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Abstract
In this paper, we introduce two approaches to the generalized synchronized
synchronization and the inverse generalized synchronization of fractional
discrete-time chaotic systems with non-identical dimensions. The convergence of the
proposed approaches is established by means of recently developed stability theory.
Numerical results are presented based on well-known maps in the literature. Two
examples are considered: a 3D generalized synchronization and a 2D inverse
generalized synchronization.
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1 Introduction
The theory of fractional calculus is old as its inception can be attributed to two of the
most prominent figures of modern calculus, L’Hôpital and Leibniz, as early as 1695. The
complete framework for this type of calculus was complete by the 1800s [1]. However,
the same cannot be said about discrete fractional calculus, which has not seen the light of
day until recently. Over the last decade, researchers have found interest in the theory as
well as applications of discrete fractional calculus. In examining the theoretical literature,
one observes a number of difficulties facing the subject. In fact, an exact definition of the
fractional discrete operator itself has not yet been agreed upon. The general consensus
seems to be restricted to the fact that unlike the integer operator, which is local, the frac-
tional one has infinite memory. This is not at all unlike the Caputo operator in continuous
time. A good description and analysis of this type of calculus can be found in [1]. Most of
the notation adopted in our study is based on that of [1]. It is important to mention that
discrete fractional calculus has been shown to provide more accurate models of natural
phenomena. See, for instance, modeling the motion of a bead sliding on a wire [2]. The
subject has also found application in optimal control [3].
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Among the interesting aspects of a discrete-time fractional system is its stability analysis.
Obviously, the asymptotic stability of discrete fractional systems is an important subject
since it brings us a step closer to establishing the existence of chaos and serves as a basis
for proving the convergence of a system’s states to zero (or some other equilibrium) as
time approaches infinity. This is particularly important when dealing with the stabilization
and synchronization of discrete fractional dynamical systems. Among the most interesting
results reported in the literature are those of [4], where the author establishes bounds on
the arguments of the eigenvalues related to the linearized system in order to guarantee
asymptotic stability. Another interesting study is [5], where the authors established and
proved a discrete fractional version of the well-known direct Lyapunov method. Some
useful Lyapunov functions for Riemann–Liouville-like fractional difference equations can
be looked up in [6]. More stability results can be found in [7, 8].

Chaos refers to the high sensitivity of a dynamical system to small changes in the ini-
tial condition. Discrete chaotic systems have been around for a while. Perhaps the most
commonly studied and applied discrete chaotic system is the Hénon map, which was intro-
duced in 1976 [9] as a discretization of the Poincaré section of the famous continuous-time
Lorenz system. Soon after, numerous other maps were proposed and became of interest
to researchers in the fields of communications and control including the Lozi system [10]
and the 2-component flow model [11]. Generalizations of these 2-component systems to
higher dimensions were proposed at a later stage including, for instance, the generalized
Hénon map [12] and the Stefanski system [13]. This type of chaotic systems has found
applications in many fields including engineering and science [14–17].

One of the most studied aspects of chaos is the synchronization of chaotic systems,
which aim to force a slave system to mimic the dynamics of a master one. Numerous syn-
chronization types and control strategies have been proposed throughout the years since
Pecora et al. [18] had their first breakthrough. The synchronization of discrete-time sys-
tems has been studied by some researchers [19–27].

Fractional chaotic systems have recently become somewhat of a hot topic. Researchers
have looked at the fractional counterparts for a number of conventional chaotic systems.
Most recently, some advances have been made in relation to chaotic fractional discrete-
time systems and their applications [28–35]. The theory related to this kind of systems
makes them suitable for certain applications such as encryption [36, 37]. Researchers in
the field of secure communications and data encryption have suggested that fractional
maps are more suitable than integer order ones as they include a new degree of freedom in
their dependency on the fractional order. In addition, it has been reported that fractional
maps have simpler forms yet hold richer dynamical behaviors. The synchronization of this
type of systems remains to this day a new and mostly unexplored field. The references on
the subject are only a few [37–43].

