∂

∂q U(t, q). Now we can give the definition of symplecticity which can be
found in [10].

Definition 2.2 A one-step method is symplectic if, for every smooth Hamiltonian func-
tion H and for every step size h, the corresponding flow preserves the differential 2-form

dp ∧ dq =
d∑

i=1

dpi ∧ dqi,

where the one-forms dpi, respectively dqi, map a tangent vector ξ to its ith, respectively
(n + i)th, component. Here, we assume that p and q all have n components. Furthermore,
dpi ∧ dqi is a bilinear map acting on a pair of vectors

dpi ∧ dqi(ξ1, ξ2) = det

(
dpi(ξ1) dpi(ξ2)
dqi(ξ1) dqi(ξ2)

)

= dpi(ξ1) dqi(ξ2) – dpi(ξ2) dqi(ξ1)

and satisfies Grassmann’s rules for exterior multiplication

dpi ∧ dpj = –dpj ∧ dpi, dpi ∧ dpi = 0.

Accordingly, scheme (3) is symplectic if

dy1 ∧ dy′
1 = dy0 ∧ dy′

0.
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Using the expressions of y1 and y′
1 in (3), we have

dy1 ∧ dy′
1 = dy0 ∧ dy′

0 + h
s∑

i=1

bi dy0 ∧ df (Yi) + hg2 dy′
0 ∧ dy′

0 + h2
s∑

i=1

g2bi dy′
0 ∧ df (Yi)

+ h2
s∑

i=1

b̄i df (Yi) ∧ dy′
0 + h3

s∑

i,j=1

b̄jbi df (Yj) ∧ df (Yi).

Eliminating dy0 in the second term by inserting the first equation in (3), we obtain

dy1 ∧ dy′
1 = dy0 ∧ dy′

0 + h2
s∑

i=1

(g2bi – biciγi – b̄i) dy′
0 ∧ df (Yi)

+
1
2

h3
s∑

i,j=1

(b̄jbi – biaij) df (Yj) ∧ df (Yi)

+
1
2

h3
s∑

i,j=1

(b̄ibj – bjaji) df (Yi) ∧ df (Yj).

Therefore, (3) is symplectic if the following conditions are satisfied:

b̄i + (ciγi – g2)bi = 0, i = 1, . . . , s,

bi(b̄j – aij) = bj(b̄i – aji), i, j = 1, . . . , s.
(5)

2.3 Exponential fitting conditions
Following Albrecht’s approach [2, 3], each stage of scheme (3) can be viewed as a linear
multistep method on a non-equidistant grid. With each stage one can associate a linear
function as follows:

• for the internal stages,

ϕi
[
y(t); h; a

]
= y(t + cih) – y(t) – ciγihy′(t) – h2

s∑

j=1

aijy′′(t + cjh), i = 1, 2, . . . , s;

• for the final stages,

ϕ
[
y(t); h; b̄

]
= y(t + h) – y(t) – hg2y′(t) – h2

s∑

i=1

b̄iy′′(t + cih),

ϕ
[
y(x); h; b

]
= y′(t + h) – y′(t) – h

s∑

i=1

biy′′(t + cih).

The following equations can be obtained by requiring that these functions vanish for the
functions from the set {exp(±λt)|λ ∈R or λ ∈ iR} (here i is the imaginary unit)

⎧
⎪⎪⎨

⎪⎪⎩

e±ciz = 1 ± ciγi(z)z + z2 ∑s
j=1 aij(z)e±cjz (for internal stage ā),

e±z = 1 ± g2z + z2 ∑s
i=1 b̄i(z)e±ciz (for the final stage b̄),

e±z = 1 ± z
∑s

i=1 bi(z)e±ciz, z = λh (for the final stage b).

(6)
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By definitions of cosh(z) = (ez + e–z)/2 and sinh(z) = (ez – e–z)/2, equation (6) implies that

⎧
⎨

⎩

∑s
j=1 aij(z) cosh(cjz) = cosh(ciz)–1

z2 ,
∑s

j=1 aij(z) sinh(cjz) = sinh(ciz)–ciγi(z)z
z2 , i = 1, . . . , s,

(7)

⎧
⎨

⎩

∑s
i=1 b̄i(z) cosh(ciz) = cosh(z)–1

z2 ,
∑s

i=1 b̄i(z) sinh(ciz) = sinh(z)–g2z
z2 ,

∑s
i=1 bi(z) sinh(ciz) = cosh(z)–1

z ,
∑s

i=1 bi(z) cosh(ciz) = sinh(z)
z .

