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Abstract
In the present work, a hybrid transform-based localized meshless method is
constructed for the solution of time-fractional telegraph equations. In the first step
the Laplace transform is applied to the time-fractional telegraph equation, which
reduces the problem to a finite set of elliptic equations which are solved with the
help of local radial basis functions method in parallel. Finally, the solution is
represented as an integral along a smooth curve in the complex plane. The integral is
then evaluated by quadrature rule. The advantage of this method is that it does not
suffer from time instability that may occur in a time stepping procedure. A clear
improvement is observed in terms of stability, accuracy and ill-conditioning.

Keywords: Laplace transform; Local kernel based method; Time-fractional telegraph
equation

1 Introduction
Fractional calculus is the generalization of differentiation and integration to non-integer
orders. Fractional calculus has gained special importance in the last two or three decades.
Many phenomena in engineering and other sciences can be successfully modeled by frac-
tional calculus [1–7]. The telegraph equations have many applications in physics and en-
gineering. The applications arise, for example, in signal analysis [8], random walk theory
[9], wave propagation [10].

The telegraph equations of fractional order have been investigated by many researchers.
The solution of space–time-fractional telegraph equation in a bounded domain is ob-
tained in terms of Mittage-Leffler functions by the method of generalized differential
transform [11]. Das et al. [12] used a homotopy analysis method in approximating an an-
alytical solution for the time-fractional telegraph equation and different particular cases
have been derived. In [13] Jiang and Lin obtained a series solution for the time-fractional
telegraph equation with Robin boundary value conditions using the reproducing kernel
theorem. Saadatmandi and Mohabbati [14] have used the Tau method for the approxima-
tion of fractional telegraph equation. Liu et al. [15] derived the analytical solution of the
nonhomogeneous time-fractional telegraph equation by considering three types of non-
homogeneous boundary conditions using the method of separation of variables. In [16]
the authors approximated the solution of fractional telegraph equation using radial basis
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functions. More work on fractional telegraph equations can be found in [17–19], and the
references therein.

In the present work, the Laplace transform is coupled with localized kernel-based
method, and the resulting hybrid method is investigated for solving telegraph equations
of fractional order. Following the work [20], the Bromwich integral associated with the
inverse Laplace transform is approximated numerically with standard quadrature of M
steps. By increasing M round off errors will occur which will make it difficult to find
the true solution. The authors in [21] present a method that can safeguard against this.
The combination of Laplace transform with some other methods have been successfully
achieved earlier and is available in the literature, but only a small amount of work is avail-
able. For example, the Laplace transform coupled with the boundary-particle method
[22] and the Kansa method [23]. Similarly the authors of [24] studied the combination
of Laplace transform with the RBF method on a unit sphere for solving the heat equation.
The combination of Laplace transform with the finite element, the finite difference and the
spectral methods can be found in Refs. [25–29]. We consider a time-fractional telegraph
equation of fractional order 1

2 < α ≤ 1 of the form

CD2α
t u(x, t) + λCDα

t u(x, t) = μLu(x, t) + f (x, t), x ∈ � ⊂Rd, d ≥ 1, (1.1)

subject to initial and boundary conditions

u(x, 0) = ϕ1(x), ut(x, 0) = ϕ2(x), x ∈ �, (1.2)

and

Bu(x, t) = g1(t), x ∈ ∂�, (1.3)

respectively, where L is a linear spatial differential operator and B is a boundary differen-
tial operator and CDα

t is the Caputo fractional partial derivative of order α.

2 Preliminaries
In this section, we give some important definitions about fractional calculus.

Definition 2.1 Let the Laplace transform of u(t) be defined by

L
{

u(t)
}

= U(z) =
∫ ∞

0
e–ztu(t) dt. (2.1)

Definition 2.2 The Riemann–Liouville derivative of fractional order α of a function u(t)
is defined as (see [30])

RLDα
t u(t) =

1
�(p – α)

dp

dtp

∫ t

0
(t – s)p–α–1u(s) ds, (2.2)

where p – 1 ≤ α ≤ p, p ∈ N.
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Definition 2.3 The Caputo fractional partial derivative of order α of a function u(t) is
defined by (see [30]).