In this paper, we aim to propose control laws for two types of synchronization relating
to fractional discrete-time systems, namely generalized synchronization (GS) and inverse
generalized synchronization (IGS). GS is one of the most widely studied synchronization
types. It refers to the existence of a functional relationship between the drive states and
the response states [44]. Instead of the conventional definition of synchronization, which
stipulates that the difference between the drive and response trajectories tends to zero
as t → ∞, GS forces the difference between the slave states and a function of the master
states to zero. IGS is the natural reversal of GS, i.e., the error is the difference between
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the master states and a function of the slave states. The importance of GS and IGS stems
from the fact that they can enrich the behavior of chaotic systems. This allows for more
flexibility and has proven useful in many applications including secure communications
[45]. Exact definitions of the GS and IGS types will be given in Sects. 3 and 4, respectively.

Due to the many reported advantages of fractional chaotic maps [30, 33, 46], we found
ourselves compelled to examine their synchronization. It is not always possible or desir-
able to completely synchronize two chaotic systems but rather to introduce a more gen-
eralized synchronization [44]. Our aim in this paper is to establish the convergence of the
proposed GS and IGS schemes for a pair of fractional discrete systems by means of asymp-
totic stability results reported recently in the literature. The next section of this study will
highlight some of the necessary notation and theory related to discrete fractional calcu-
lus and stability. Section 3 proposes the control law for the generalized synchronization
of two fractional discrete-time systems with non-identical dimensions. Section 4 presents
the control law for the inverse generalized synchronization following a similar approach.
Section 5 presents the numerical results related to two particular examples. Finally, Sect. 6
provides a general summary of the main findings of this study.

2 Basic concepts
In this section, we aim to recall some of the theory required for the analysis throughout
our paper. In particular, we will present some of the notation and definitions related to
discrete fractional calculus and the stability of fractional discrete systems. Throughout our
study, we will be using the notation and definitions adopted in [42] for discrete fractional
calculus. We start by defining the υth fractional sum of an arbitrary function u : Na → R

in the same way as postulated in [47], i.e.,

�–υ
a u(t) =

1
�(υ)

t–υ∑

s=a

(
t – σ (s)

)(υ–1)u(s), (1)

where υ > 0 and σ (s) = s + 1. The notation Na denotes the set of natural numbers starting
from a and tυ denotes the falling function given by means of the gamma function � as

t(υ) =
�(t + 1)

�(t + 1 – υ)
. (2)

We also need to define the υth order Caputo type delta difference of an arbitrary func-
tion u defined over Na. According to [48], for υ /∈ N, t ∈ Na+n–υ , and n = [υ] + 1, this may
be given by

C�υ
a = �–(n–υ)

a �nu(t) =
1

�(n – υ)

t–(n–υ)∑

s=a

(
t – σ (s)

)(n–υ–1)
�nu(s). (3)

It is important to note that in the special case characterized by 0 < υ < 1, n = 1 and t ∈
Na+1–υ yielding

C�υ
a u(t) = �–(1–υ)

a �u(t) =
1

�(1 – υ)

t–(1–υ)∑

s=a

(
t – σ (s)

)(–υ)
�su(s). (4)
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In order to be able to carry out the analysis and numerical simulations required in our
paper, we need the following two theorems. The first theorem describes the equivalent
discrete integral equation corresponding to a generic fractional discrete difference equa-
tion. This is needed to obtain the numerical formulas for the simulations. It is important
to note that more recent work has been done on the subject of extending the well-known
finite difference numerical method to fractional systems including, for instance, the work
in [49]. The second theorem identifies the asymptotic stability condition for a generic frac-
tional map.

Theorem 1 ([50]) The equivalent discrete integral equation to

C�υ
a u(t) = f

(
t + υ – 1, u(t + υ – 1)

)
, (5)

with �ku = uk , n = [υ] + 1, and k = 0, 1, . . . , n – 1, can be formulated for t ∈ Na+n as

u(t) = u0(t) +
1

�(υ)

t–υ∑

s=a+n–υ

(
t – σ (s)

)(υ–1)f
(
s + υ – 1, u(s + υ – 1)

)
, (6)

where the initial iteration u0(t) reads

u0(t) =
m–1∑

k=0

(t – a)(k)

�(k + 1)
�ku(a). (7)

Theorem 2 ([4]) Given a vector-valued function X(t) = (x1(t), . . . , xn(t))T , 0 < υ ≤ 1, A ∈
Rn×n, and ∀t ∈Na+1–υ , the zero equilibrium of the linear fractional discrete-time system

C�υ
a X(t) = AX(t + υ – 1) (8)

is asymptotically stable if

λ ∈
{

z ∈C : |z| <
(

2 cos
| arg z| – π

2 – υ

)υ

and | arg z| >
υπ

2

}
(9)

for all the eigenvalues λ of A.