(8)

Equations (7) and (8) are the exponentially fitted conditions for scheme (3). Until now, we
have obtained the three pivotal properties used in our method in Sect. 3.

2.4 Algebraic order conditions
In this subsection, we will present the algebraic order conditions for exponentially fit-
ted Runge–Kutta–Nystöm (EFRKN) methods. As it occurs in the case of a classical RKN
method, for an EFRKN method the local truncation errors in the approximations of the
solution and its derivative can be expressed as

en+1 = y(t0 + h) – y1 =
p–1∑

j=1

hj+1

( kj∑

i=1

d(j+1)
i F (j)(y0)

)

+ O
(
hp+1),

e′
n+1 = y′(t0 + h) – y′

1 =
p∑

j=1

hj

( kj∑

i=1

d′(j)
i F (j)(y0)

)

+ O
(
hp+1),

where F (j)(y0) denotes an elementary differential and the terms d(j+1)
i and d′(j)

i depend on
the coefficients of the EFRKN method. Method (3) is of order p if, for every sufficiently
smooth IVP(1) and for every small step size h, the local truncation errors of the numerical
solutions satisfy

e1 = y(t0 + h) – y1 = O
(
hp+1),

e′
1 = y′(t0 + h) – y′

1 = O
(
hp+1),

or equivalently,

d(j+1)
i = 0, i = 1, . . . , kj, j = 1, . . . , p – 1,

d′(j)
i = 0, i = 1, . . . , kj, j = 1, . . . , p.

In order to obtain the order conditions, we assume the following expansions:

b̄i(z) = b̄(0)
i + b̄(2)

i z2 + b̄(4)
i z4 + · · · , bi(z) = b(0)

i + b(2)
i z2 + b(4)

i z4 + · · · ,

γi(z) = 1 + γ
(2)
i z2 + γ

(4)
i z4 + · · · , aij(z) = a(0)

ij a(2)
ij z2 + a(4)

ij z4 + · · · ,

g2(z) = 1 + g(2)
2 z2 + g(4)

2 z4 + · · · .

Then the order conditions up to fourth order for (3) are presented as follows.
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Order 1 requires:

d′(1)
1 :=

∑

i

b(0)
i – 1 = 0.

Order 2 requires in addition:

d′(2)
1 :=

∑

i

b(0)
i ci –

1
2

= 0, d(2)
1 :=

∑

i

b̄(0)
i –

1
2

= 0.

Order 3 requires in addition:

d′(3)
1 :=

1
2

(∑

i

b(0)
i c2

i –
1
3

)

= 0, d′(3)
2 :=

∑

i

b(0)
i

∑

k

a(0)
ik –

1
6

= 0,

d′(3)
3 :=

∑

i

b(2)
i = 0, d(3)

1 :=
∑

i

b̄(0)
i ci –

1
6

= 0,

d(3)
2 := g(2)

2 = 0.

Order 4 requires in addition:

d′(4)
1 :=

1
6

(∑

i

b(0)
i c3

i –
1
4

)

= 0, d′(4)
2 :=

∑

i

b(0)
i

∑

k

cia(0)
ik –

1
8

= 0,

d′(3)
3 :=

∑

i

b(0)
i

∑

k

a(0)
ik ck –

1
24

= 0, d′(4)
4 :=

∑

i

b(0)
i ciγ

(2)
i = 0,

d′(4)
5 :=

∑

i

b(2)
i ci = 0, d(4)

1 :=
1
2

(∑

i

b̄(0)
i c2

i –
1

12

)

= 0,

d(4)
2 :=

∑

i

b̄(0)
i

∑

k

a(0)
ik –

1
24

= 0, d(4)
3 :=

∑

i

b̄(2)
i = 0.

From Theorem 2.1 in [8], we know that the modified RKN method (3) has algebraic order
at least 2.

3 Construction of implicit symmetric and symplectic EFRKN methods
In this section we construct an implicit EFRKN method under the symmetry, symplectic-
ity, exponential fitting conditions obtained in the previous section.

In this paper, we consider two simple cases: s = 1 and s = 2.
• s = 1
When s = 1, the symmetry conditions (4) and the symplecticity conditions (5) reduce to

c1 = 1/2, b̄1 = g2b1/2, g2 = γ1. (9)

When s = 1, the exponentially fitted conditions (7) and (8) can be written as

⎧
⎪⎪⎨

⎪⎪⎩

a11 cosh(c1z) = cosh(c1z)–1
z2 , a11 sinh(c1z) = sinh(c1z)–c1γ1z

z2 ,

b̄1 cosh(c1z) = cosh(z)–1
z2 , b̄1 sinh(c1z) = sinh(z)–g2z

z2 ,

b1 cosh(c1z) = sinh(z)
z , b1 sinh(c1z) = cosh(z)–1

z .