CDα
t u(t) =

1
�(p – α)

∫ t

0
(t – s)p–α–1 dp

dsp u(s) ds, (2.3)

p – 1 ≤ α ≤ p, p ∈ N.

Definition 2.4 If u(t) ∈ Cp[0,∞) and p – 1 < α < p, p ∈ N, then the Laplace transform of
the Caputo fractional derivative is given by

L
{

CDα
t u(t)

}
= zαU(z) –

p–1∑

i=0

zα–i–1u(i)(0). (2.4)

3 Analysis of the method
In this section, we propose a meshless method based on Laplace transform for time-
fractional telegraph equation. In the proposed method we eliminate the time variable by
a Laplace transform and for the time independent PDE, the localized meshless numerical
scheme will be constructed.

Applying the Laplace transform to Eqs. (1.1)–(1.3), we get

z2αU(x, z) – z2α–1ϕ1(x) – z2α–2ϕ2(x) + λ
(
zαU(x, z) – zα–1ϕ1(x)

)

= μLU(x, z) + F(x, z), x ∈ �, (3.1)

B
{

U(x, z)
}

= G1(z), x ∈ ∂�. (3.2)

Thus we have the following system of linear differential equations:

[
z2αI + λzαI – μL

]{
U(x, z)

}
= G(x, z), x ∈ �, (3.3)

B
{

U(x, z)
}

= G1(z), x ∈ ∂�, (3.4)

where

G(x, z) = z2α–1ϕ1(x) + z2α–2ϕ2(x) + λzα–1ϕ1(x) + F(x, z).

In the next section the kernel-based method in local setting is employed to approximate
the governing differential operators L and the boundary differential operator B and to
solve the time independent problem (3.3)–(3.4) in Laplace space.

3.1 Spatial discretization via local kernel based method
We take a given sample data points {U(xi), i = 1, 2, . . . , N} of an unknown smooth function
U(x), where {x1, . . . , xN } ⊂ � ⊂Rd , d ≥ 1. An approximation of the function U(x), at each
xi ∈ �, is defined by

U(xi) =
∑

xh∈�i

αhψ
(‖xi – xh‖

)
, (3.5)
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where αi = [αi
1,αi

2, . . . ,αi
n] is the expansion coefficients vector, and r = ‖xi – xh‖ is the dis-

tance between centers xi and xh, ψ(r), r ≥ 0 is a radial kernel and �i ⊂ � is a local domain
for each center xi, containing n neighboring centers around xi. Thus we have N small size
linear systems of order n × n given by

Ui = 	 iαi, i = 1, 2, . . . , N , (3.6)

the entries of 	 i are bi
lh = ψ(‖xl – xh‖), xl, xh ∈ �i, the matrix 	 i is known as the in-

terpolation matrix, we need to solve each small size n × n system for the unknowns
αi = [αi

1,αi
2, . . . ,αi

n]. Next the LU(x), is approximated by

LU(xi) =
∑

xh∈�i

αi
hLψ

(‖xi – xh‖
)
, (3.7)

Equation (3.7) can be written as a product of two vectors, given by

LU(xi) = vi · αi, (3.8)

where αi of order n×1 is a vector of unknown coefficients, and vi is a vector of order 1×n
with entries given by

vi = Lψ
(‖xi – xh‖

)
, xh ∈ �i, (3.9)

using Eq. (3.6), we eliminate the unknown coefficients,

αi =
(
	 i)–1Ui, (3.10)

and by inserting the values of αi from (3.10) in (3.8) we get

LU(xi) = vi(	 i)–1Ui = wiUi, (3.11)

where

wi = vi(	 i)–1. (3.12)

