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Abstract
In this paper, we study the global behavior of positive solutions of fourth-order
boundary value problems{

u′′′′ = λf (x,u), x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0,

where f : [0, 1]×R
+ →R is a continuous function with f (x, 0) < 0 in (0, 1), and λ > 0.

The proof of our main results are based upon bifurcation techniques.
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1 Introduction
In this paper, we study the global behavior of positive solutions of fourth-order boundary
value problems⎧⎨

⎩u′′′′ = λf (x, u), x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0,
(1.1)

where λ > 0 and f : [0, 1] ×R
+ →R. If f (x, 0) ≥ 0, then (1.1) is called a positone problem.

On the contrary, here we deal with the so-called semipositone problem when f is such
that

(f1) f (x, 0) < 0 ∀x ∈ (0, 1).
The existence of positive solutions of second-order positone problems have been exten-

sively studied via the Leray–Schauder degree theory, fixed point theorem on a cone, and
the method of lower and upper solutions; see [1–3] and the references therein.

Ambrosetti [4] studied the existence of positive solutions for semipositone elliptic prob-
lems via bifurcation theory. Recently, Hai and Shivaji [5] obtained the existence of positive
solutions for second-order semipositone problems⎧⎨

⎩–u′′ = λh(t)f (u), t ∈ (0, 1),

u(0) = 0, u′(1) + c(u(1))u(1) = 0

via a Krasnosel’skii fixed-point-type theorem in a Banach space.
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The existence and multiplicity of positive solutions of fourth-order positone problems
have been studied by several authors; see [6–11] along this line. However, there are few
results for fourth-order semipositone problems; see [12]. Ma [12] used the fixed point
theorem in cones to show that the problem

⎧⎨
⎩u′′′′ = λf̃ (x, u(x), u′(x)), t ∈ (0, 1),

u(0) = u′(0) = u′′(1) = u′′′(1) = 0

has a positive solution if λ > 0 is small enough, where f̃ (x, u, p) ≥ –M for some positive
constant M, and

lim
p→∞

f (x, u, p)
p

= ∞.

There is a big difference in the study of fourth- and second-order problems. For exam-
ple:

1. Spectrum theory for singular second-order linear eigenvalue problems has been
established via Prüfer transform in [13]. However, the spectrum structure of singular
fourth-order linear eigenvalue problems is not established so far.

2. The uniqueness of solutions of second-order problems

⎧⎪⎪⎨
⎪⎪⎩

–u′′ = λuq, x ∈ (a, b),

u > 0, x ∈ (a, b),

u(a) = u(b) = 0

has been obtained in [14]. However, the uniqueness of solution of

⎧⎨
⎩w′′′′ = b|w|α , x ∈ (0, 1),

w(0) = w(1) = w′′(0) = w′′(1) = 0

is not obtained so far.
3. It is well known that, for a second-order differential equation with periodic,

Neumann, or Dirichlet boundary conditions, the existence of a well-ordered pair of
lower and upper solutions α ≤ β is sufficient to ensure the existence of a solution in
the sector enclosed by them. However, this result it is not true for fourth-order
differential equations; see Remark 3.1 in [15].

Motivated by Ambrosetti [4], we investigate the global behavior of positive solutions of
the fourth-order boundary value problem (1.1). Depending on the behavior of f = f (x, s)
as s → +∞, we handle both asymptotically linear, superlinear, and sublinear problems.
All results are obtained by showing that there exists a global branch of solutions of (1.1)
“emanating from infinity” and proving that for λ near the bifurcation value, solutions of
large norms are indeed positive to which bifurcation theory or topological methods apply
in a classical fashion. Since there are a lot of differences between second- and fourth-order
cases, we have to overcome several new difficulties in the proof of our main results.

We deal in Sect. 2 with asymptotically linear problems. In Sect. 3, we discuss superlin-
ear problems, and we show that (1.1) possesses positive solutions for 0 < λ < λ∗. Similar
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arguments can be used in the sublinear case, discussed in Sect. 4, to show that (1.1) has
positive solutions provided that λ is large enough.