(10)
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Consider c1 = 1/2 in (10), we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a11 = cosh(z/2)–1
z2 cosh(z/2) , γ1 = 2 sinh(z/2)

z cosh(z/2) ,

b̄1 = cosh(z)–1
z2 cosh(z/2) , g2 = 2 sinh(z/2)

z cosh(z/2) ,

b1 = 2 sinh(z/2)
z .

Obviously, the third equation in (9) is satisfied, i.e., g2 = γ1. By some simple calculation, it
is easy to verify that b̄1 = g2b1/2. Thus, we obtain all the coefficients as follows:

⎧
⎨

⎩

c1 = 1/2, a11 = cosh(z/2)–1
z2 cosh(z/2) , g2 = γ1 = 2 sinh(z/2)

z cosh(z/2) ,

b̄1 = cosh(z)–1
z2 cosh(z/2) , b1 = 2 sinh(z/2)

z .
(11)

Furthermore, the Taylor expansion of all the coefficients is

⎧
⎨

⎩

a11 = 1
8 – 5

384 z2 + 61
46,080 z4 + · · · , g2 = γ1 = 1 – 1

12 z2 + 1
120 z4 + · · · ,

b̄1 = 1
2 – 1

48 z2 + 31
11,520 z4 + · · · , b1 = 1 – 1

24 z2 + 1
1920 z4 + · · · .

It is easy to verify that all these coefficients satisfy all the second-order conditions, but
do not satisfy the third-order condition d′(3)

1 := 1
2 (

∑
i b(0)

i c2
i – 1

3 ) = 0. Thus this one-stage
method is of order 2. We denote it as ISSEFMRKNs1o2, and “s1o2” means stage 1 order 2.

• s = 2
In this case, the symmetry conditions (4) and the symplecticity conditions (5) reduce to

c1 + c2 = 1, b1 = b2, b̄1 + b̄2 = g2b1, c1γ1 + c2γ2 = g2,

a12 = a21 + b1(c1γ1 – c2γ2), a21 = a12 + b2(c2γ2 – c1γ1),

b̄1 = b1c2γ2, b̄2 = b2c1γ1, b1b̄2 – b1a12 = b2b̄1 – b2a21.

(12)

Considering symmetric condition c1 + c2 = 1, we introduce an extra parameter θ and as-
sume c1 = 1

2 – θ , c2 = 1
2 + θ . Then equation (12) becomes

c1 =
1
2

– θ , c2 =
1
2

+ θ , b2 = b1, b̄1 = b1c2γ2, b̄2 = b1c1γ1,

a21 – a12 = b1(c2γ2 – c1γ1), g2 = c1γ1 + c2γ2.
(13)

Now we simplify the exponentially fitted conditions (7) and (8) when s = 2. By using
b̄1 = b1c2γ2, b̄2 = b1c1γ1, a21 – a12 = b1(c2γ2 – c1γ1), the EF conditions are

b1(c1γ1 – c2γ2) =
2 sinh(z/2) – g2z cosh(z/2)

z2 sinh(θz)
, (14)

b1 =
sinh(z/2)
z cosh(θz)

, (15)

(a11 + a12) cosh(θz) =
cosh(θz) – cosh(z/2) + c1γ1z sinh(z/2)

z2 , (16)
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(a12 – a11) sinh(θz) =
sinh(z/2) – sinh(θz) – c1γ1z cosh(z/2)

z2 , (17)

(a21 + a22) cosh(θz) =
cosh(θz) – cosh(z/2) + c2γ2z sinh(z/2)

z2 , (18)

(a22 – a21) sinh(θz) =
sinh(z/2) + sinh(θz) – c2γ2z cosh(z/2)

z2 . (19)

From these conditions, we cannot determine the specific expressions of all the coefficients.
So we impose that the final stage is also exact for the functions {exp(2λt), exp(–2λt)}, i.e.,
the following conditions are also satisfied:

⎧
⎨

⎩

∑s
i=1 b̄i(z) cosh(2ciz) = cosh(2z)–1

4z2 ,
∑s

i=1 b̄i(z) sinh(2ciz) = sinh(2z)–2g2z
4z2 ,

∑s
i=1 bi(z) sinh(2ciz) = cosh(2z)–1

2z ,
∑s

i=1 bi(z) cosh(2ciz) = sinh(2z)
2z .