Hence for each center, the localized approximation of the linear differential operator L
using radial basis functions is given by

LU ≡ DU. (3.13)

So the spatial operator L is approximated by the N × N sparse differentiation matrix D
having N – n zero entries and n non-zero entries, where n is the number of centers in the
domain �i. Similarly the boundary operator B can be approximated using the localized
kernel-based method as discussed above.
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3.2 Choosing optimal shape parameter
In the literature we can find a variety of kernel functions. In this work the multiquadrics,
ψ(r) =

√
1 + (εr)2 are selected. These kernels contain a scale factor ε and accuracy of the

solution relies upon this scale factor. For an optimal value of this scale factor ε a large
amount of work is available in the literature [31–35] and the references therein. In this
paper we utilize the uncertainty principle [36] (e.g., a better accuracy can be achieved
comparatively at larger condition numbers of these type of kernel based system matrices)
for a decent estimation of the scale factor ε.

Algorithm
• The condition number is kept approximately in the range 1012 < κ < 1016 for our

problem system matrices.
• Decompose the interpolation matrix as Q, S, V = svd(	 i) using a singular value

decomposition. The interpolation matrix 	 i is of order n × n for each local
subdomain �i, and S is diagonal matrix containing n singular values of 	 i, and
κ = ‖	 i‖‖(	 i)–1‖ = max(S)/min(S) denotes the condition number of the matrix 	 i.

• Search for ε until κ satisfy the condition 1012 < κ < 1016, using the algorithm
κ = 1
1012 < κ < 1016

while κ < κmin and κ > κmax

Q, S, V = svd(	 i)
κ = max(S)/ min(S)
if κ < κmin, ε = ε – δε

if κ > κmax, ε = ε + δε

ε(optimal) = ε.
When the above condition is satisfied a good value of ε is obtained, the inverse is
computed using (	 i)–1 = (QSVT)–1 = VS–1QT [37]. Thus we can compute wi in
(3.12).

After discretization of the operators L and B by a localized meshless method the system
(3.3)–(3.4) is solved for each point along the contour of integration z. Then the solution
u(x, t) of problem (1.1)–(1.3) can be obtained by the inverse Laplace transform

u(x, t) =
1

2π i

∫ σ+i∞

σ–i∞
eztU(x, z) dz =

1
2π i

∫

�

eztU(x, z) dz, σ > σ0, (3.14)

where � is suitable path joining σ – i∞ to σ + i∞ and

z = z(η), (3.15)

are the points chosen along the path �. Using (3.15) in (3.14), we find the following ex-
pression:

u(x, t) =
1

2π i

∫ ∞

–∞
ez(η)tU

(
x, z(η)

)
ź(η) dη. (3.16)
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The approximation of (3.16) can be obtained by the trapezoidal rule with uniform step
size k, as

uk(x, t) =
k

2π i

M∑

j=–M

ezjtU(x, zj)źj, zj = z(ηj),ηj = jk. (3.17)

4 Error analysis of the method
The accuracy of the approximate solution defined by (3.17) is based on the choice of con-
tour �. In the literature various such contours are available, for example parabolic [20]
and hyperbolic [27]. We used the hyperbolic contour in our computation due to [27]:

z(η) = ω + λ
(
1 – sin(δ – ιη)

)
, for η ∈R, (�) (4.1)

with λ > 0, ω ≥ 0, 0 < δ < β – 1
2π , and 1

2π < β < π . In fact, when Imη = γ , (4.1) reduces to
the left branch of the hyperbola

(
x – λ – ω

λ sin(δ + γ )

)2

–
(

y
λ cos(δ + γ )

)2

= 1, (4.2)

where the strip Zr = {η : Imη ≤ r} with r > 0 is transformed into the hyperbola �r = {z :
η ∈ Zr} ⊃ �. Let �φ = {z 
= 0 : | arg z| ≤ φ}∪ 0, with 0 < φ < (1–α)φ

2 , and let �ω
β = ω + �β ,� ⊂

�r ⊂ �ω
β . The error bound of the proposed method for the hyperbolic path � is based on

the following theorem.