2 Asymptotically linear problems
For Lebesgue spaces, we use standard notation. We work in X = C[0, 1]. The usual norm in
such spaces is denoted by ‖u‖ = maxt∈[0,1] |u(t)|, and we set Br = {u ∈ X : ‖u‖ ≤ r}. The first
eigenvalue of u′′′′ with boundary conditions u(0) = u(1) = u′′(0) = u′′(1) = 0 is denoted by
λ1; φ1 is the corresponding eigenfunction such that φ1 > 0 in (0, 1). We also set R+ = [0,∞).

We define K : X → X by

Ku(t) :=
∫ 1

0

∫ 1

0
G(t, s)G(s, τ )f

(
τ , u(τ )

)
dτ ds

and

G(t, s) =

⎧⎨
⎩t(1 – s), 0 ≤ t ≤ s ≤ 1,

s(1 – t), 0 ≤ s ≤ t ≤ 1.

We write u = Kv if⎧⎨
⎩u′′′′ = v, x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0.

With this notation, problem (1.1) is equivalent to

u – λKf (u) = 0, u ∈ X. (2.1)

Hereafter we will use the same symbol to denote both the function and the associated
Nemitski operator.

We say that λ∞ is a bifurcation from infinity for (2.1) if there exist μn → λ∞ and un ∈ X
such that un – μnKf (un) = 0 and ‖un‖ → ∞.

In some situations, like the specific ones we will discuss later, an appropriate rescaling
allows us to find bifurcation from infinity by means of the Leray–Schauder topological
degree, denoted by deg(·, ·, ·). Recall that K : X → X is (continuous and) compact, and
hence it makes sense to consider the topological degree of I – λKf , where I is the identity
map.

We suppose that f ∈ C([0, 1] ×R
+,R) satisfies (f1) and

(f2) there is m > 0 such that

lim
u→+∞

f (x, u)
u

= m.

Let λ∞ = λ1
m and define

a(x) = lim inf
u→+∞

(
f (x, u) – mu

)
, A(x) = lim sup

u→+∞

(
f (x, u) – mu

)
.

Theorem 2.1 Suppose that f satisfies (f1) and (f2). Then there exists ε > 0 such that (1.1)
has positive solutions, provided that either
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(i) a > 0 (possibly +∞) in [0, 1], and λ ∈ (λ∞ – ε,λ∞); or
(ii) A < 0 (possibly –∞) in [0, 1], and λ ∈ (λ∞,λ∞ + ε).

The proof of Theorem 2.1 will be carried out in several steps. First of all, we extend f (x, ·)
to the whole R by setting

F(x, u) = f
(
x, |u|).

For u ∈ X,

Φ(λ, u) := u – λKF(u).

Clearly, any u > 0 such that Φ(λ, u) = 0 is a positive solution of (1.1).

Lemma 2.1 For every compact interval Λ ⊂R
+\{λ∞}, there exists r > 0 such that

Φ(λ, u) �= 0 ∀‖u‖ ≥ r.

Moreover,
(i) if a > 0, then we can also take Λ = [λ∞,λ] for all λ > λ∞, and

(ii) if A < 0, then we can also take Λ = [0,λ∞].

Proof Suppose on the contrary that there exists a sequence {(μn, un)} satisfying

μn ∈ Λ; ‖un‖ ≥ n for n ∈N; un = μnKF(un).

Obviously, ‖un‖ ≥ n implies that un(x) �≡ 0. We may assume that μn → μ for some μ �= λ∞.
Setting wn = un‖un‖–1, we find

wn = μn‖un‖–1KF(un).

Since wn is bounded in X, after taking a subsequence if necessary, we have that wn → w
in X, where w is such that ‖w‖ = 1 and satisfies

⎧⎨
⎩w′′′′ = μm|w|, x ∈ (0, 1),

w(0) = w(1) = w′′(0) = w′′(1).