(20)

Inserting c1 = 1
2 – θ , c2 = 1

2 + θ , b1 = b2, b̄1 = b1c2γ2, b̄2 = b1c1γ1 into (20), and after some
simple calculations, we have

b1(c1γ1 – c2γ2) =
sinh(z) – g2z cosh(z)

2z2 sinh(2θz)
, (21)

b1 =
sinh(z)

2z cosh(2θz)
. (22)

Combining (15) and (22), we obtain

b1 =
sinh(z/2)
z cosh(θz)

, θ =
arccosh(β)

z
, β =

cosh(z/2) +
√

8 + cosh2(z/2)
4

.

In order to determine the RKN methods when z → 0, we present the Taylor expansion of
θ , i.e.,

θ =
√

3
6

(

1 +
1

72
z2 + · · ·

)

.

Using c1γ1 + c2γ2 = g2, (14), and (21), we obtain

⎧
⎨

⎩

g2 = 4 sinh(z/2) sinh(2θz)–sinh(z) sinh(θz)
z(2 cosh(z/2) sinh(2θz)–cosh(z) sinh(θz)) ,

γ1 = 2 sinh(z/2)–g2z cosh(z/2)
2c1z2 sinh(θz)b1

+ g2
2c1

.

Furthermore, if we assume a11 = a22, we can find that (16) – (18) is equivalent to (15) and
(17) + (19) is equivalent to (14). So, method (3) satisfying (14)–(17) is exponentially fitted.
From equations (16) and (17), we have

a11 =
sinh(2θz) – sinh(c2z) + c1γ1z cosh(c2z)

z2 sinh(2θz)
, a12 =

sinh(c1z) – c1γ1z cosh(c1z)
z2 sinh(2θz)

.
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Until now, we have obtained an implicit symmetric and symplectic exponentially fitted
Runge–Kutta–Nyström method whose coefficients are given as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ = arccosh(β)
z , β = cosh(z/2)+

√
8+cosh2(z/2)

4 ,

c1 = 1
2 – θ , c2 = 1

2 + θ , g2 = 4 sinh(z/2) sinh(2θz)–sinh(z) sinh(θz)
z(2 cosh(z/2) sinh(2θz)–cosh(z) sinh(θz)) ,

b1 = sinh(z/2)
z cosh(θz) , γ1 = 2 sinh(z/2)–g2z cosh(z/2)

2c1z2 sinh(θz)b1
+ g2

2c1
,

γ2 = g2–c1γ1
c2

, b2 = b1, b̄1 = b1(g2 – c1γ1), b̄2 = b1c1γ1,

a11 = sinh(2θz)–sinh(c2z)+c1γ1z cosh(c2z)
z2 sinh(2θz) , a22 = a11,

a12 = sinh(c1z)–c1γ1z cosh(c1z)
z2 sinh(2θz) , a21 = a12 + b1(g2 – 2c1γ1).

(23)

We denote this method as ISSEFMRKNs2o4, and “s2o4” means stage 2 order 4. For small
values of z, the Taylor series expansions of the coefficients are given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γ1 = 1 – 1+
√

3
72 z2 + · · · , γ2 = 1 – 1–

√
3

72 z2 + · · · , g2 = 1 + 1
270 z4 + · · · ,

a11 = 1
72 – 119

51,840 z2 + · · · , a12 = 11–6
√

3
72 + 239–180

√
3

51,840 z2 + · · · ,

a21 = 11+6
√

3
72 + 239+180

√
3

51,840 z2 + · · · , b1 = 1
2 – z4

2160 + · · · ,

b̄1 = 3+
√

3
12 +

√
3

288 z2 + · · · , b̄2 = 3–
√

3
12 –

√
3

288 z2 + · · · .

From these Taylor series, we can verify that our method ISSEFMRKNs2o4 satisfies all the
fourth-order conditions. So, the method ISSEFMRKNs2o4 is of order 4. The method ISSE-
FRKNs2o4 proposed in [33] is of order four with θ = ±

√
3

6 . Thus the nodes are constant.
However, in our method ISSEFMRKNs2o4, θ = arccosh(β)

z which is a function of z. That
makes the nodes here variables. But when z → 0, ISSEFMRKNs2o4 and ISSEFRKN2 re-
duce to the symmetric and symplectic method proposed in [20]. In detail, ISSEFRKNs2o4
proposed in [33] reduces to SSRKN of order 4 in [20] with a11 = 1

36 , ISSEFMRKNs2o4
derived in this paper reduces to SSRKN of order 4 in [20] with a11 = 1

72 .