Theorem 4.1 Let u(x, t) be the solution of (1.1), with F(x, t) analytic in �ω
β . Let 0 < θ < 1,

0 < t0 < T , and let b > 0 be defined by b = cosh–1(1/(θτ sin(δ))), where τ = t0/T , and let
� ⊂ �r ⊂ �ω

β , and scaling factor be λ = θrM/(bT). Then we have for the approximate solu-
tion defined by (3.17), with k = b/M ≤ r

log 2 , |uk(x, t) – u(x, t)| ≤ CQeωτ l(ρrM)e–μM(‖u0‖ +
‖f̂ (x, t)‖�ω

β
), for l(x) = max(1, log(1/x)), r > 0, μ = r(1 – θ )/b, r = 2πr, ρr = θrτ sin(δ – r)/b,

t0 ≤ t ≤ T , and C = Cδ,r,β .

Proof See [27], Theorem 2.1. �

5 Stability of the method
To discuss the stability of system (3.3)–(3.4), in discrete form this system may be repre-
sented as

AU = b, (5.1)

where A is N ×N sparse differentiation matrix which can be obtained by localized kernel-
based method discussed in Sect. 3. the stability constant corresponding to system (5.1) is
given by

C = sup
U 
=0

‖U‖
‖AU‖ , (5.2)
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Figure 1 First plot show the stability constant C of our differentiation matrix A for various points along the
hyperbolic path. The second plot shows the hyperbolic path, corresponding to Problem 1

where C is finite using any type of discrete norms ‖ · ‖ on RN . The above equation can be
expressed as

‖A‖–1 ≤ ‖U‖
‖AU‖ ≤ C. (5.3)

Again in terms of the pseudoinverse A† of A, we have

∥∥A†
∥∥ = sup

v
=0

‖A†v‖
‖v‖ . (5.4)

Now we write

∥∥A†
∥∥ ≥ sup

v=AU 
=0

‖A†AU‖
‖AU‖ = sup

U 
=0

‖U‖
‖AU‖ = C. (5.5)

Hence Eqs. (5.3) and (5.5) ensure the boundedness of the stability constant C. For a nu-
merical approximation of the system (5.1) the calculation of the pseudoinverse may be
computationally expansive, but it ensures numerical stability. In the case of square sys-
tems, the MATLAB’s function condest estimates ‖A–1‖∞, thus we have

C =
condest(A′)

‖A‖∞
. (5.6)

This works well for our sparse matrix A with a small amount of computations. The bounds
of stability constant C of our system (3.3)–(3.4) corresponding to Problem 1 are shown
in Fig. 1. Choosing M = 90, N = 50 and n = 7 at time t = 1, we can see that 0.0088 ≤
C ≤ 1.7401, which shows the stability constant is bounded by numbers that are not very
large, and this implies the numerical stability of localized kernel-based numerical scheme.

6 Numerical results
In this section the proposed method is tested for one dimensional time-fractional tele-
graph equations. In our computations the multiquadrics ψ(r) = (1 + (εr)2)1/2 are used.
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The accuracy of the solution depends on the shape parameter ε. A number of criteria are
available in the literature for choosing optimal values of the shape parameters. We use
the uncertainty principle due to [36] to select the optimal shape parameter. The accu-
racy of the proposed method is measured by the maximum absolute error (L∞) defined
by

L∞ =
∥∥u(x, t) – uk(x, t)

∥∥∞ = max
1≤j≤N

(∣∣u(x, t) – uk(x, t)
∣∣).

Here u and uk denotes the exact and approximate solutions, respectively. The error norms
are calculated at fixed value of t in time interval [t0, T], where t0 and T are given in each
numerical experiment.