By the maximum principle it follows that w ≥ 0. Since ‖w‖ = 1, we infer that μm = λ1,
namely μ = λ∞, a contradiction that proves the first statement.

We will give a short sketch of (i). Taking μn ↓ λ∞, it follows that w ≥ 0 satisfies

⎧⎨
⎩w′′′′ = λ1w, x ∈ (0, 1),

w(0) = w(1) = w′′(0) = w′′(1) = 0,
(2.2)

and hence there exists β > 0 such that w = βφ1. Then we have un = ‖un‖wn → +∞ and
F(un) = f (un) for n large.
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From Φ(λn, un) = 0 it follows that

λ1

∫ 1

0
unφ1 dx = μn

∫ 1

0

(
f (un) – mun

)
φ1 dx + μnm

∫ 1

0
unφ1 dx. (2.3)

Since μn > λ∞ and
∫ 1

0 unφ1 dx > 0 for n large, we infer that
∫ 1

0 (f (un) – mun)φ1 dx < 0 for n
large, and the Fatou lemma yields

0 ≥ lim inf
∫ 1

0

(
f (un) – mun

)
φ1 dx

≥
∫ 1

0
aφ1 dx,

a contradiction if a > 0.
We prove statement (ii) similarly to (i). Taking μn ↑ λ∞, it follows that w ≥ 0 satisfies

(2.2), and hence there exists β > 0 such that w = βφ1. Then we have un = ‖un‖wn → +∞
and F(un) = f (un) for n large.

From Φ(λn, un) = 0 we have (2.3); since μn < λ∞ and
∫ 1

0 unφ1 dx > 0 for n large, we infer
that

∫ 1
0 (f (un) – mun)φ1 dx > 0 for n large, and the Fatou lemma yields

0 ≤ lim inf
∫ 1

0

(
f (un) – mun

)
φ1 dx ≤

∫ 1

0
Aφ1 dx,

a contradiction if A < 0. �

Lemma 2.2 If λ > λ∞, then there exists r > 0 such that

Φ(λ, u) �= tφ1 ∀t ≥ 0,‖u‖ ≥ r.

Proof Taking into account that F(x, u) � m|u| as |u| → ∞, we can repeat the arguments
of Lemma 3.3 of [16] with some minor changes. �

For u �= 0, we set z = u‖u‖–2. Letting

Ψ (λ, z) = ‖u‖2Φ(λ, u) = z – λ‖z‖2KF
(

z
‖z‖2

)
,

we have that λ∞ is a bifurcation from infinity for (2.1) if and only if it is a bifurcation from
the trivial solution z = 0 for Ψ = 0. From Lemma 2.1 by homotopy it follows that

deg
(
Ψ (λ, ·), B1/r, 0

)
= deg

(
Ψ (0, ·), B1/r, 0

)
= deg(I, B1/r, 0) = 1 ∀λ < λ∞. (2.4)

Similarly, by Lemma 2.2 we infer that, for all τ ∈ [0, 1] and λ > λ∞,

deg
(
Ψ (λ, ·), B1/r, 0

)
= deg

(
Ψ (λ, ·) – τφ1, B1/r , 0

)
= deg

(
Ψ (λ, ·) – φ1, B1/r , 0

)
= 0 ∀λ < λ∞. (2.5)
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Let us set

Σ =
{

(λ, u) ∈ R
+ × X : u �= 0,Φ(λ, u) = 0

}
.

From (2.4) and (2.5) and the preceding discussion we deduce the following:

Lemma 2.3 λ∞ is a bifurcation from infinity for (2.1). More precisely, there exists an un-
bounded closed connected set Σ∞ ⊂ Σ that bifurcates from infinity. Moreover, Σ∞ bifur-
cates to the left (to the right), provided that a > 0 (respectively, A < 0).