4 Numerical experiments
In this section, we are dedicated to some numerical studies to illustrate the effectiveness
and efficiency of the derived methods ISSEFMRKNs1o2 and ISSEFMRKNs2o4. We select
four problems which are often used in many literature works to accomplish the numerical
experiments. We also use some other methods for comparisons:

• DIRKN4(3): The embedded diagonally implicit RKN 4(3) pair method proposed by
Al-Khasawneh et al. in [1].

• DIRKNs3o4: The diagonally implicit three-stage RKN of order four proposed by Senu
et al. in [23].

• ISSRKNs2o4: The implicit symmetric and symplectic two-stage RKN of order four
proposed by Qin et al. in [20] with a11 = 1

72 .
• ISSEFRKN2: The implicit symmetric and symplectic exponentially fitted two-stage

RKN of order four proposed in [33].
• ISSEFMRKNs1o2: The implicit symmetric and symplectic exponentially fitted

one-stage modified RKN (11) of order two proposed in this paper.
• ISSEFMRKNs2o4: The implicit symmetric and symplectic exponentially fitted

two-stage modified RKN (23) of order four proposed in this paper.
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Figure 1 Efficiency curves for solution in (a) Problem 1, (b) Problem 2

In our numerical experiments, the following nonlinear equations need to be solved:

⎧
⎨

⎩

Y1 = y0 + c1γ1hy′
0 + h2(a11f (t0 + c1h, Y1) + a12f (t0 + c2h, Y2)),

Y2 = y0 + c2γ2hy′
0 + h2(a21f (t0 + c1h, Y1) + a22f (t0 + c2h, Y2)).

In our algorithm, we use the Newton iteration method to accomplish this process. To be
specific, the initial values are taken as Y (0)

1 = Y (0)
2 = y(0). Once the difference between the

Euclidean norm of two successive iterations exceeds 10–8, the iteration will be stopped.
And we also end the iteration when the number of iterations is more than 1000.

The measurement used in the numerical comparisons is the usual test based on com-
puting the maximum global error in the solution over the whole integration interval. In
Figs. 1–3 we show the decimal logarithm of the maximum global error (log 10(maximum
global error)) versus the number of steps required by each code on a logarithmic scale
(log 10(nsteps)). We also integrate the problem on a long time interval with a fixed step
size and plot the time evolution of the maximal global error of the Hamiltonian. We have
implemented all the codes in MATLAB (Version R2015b). All runs are performed on a
laptop with Intel Core(TM)i7-2640M CPU (2.80 GHz) and 8 GB RAM. And all computa-
tions are carried out in double precision arithmetic (16 significant digits of accuracy).

Problem 1 We consider the perturbed orbital problem (studied in [8])

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q′′
1 = – q1

(q2
1+q2

2)3/2 – (2ε+ε2)q1
(q2

1+q2
2)5/2 , t ∈ [0, tend],

q′′
2 = – q2

(q2
1+q2

2)3/2 – (2ε+ε2)q2
(q2

1+q2
2)5/2 ,

q1(0) = 1, q′
1(0) = 0, q2(0) = 0, q′

2(0) = 1 + ε.

The Hamiltonian of this problem is given by

H(p, q) =
1
2
(
p2

1 + p2
2
)

–
1

(q2
1 + q2

2)1/2 –
2ε + ε2

3(q2
1 + q2

2)3/2 ,
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Figure 2 Efficiency curve for Hamiltonian in (a) Problem 1, (b) Problem 2, (c) Problem 3 and for momentum
accuracy comparison in (d) Problem 2

where (p1, p2) = (q′
1, q′

2). The exact solution is

q1(t) = cos
(
(1 + ε)t

)
, q2(t) = sin

(
(1 + ε)t

)
.

In this paper, we consider a special case ε = 0.001. In our numerical study, we choose
ω = 1 + ε, tend = 500, and h = 1/2m, m = 1, 2, 3, 4. Figure 1(a) shows the efficient curve of
the solution. And we presented the efficient curve for Hamiltonian Fig. 2(a).