6.1 Problem 1
Here we apply our proposed numerical method to the one dimensional time-fractional
telegraph equation [13],

CD2α
t u(x, t) + CDα

t u(x, t) =
1
2

D2
xu(x, t) + f (x, t), 0 < x < 1, 0 < t ≤ 1,

where

f (x, t) =
2ex

�(3 – 2α)
t2–2α +

2ex

�(3 – α)
t2–α –

1
2

t2ex,

subject to the initial condition

u(x, 0) = 0, ut(x, 0) = 0, 0 < x < 1,

and the boundary conditions

u(0, t) + ux(0, t) = 2t2, 0 < t ≤ 1,

u(1, t) –
1
2

ux(1, t) =
et2

2
, 0 < t ≤ 1,

with exact solution u(x, t) = ext2. The problem is solved over the domain 0 ≤ x ≤ 1 at t = 1.
Different quadrature points are used along the hyperbolic � contour. These points are
generated by MATLAB statement η = –M : k : M for hyperbolic contour �. The param-
eters used are θ = 0.1, δ = 0.1541, r = 0.1387,ω = 2, t0 = 0.5 and T = 5. The other optimal
parameters are given in (4.1). The L∞ error and error estimate (E) using fractional orders
α = 0.8, 0.96 are shown in Table 1. Various numbers of points N in the global domain �

and n in the local domain �i are used. The shape parameter is optimized using the un-
certainty principle [36]. The condition number κ , the shape parameter ε and the CPU
time(s) are given in the table. It is observed that the proposed method is less sensitive
with respect to the shape parameter. The accuracy is achieved for small shape parameter
and large condition number. The results are compared with other methods [13]. It is ob-
served that the proposed method is accurate and computationally efficient. This method
gives an almost exact solution in time, an error occurs only in spatial discretization. So
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Table 1 The maximum absolute error in our method and in [13] corresponding to Problem 1

M L∞ error E ε κ CPU time (s)

α = 0.8, N = 30, n = 5 5 4.7135 7.2328 0.8 1.0508e+012 0.136899
7 0.2062 5.9685 0.8 1.0508e+012 0.140582
10 0.0025 4.4187 0.8 1.0508e+012 0.139019
25 0.0019 0.9164 0.8 1.0508e+012 0.165614
30 3.9156e–004 0.5373 0.8 1.0508e+012 0.188401
50 1.7714e–004 0.0625 0.8 1.0508e+012 0.352443
70 1.6868e–004 0.0072 0.8 1.0508e+012 0.789112
90 1.6856e–004 8.1825e–004 0.8 1.0508e+012 1.967992

[13] 5.60e–005

α = 0.96, N = 50, n = 7 5 6.0719 7.2328 3 1.0041e+012 0.136641
7 0.2656 5.9685 3 1.0041e+012 0.142100
10 0.0034 4.4187 3 1.0041e+012 0.146196
25 0.0023 0.9164 3 1.0041e+012 0.207502
30 6.2477e–004 0.5373 3 1.0041e+012 0.249881
50 1.1877e–004 0.0625 3 1.0041e+012 0.648773
70 1.1406e–004 0.0072 3 1.0041e+012 1.786508
90 1.1400e–004 8.1825e–004 3 1.0041e+012 5.400089

[13] 2.10e–004

we can approximate the telegraph equation very accurately in time without any time in-
stability issue. The local nature of the method makes it more attractive for such a type of
problems.