Proof of Theorem 2.1 By the previous lemmas it suffices to show that if μn → λ∞ and
‖un‖ → ∞, then un > 0 in [0, 1] for n large. Setting

wn = un‖un‖–1

and using the preceding arguments, we find that, up to subsequence, wn → w in X and
w = βφ1, β > 0. Then it follows that

un > 0

in (0, 1) for n large. �

Example 2.1 Let us consider the fourth-order semipositone boundary value problem

⎧⎨
⎩x′′′′(t) = λf (t, x), t ∈ (0, 1),

x(0) = x(1) = x′′(0) = x′′(1) = 0,
(2.6)

where λ > 0 and f (t, x) = 10x + t ln(1 + x) – t.
Obviously,

f (t, 0) < 0, t ∈ (0, 1);

lim
x→∞

f (t, x)
x

= 10 =: m;

a(t) = lim inf
x→+∞

(
f (t, x) – mx

)
= lim inf

x→+∞
(
t ln(1 + x) – t

)
> 0, t ∈ (0, 1).

Notice that λ1 = π4 and λ∞ = π4

10 . Thus by Theorem 2.1 there exists ε > 0 such that (2.6)
has positive solutions, provided that λ ∈ (λ∞ – ε,λ∞). Moreover, Lemma 2.3 guarantees
that there exists an unbounded closed connected set of positive solutions Σ∞ ⊂ Σ that
bifurcates from infinity and bifurcates to the left of λ∞.

3 Superlinear problems
We study the existence of positive solutions of problem (1.1) when f (x, ·) is superlinear.
Precisely, we suppose that f ∈ C([0, 1] ×R

+,R) satisfies (f1) and
(f3) there is b ∈ C([0, 1]), b > 0, such that limu→∞ u–pf (x, u) = b uniformly in x ∈ [0, 1]

with p > 1.
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Lemma 3.1 ([6]) Let X be a Banach space, and let Ω ⊂ X be a cone in X. For p > 0, define
Ωp = {x ∈ Ω | |x| < p}. Assume that F : Ωp → Ω is completely continuous such that

Fx �= x, x ∈ ∂Ωp =
{

x ∈ Ω | |x| = p
}

.

(1) If ‖Fx‖ ≤ ‖x‖ for x ∈ ∂Ωp, then i(F ,Ωp,Ω) = 1.
(2) If ‖Fx‖ ≥ ‖x‖ for x ∈ ∂Ωp, then i(F ,Ωp,Ω) = 0.

Our main result is the following:

Theorem 3.1 Let f ∈ C([0, 1] × R
+,R) satisfy (f1) and (f3). Then there exists λ∗ > 0 such

that (1.1) has positive solutions for all 0 < λ ≤ λ∗. More precisely, there exists a connected
set of positive solutions of (1.1) bifurcating from infinity at λ∞ = 0.

Proof As before, we set

F(x, u) = f
(
x, |u|)

and let

G(x, u) = F(x, u) – b|u|p.

For the remainder of the proof, we omit the dependence with respect to x ∈ [0, 1].

To prove that λ∞ = 0 is a bifurcation from infinity for

u – λKF(u) = 0, (3.1)

we use the rescaling w = γ u,λ = γ p–1,γ > 0. A direct calculation shows that (λ, u), λ > 0, is
a solution of (3.1) if and only if

w – KF̃(γ , w) = 0, (3.2)

where

F̃(γ , w) := b|w|p + γ pG
(
γ –1w

)
. (3.3)

We can extend F̃ to γ = 0 by setting

F̃(0, w) = b|w|p,

and by (f3) such an extension is continuous. We set

S(γ , w) = w – KF̃(γ , w), γ ∈R
+.
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Let us point out explicitly that S(γ , ·) = I – K with compact K . For γ = 0, solutions of
S0(w) := S(0, w) = 0 are nothing but solutions of

⎧⎨
⎩w′′′′ = b|w|p, x ∈ (0, 1),

w(0) = w(1) = w′′(0) = w′′(1) = 0.
(3.4)

We claim that there exist two constants R > r > 0 such that

S0(w) �= 0 ∀‖w‖ ≥ R, (3.5)

S0(w) �= 0 ∀‖w‖ ≤ r. (3.6)