Problem 2 The two-body problem (studied in [11]) consists of finding the positions and
velocities of two massive bodies that attract each other gravitationally, given their masses,
positions, and velocities at some initial time. The first body is located in the origin, while
the second body is located in the plane with Cartesian coordinates (q1, q2). The velocity
of the second body is given by (q′

1, q′
2) = (p1, p2). The Hamiltonian is given by

H(p, q) =
1
2
(
p2

1 + p2
2
)

–
1

√
q2

1 + q2
2

.
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Figure 3 Numerical Hamiltonian for the methods (a) DIRKN4(3), (b) DIRKNs3o4, (c) ISSRKNs2o4,
(d) ISSEFRKNs2o4, (e) ISSEFMRKNs1o2, and (f) ISSEFMRKNs2o4 in Problem 3

The Hamiltonian system is equivalent to the following second-order problem:

⎧
⎨

⎩

q′′
1 = – q1

(q2
1+q2

2)3/2 ,

q′′
2 = – q2

(q2
1+q2

2)3/2 .
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The initial values are taken as q1(0) = 1 – e, q′
1(0) = 0, q2(0) = 0, q′

2(0) =
√

1+e
1–e with 0 < e < 1.

The exact solution of the problem is

⎧
⎨

⎩

q1(t) = cos(E) – e,

q2(t) =
√

1 – e2 sin(E),

where e is the eccentricity of the orbit and the eccentric anomaly E is expressed as
an implicit function of the independent variable t by Kepler’s equation t = E – e sin(E).
The system has the conservative energy H and the conservative angular momentum
M = q1p2 – q2p1. The initial energy H0 = – 1

2 and the initial momentum M0 =
√

1 – e2.
In this experiment, we choose e = 10–2. Figure 2(b) and (d) present the efficiency curves

for the Hamiltonian and for the momentum, respectively, on the interval [0, 500] with the
step sizes h = 1/2m, m = 1, . . . , 4.

Problem 3 Consider the pendulum problem with the Hamiltonian (studied in [22])

H(p, q) =
1
2

p2 – a cos(q), a > 0.

The Hamiltonian system is equivalent to the following second-order equation:

q′′ = –a sin(q).

The initial values are q(0) = 0, q′(0) = 1. For these initial conditions the constant value
of the Hamiltonian is H0 = 1/2 – a. Since for |q| < 1 the equation can be expanded as
q′′ + aq = a( q3

3! – q5

5! + · · · ), a reasonable choice for the fitted frequency is ω =
√

a. We take
the parameter a = 0.2. First, we set the interval [0, 500] with the step sizes h = 1/2m, m =
1, . . . , 4, to show the accuracy of Hamiltonian in Fig. 2(c). Then the problem is integrated
on the interval [0, 100π ] and the step size h = 1/10π . Figure 3 presents the time evolution
of numerical Hamiltonian for each method on the interval [90π , 100π ].

From Figs. 1–3, we can find that the implicit modified EFRKN method ISSEFMRKNs2o4
is more efficient than other methods used for comparison in this paper. However, some-
times the method ISSEFMRKNs1o2 performs not better than other methods. From Fig. 2
and Fig. 3, we can see that symplectic methods ISSRKNs2o4, ISSEFRKNs2o4, ISSEFM-
RKNs1o2, and ISSEFMRKNs2o4 show a better behavior than un-symplectic methods
DIRKNs3o4 and DIRKN4(3). This illustrates the special property – symplecticity. Espe-
cially, for problem 3, symplectic methods preserve the Hamiltonian much more accurately
than the methods which are not symplectic. Comparing the modified method ISSEFM-
RKNs2o4 and the unmodified code ISSEFRKNs2o4 proposed in [33], we find that IS-
SEFMRKNs2o4 gives a better behavior than ISSEFRKNs2o4, although they have the same
order (order 4).

5 Conclusions
In this paper, we focus on a class of two-stage IEFMRKN integrators which are symmet-
ric and symplectic and exponentially fitted. In addition, their final stages also preserve
the quadratic invariants {exp(2λt), exp(–2λt)}. Like some existing EFRKN integrators (see
[17, 32, 33] for example), the coefficients of the new methods depend on the product of the
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dominant frequency ω and the step size h. Especially, we derived two ISSEFMRKN meth-
ods: ISSEFMRKNs1o2 and ISSEFMRKNs2o4. They reduce to the classical RKN method
as the parameter λh approaches zero. From the numerical experiments, we can find that
these two new methods are more efficient than unmodified ISSEFRKN and some other
integrators used for comparison. However, the algebraic order of ISSEFMRKNs1o2 and
ISSEFMRKNs2o4 are 2, 4, respectively, which is not high. Thus in the future, we will con-
sider the derivation of high order ISSEFRKN methods, such as six order, eight order.
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