6.2 Problem 2
Next we consider the one dimensional time-fractional telegraph equation with α = 2

3 ,

CD2α
t u(x, t) + CDα

t u(x, t) = D2
xu(x, t) + f (x, t), 0 < x < 1, 0 < t ≤ 1,

where

f (x, t) = 6 sin(x + 1)
(

t3–2α

�(4 – 2α)
+

t3–α

�(4 – α)

)
+ sin(x + 1)

(
t3 + 1

)
,

subject to the initial condition

u(x, 0) = sin(x + 1), ut(x, 0) = 0, 0 < x < 1,

and the boundary conditions

u(0, t) = sin(1)
(
t3 + 1

)
, 0 < t ≤ 1,

u(1, t) + 3ux(1, t) =
(
t3 + 1

)(
sin(2) + 3 cos(2)

)
, 0 < t ≤ 1.

The exact solution of the problem is u(x, t) = (t3 +1) sin(x+1). Here the problem is solved
over the domain [0, 1] at time t = 1. Various quadrature points along the hyperbolic path
� are used. These points are generated by the MATLAB statement η = –M : k : M. The
parameters used are θ = 0.1, δ = 0.1541, r = 0.1387, ω = 2, t0 = 0.5 and T = 5. The other
optimal parameters are given in Eq. (4.1). The L∞ error and error estimate (E) using frac-
tional order α = 2

3 are shown in Table 2. Various numbers of points N in the global domain
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Table 2 The maximum absolute error, shape parameter, condition number and computational time
corresponding to Problem 2 at t = 1

α = 2
3 , N = 45, n = 5 M L∞ error E ε κ CPU time(s)

10 1.8374 4.4187 1.2 1.1509e+012 0.145084
20 0.3122 1.5582 1.2 1.1509e+012 0.159080
35 0.0373 0.3144 1.2 1.1509e+012 0.255237
50 0.0075 0.0625 1.2 1.1509e+012 0.539619
70 4.1395e–004 0.0072 1.2 1.1509e+012 1.361986
90 6.0201e–005 8.1825e–004 1.2 1.1509e+012 4.342044

Table 3 The maximum absolute error for differentM, N, n and α corresponding to Problem 3 at t = 1

N = 50, n = 6 M α = 1.25 α = 1.5 α = 1.75 α = 1.95 E

5 1.0734 1.0734 1.0734 1.0734 7.2328
7 0.0242 0.0242 0.0242 0.0242 5.9685
10 0.0086 0.0086 0.0086 0.0086 4.4187
20 9.4927e–005 9.4845e–005 9.4752e–005 9.4650e–005 1.5582
30 1.8743e–005 1.8332e–005 1.7849e–005 1.7310e–005 0.5373
50 1.1274e–005 1.0852e–005 1.0357e–005 9.8078e–006 0.0625

� and n in the local domain �i are used. The shape parameter is optimized using the un-
certainty principle [36]. The condition number κ , the shape parameter ε and the CPU
time(s) are given in Table 2. A similar performance is observed to the one we observed in
Problem 1.

6.3 Problem 3
As a third example we consider the one dimensional time-fractional telegraph equation
with α ∈ (1, 2] [16]

CDα
t u(x, t) + CDα–1

t u(x, t) + u(x, t) = πD2
xu(x, t) + f (x, t), 0 < x < 1, 0 < t ≤ 1,

where

f (x, t) = 6
(
sin(x)

)2
(

t3–α

�(4 – α)
+

t4–α

�(5 – α)
+

t3

6

)
– 2π t3 cos(2x),

subject to the initial condition u(x, 0) = ut(x, 0) = 0, 0 < x < 1, and the boundary conditions
are chosen according to the exact solution u(x, t) = t3(sin(x))2. Here we tested our method
for the one dimensional telegraph equation in domain [0, 1] at time t = 1. We used the same
hyperbolic contour and the same optimal parameters as discussed in Problem 1 and Prob-
lem 2. The absolute errors and error estimate for the contour � are shown in Table 3 using
fractional order α = 1.25, 1.5, 1.75, 1.95. The error functions are shown in Fig. 2, which are
calculated for N = 11 and n = 4. These results can be improved by increasing N . It is ob-
served that as we increase the value of α the absolute error decreases. From Table 3 and
Fig. 2 a clear improvement is observed as compared to [16]. So the proposed method is an
excellent alternative for solving the fractional order telegraph equations.
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Figure 2 Error function for N = 11,n = 4,M = 70 and different α at t = 1 corresponding to Problem 3