Assume on the contrary that (3.5) is not true. Then there exists a sequence {wn} of so-
lutions of (3.4) satisfying

‖wn‖ → ∞, n → ∞. (3.7)

In fact, we have from (3.4) that

⎧⎨
⎩w′′′′

n = (b|wn|p–1)wn, x ∈ (0, 1),

wn(0) = wn(1) = w′′
n(0) = w′′

n(1) = 0,

since

lim
n→∞

(
b|wn|p–1) = ∞ uniformly in x ∈ [1/4, 3/4],

which means that wn must change its sign in [1/4, 3/4]. However, this is a contradiction.
Therefore (3.5) is valid.

Assume on the contrary that (3.6) is not true. Then there exists a sequence wn of solu-
tions of (3.4) satisfying

‖wn‖ > 0 ∀n ∈N; ‖wn‖ → 0, n → ∞. (3.8)

Let vn := wn/‖wn‖. From (3.4) we have

⎧⎨
⎩v′′′′

n = (b|wn|p–1)vn, x ∈ (0, 1),

vn(0) = vn(1) = v′′
n(0) = v′′

n = 0.
(3.9)

By the standard argument, after taking a subsequence and relabeling if necessary, it follows
that

lim
n→∞

(
b|wn|p–1) = 0 uniformly in x ∈ [0, 1],

and there exists v∗ ∈ X with ‖v∗‖ = 1 such that

vn → v∗, n → ∞,
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and
⎧⎨
⎩v′′′′∗ = 0, x ∈ (0, 1),

v∗(0) = v∗(1) = v′′∗(0) = v′′∗(1) = 0,

which implies that v∗ = 0. However, this is a contradiction, Therefore (3.6) is valid.
Now, from (3.5) and (3.6), we deduce

S0(w) �= 0 ∀w ∈ ∂ΩR, S0(w) �= 0 ∀w ∈ ∂Ωr .

This implies

S0(w) �= 0 ∀w ∈ ∂(Ω̄R \ Ωr).

Thus the degree deg(S0,ΩR \ Ωr , 0) is well defined.
Next, we show that

deg(S0,ΩR \ Ω̄r , 0) = –1.

To this end, let us define

Ω =
{

u ∈ C[0, 1] : u(t) ≥ 0 for t ∈ [0, 1]
}

and

Ωρ =
{

u ∈ Ω :
∥∥u(t)

∥∥ < ρ
}

.

Using Lemma 3.1 and an argument similar to that in the proof of [6], Theorem 3, we
deduce

i
(
KF̃(0, ·),Ωr ,Ω

)
= 1, i

(
KF̃(0, ·),ΩR,Ω

)
= 0. (3.10)

By the excision and the additivity properties of the degree it follows that

i
(
KF̃(0, ·),ΩR \ Ω̄r ,Ω

)
+ i

(
KF̃(0, ·),Ωr ,Ω

)
= i

(
KF̃(0, ·),ΩR,Ω

)
, (3.11)

and accordingly,

i
(
KF̃(0, ·),ΩR \ Ω̄r ,Ω

)
= i

(
KF̃(0, ·),ΩR,Ω

)
– i

(
KF̃(0, ·),Ωr ,Ω

)
= –1, (3.12)

that is,

deg(S0,ΩR \ Ω̄r , 0) = –1.

Lemma 3.2 There exists γ > 0 such that
(i) deg(S(γ , ·),ΩR \ Ω̄r , 0) = –1 ∀0 ≤ γ ≤ γ0;

(ii) if S(γ , w) = 0, γ ∈ [0,γ0], r ≤ ‖w‖ ≤ R, then w > 0 in (0, 1).
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Proof Clearly, (i) follows if we show that

S(γ , w) �= 0, 0 ≤ γ ≤ γ0,‖w‖ ∈ {r, R}.

Otherwise, there exists a sequence (γn, wn) with γn → 0, ‖wn‖ ∈ {r, R}, and wn = KF̃(γn,
wn). Since K is compact, then, up to a subsequence, wn → w, and

S0(w) = 0, ‖w‖ ∈ {r, R},

a contradiction with (3.5) and (3.6).
Thus, by (3.7) and homotopy we get that

deg
(
S(γ , ·),ΩR \ Ωr , 0

)
= –1.

To prove (ii), we argue again by contradiction. As in the preceding argument, we find
a sequence wn ∈ X with {x ∈ [0, 1] : wn(x) ≤ 0} �= ∅ such that wn → w, ‖w‖ ∈ [r, R], and
S0(w) = 0; namely, w solves (3.4). By the maximum principle, w > 0 on (0,1) and X. More-
over, without relabeling, wn → w in X. Therefore

wn > 0, x ∈ (0, 1),

for n large, a contradiction. �

Proof of Theorem 3.1 completed By Lemma 3.2 problem (3.2) has a positive solution wγ

for all 0 ≤ γ ≤ γ0. As remarked before, for γ > 0, the rescaling λ = γ p–1, u = w/γ gives a
solution (λ, uλ) of (3.1) for all 0 < λ < λ∗ := γ

p–1
0 . Since wγ > 0, (λ, uλ) is a positive solution

of (1.1). Finally, ‖wγ ‖ ≥ r for all γ ∈ [0,γ0] implies that

‖uλ‖ = ‖w‖γ /γ → ∞ as γ → 0.

This completes the proof. �

4 Sublinear problems
In this final section, we deal with sublinear f , namely with f ∈ C([0, 1] ×R

+,R) that satisfy
(f1) and

(f4) ∃b ∈ C([0, 1]), b > 0, such that limu→∞ u–qf (x, u) = b uniformly in x ∈ [0, 1] with 0 ≤
q < 1.

We will show that in this case positive solutions of (1.1) branch off from ∞ for λ∞ = +∞.
First, some preliminaries are in order. It is convenient to work on X. Following the same
procedure as for the superlinear case, we employ the rescaling w = γ u,λ = γ q–1 and use
the same notation with q instead of p. As before, (λ, u) solves (3.1) if and only if (γ , w)
satisfies (3.2). Note that now, since 0 ≤ q < 1, we have that

λ → +∞ ⇔ γ → 0. (4.1)
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For future reference, note that by Lemma 3.1
⎧⎨
⎩u′′′′ = bwq, x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0
(4.2)

has a unique positive solution w0.
We claim that there exist two constants R > r > 0 such that

S0(w) �= 0 ∀‖w‖ ≤ R; (4.3)

S0(w) �= 0 ∀‖w‖ ≥ r; (4.4)

deg(S0, OR \ Or , 0) = 1. (4.5)

Assume on the contrary that (4.3) is not true. Then there exists a sequence wn of solu-
tions of (4.4) satisfying

‖wn‖ → 0, n → ∞, (4.6)

then wn ≡ 0 in [0, 1] for n large.
Let vn := wn/‖wn‖. From (3.4) we have

⎧⎨
⎩v′′′′

n = (b|wn|q–1)vn, x ∈ (0, 1),

vn(0) = vn(1) = v′′
n(0) = v′′

n(1) = 0.
(4.7)

By the standard argument, after taking a subsequence and relabeling if necessary, it follows
that

lim
n→∞

(
b|wn|q–1) = 0 uniformly in x ∈ [0, 1],

and there exists v∗ ∈ X with ‖v∗‖ = 1 such that

vn → v∗, n → ∞,

and ⎧⎨
⎩v′′′′∗ = 0, x ∈ (0, 1),

v∗(0) = v∗(1) = v′′∗(0) = v′′∗(1) = 0,

which implies that v∗ = 0. However, this is a contradiction, Therefore (4.3) is valid.
Assume on the contrary that (4.4) is not true. Then there exists a sequence {wn} of so-

lutions of (4.4) satisfying

‖wn‖ → ∞, n → ∞. (4.8)

In fact, we have from (3.4) that
⎧⎨
⎩w′′′′

n = (b|wn|q–1)wn, x ∈ (0, 1),

wn(0) = wn(1) = w′′
n(0) = w′′

n(1) = 0,
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since

lim
n→∞

(
b|wn|q–1) = ∞ uniformly in x ∈ [1/4, 3/4],

which shows that wn must change its sign in [1/4, 3/4]. However, this is a contradiction.
Therefore (4.4) is valid.