6.4 Problem 4
In the last example we consider the one dimensional time-fractional telegraph equation
with α ∈ (1, 2] [38]

CDα
t u(x, t) + CDα–1

t u(x, t) + u(x, t) = D2
xu(x, t) + f (x, t), 0 < x < 1, 0 < t ≤ 1,

where

f (x, t) =
(

t2–α

�(3 – α)
+ t

)(
x2 – x

)
– 2t

subject to the initial condition

u(x, 0) = ut(x, 0) = x2 – x, 0 < x < 1,

and the boundary conditions are

u(0, t) = u(1, t) = 0.

Exact solution of the problem is u(x, t) = (x2 – x)t. The problem is solved over the domain
[0, 1] at time t = 1. The same hyperbolic contour � and the same optimal parameters are
used in this problem. The absolute errors and error estimate for the contour � are shown
in Table 4 using fractional order α = 1.95. The result given in Table 4 shows that the pro-
posed method is accurate and efficient as compared to [38]. So the proposed method is an
excellent alternative for solving the fractional order telegraph equations.

7 Conclusion
In the present work, we propose a local meshless method coupled with the Laplace trans-
form for a time-fractional telegraph equation. The method is almost exact in time without
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Table 4 The maximum absolute error of the proposed method for different values of M and N = 11,
n = 4, α = 1.95 corresponding to Problem 4 at t = 1 and in [38]

Our method x M = 15 M = 30 M = 40 M = 50

0 0 0 0 0
0.1 9.7426e–004 2.4335e–005 1.5203e–005 4.0419e–006
0.2 1.7345e–003 4.0736e–005 2.9554e–005 9.7154e–006
0.3 2.2774e–003 5.2554e–005 3.9710e–005 1.3668e–005
0.4 2.6032e–003 5.9667e–005 4.5773e–005 1.6012e–005
0.5 2.7118e–003 6.2035e–005 4.7793e–005 1.6794e–005
0.6 2.6032e–003 5.9666e–005 4.5773e–005 1.6012e–005
0.7 2.2774e–003 5.2553e–005 3.9711e–005 1.3669e–005
0.8 1.7345e–003 4.0737e–005 2.9553e–005 9.7145e–006
0.9 9.7426e–004 2.4337e–005 1.5201e–005 4.0403e–006
1 0 0 0 0

In [38] x m = 5 m = 7 m = 10 m = 15

0 0 0 0 0
0.1 1.6276e–003 1.6932e–004 2.9057e–004 6.8187e–005
0.2 2.4790e–003 1.0916e–003 3.7898e–004 8.7378e–005
0.3 2.3211e–003 1.0749e–003 3.8165e–004 8.8787e–005
0.4 2.1772e–003 1.0102e–003 3.6413e–004 8.4142e–005
0.5 2.1507e–003 9.9270e–004 3.5473e–004 8.2186e–005
0.6 2.1772e–003 1.0102e–003 3.6413e–004 8.4142e–005
0.7 2.3211e–003 1.0749e–003 3.8165e–004 8.8787e–005
0.8 2.4790e–003 1.0916e–003 3.7898e–004 8.7378e–005
0.9 1.6276e–003 1.6932e–004 2.9057e–004 6.8187e–005
1 0 0 0 0

any time instability, which is commonly encountered in time stepping mesh-free meth-
ods. These time stepping methods require a very small time step for greater accuracy
on the expense of large computations. We tested our procedure for 1D telegraph equa-
tions with time-fractional orders. The accuracy and performance of the methods is ex-
cellent for solving time-fractional telegraph equations. The proposed hybrid mesh-free
method is an excellent alternative for solving time-fractional partial differential equa-
tions.
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