Now, from (4.3) and (4.4) we deduce

S0(w) �= 0 ∀w ∈ ∂OR, S0(w) �= 0 ∀w ∈ ∂Or .

This implies that

S0(w) �= 0 ∀w ∈ ∂(ŌR \ Or).

Thus, the degree deg(S0, OR \ Ōr , 0) is well defined.
Next, we show that

deg(S0, OR \ Ōr , 0) = 1.

To this end, let us define

O =
{

u ∈ C[0, 1] : u(t) ≥ 0 for t ∈ [0, 1]
}

and

Oρ =
{

u ∈ O : ‖u‖ < ρ
}

.

Using Lemma 3.1 and an argument similar to that in the proof of [6], Theorem 3, we
deduce

i
(
KF̃(0, ·), Or , O

)
= 0, i

(
KF̃(0, ·), OR, O

)
= 1.

By the excision and the additivity properties of the degree it follows that

i
(
KF̃(0, ·), OR \ Ōr , O

)
+ i

(
KF̃(0, ·), Or , O

)
= i

(
KF̃(0, ·), OR, O

)
,

and accordingly,

i
(
KF̃(0, ·), OR \ Ōr , O

)
= i

(
KF̃(0, ·), OR, O

)
– i

(
KF̃(0, ·), Or , O

)
= 1,

that is,

deg(S0, OR \ Ōr , 0) = 1.

Lemma 4.1 There exists γ > 0 such that
(i) deg(S(γ , ·), OR \ Ōr , 0) = 1 ∀0 ≤ γ ≤ γ0;

(ii) if S(γ , w) = 0, γ ∈ [0,γ0], r ≤ ‖w‖ ≤ R, then w > 0 in (0, 1).
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Proof Clearly, (i) follows if we show that

S(γ , w) �= 0, 0 ≤ γ ≤ γ0,‖w‖ ∈ {r, R}.

Otherwise, there exists a sequence (γn, wn) with γn → 0, ‖wn‖ ∈ {r, R}, and wn = KF̃(γn,
wn). Since K is compact, then, up to a subsequence, wn → w, and

S0(w) = 0, ‖w‖ ∈ {r, R},

a contradiction with (4.3) and (4.4).
To prove (ii), we argue again by contradiction. As in the preceding argument, we find

a sequence wn ∈ X with {x ∈ [0, 1] : wn(x) ≤ 0} �= ∅ such that wn → w,‖w‖ ∈ [r, R], and
S0(w) = 0; namely, w solves (3.2). By the maximum principle, w > 0 on (0,1) and X. More-
over, without relabeling, wn → w in X. Therefore

wn > 0, x ∈ (0, 1),

for n large, a contradiction. �

Theorem 4.1 Let f ∈ C([0, 1] × R
+,R) satisfy (f1) and (f4). Then there is λ∗ > 0 such that

(1.1) has positive solutions for all λ ≥ λ∗. More precisely, there exists a connected set of
positive solutions of (1.1) bifurcating from infinity for λ∞ = +∞.

Proof of Theorem 4.1 By Lemma 4.1 problem (3.2) has a positive solution wγ for all 0 ≤
γ ≤ γ0. As remarked before, for γ > 0, the rescaling

λ = γ q–1, u = w/γ

gives a solution (λ, uλ) of (3.1) for all λ ≥ λ∗ := γ
q–1
0 . Since wγ > 0, (λ, uλ) is a positive

solution of (1.1). Finally, ‖wγ ‖ ≥ r for all γ ∈ [0,γ0] implies that

‖uλ‖ = ‖w‖γ /γ → ∞ as γ → 0.

This completes the proof. �
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