3 Generalized synchronization
Let us consider the drive and response systems described by

⎧
⎨

⎩

C�υ
a X(t) = f (X(t + υ – 1)),

C�υ
a Y (t) = BY (t + υ – 1) + g(Y (t + υ – 1)) + U ,

for t ∈Na+1–υ , (10)

where X(t) = (x1(t), . . . , xn(t))T and Y (t) = (y1(t), . . . , ym(t))T are the corresponding state
vectors, 0 < υ ≤ 1, f : Rn → R

n, B is an m × m matrix of parameters, g : Rm → R
m is a

nonlinear function, and U = (ui)1≤i≤m is the vector controller to be determined by means
of the synchronization process. In this section we are concerned with generalized syn-
chronization, which is defined as follows.
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Definition 1 The pair (10) is said to be generalized synchronized with respect to the vec-
tor map φ if there exists a controller U = (ui)1≤i≤m and a map φ : Rn → R

m such that

lim
t→+∞

∥∥e(t) := Y (t) – φ
(
X(t)

)∥∥ = 0. (11)

Normally, in order to establish that a certain control law achieves a given type of syn-
chronization, we must prove that the zero solution of the error system is asymptotically
stable. Hence, the following theorem proposes a controller U aimed at forcing the syn-
chronization errors defined in (11) to zero asymptotically, i.e., as t → ∞.

Theorem 3 Subject to

U(t) = –CY (t) – g
(
Y (t)

)

+ (C – B)φ
(
X(t)

)
+ C�υ

aφ
(
X(t)

)
, (12)

where t ∈Na+1–υ ,

C =

⎛

⎜⎜⎜⎜⎝

c11 b12 · · · b1m

b21 c22 · · · b2m
...

...
. . .

...
bm1 bm2 · · · cmm

⎞

⎟⎟⎟⎟⎠
, (13)

and

–2υ < bii – cii < 0, i = 1, 2, . . . , m, (14)

the pair (10) is globally generalized synchronized with respect to φ.

Proof The errors between the pair of systems (10) lead to

C�υ
a e(t) = BY (t + υ – 1) + g

(
Y (t + υ – 1)

)
– C�υ

aφ
(
X(t)

)
+ U . (15)

Substituting (12) into (15) yields the simplified form

C�υ
a e(t) = (B – C)e(t + υ – 1), (16)

where

B – C =

⎛

⎜⎜⎜⎜⎝

b11 – c11 0 · · · 0
0 b22 – c22 · · · 0
...

...
. . .

...
0 0 · · · bmm – cmm

⎞

⎟⎟⎟⎟⎠
. (17)

It is easy to see that the eigenvalues of B – C, which are simply λi = bii – cii, i = 1, 2, . . . , m,
satisfy the conditions

|λi| <
(

2 cos
| argλi| – π

2 – υ

)υ
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and

| argλi| >
υπ

2
.

It, therefore, follows immediately from Theorem 2 that the zero solution of (16) is
asymptotically stable and the pair (10) is generalized synchronized. �

4 Inverse generalized synchronization
Now, let us consider the drive and response chaotic systems of the form

⎧
⎨

⎩

C�υ
a X(t) = AX(t + υ – 1) + f (X(t + υ – 1)),

C�υ
a Y (t) = g(Y (t + υ – 1)) + U ,

for t ∈Na+1–υ , (18)

where X(t) = (x1(t), . . . , xn(t))T and Y (t) = (y1(t), . . . , ym(t))T , 0 < υ ≤ 1, A ∈ R
n×n, f : Rn →

R
n is a nonlinear function, g : Rm → R

m, and U = (ui)1≤i≤m. Note here that the master
and slave systems in (18) are of non-identical dimensions given by n and m, respectively,
such that n ≤ m. In this section, we aim to introduce a control strategy that forces the
slave states to synchronize with the master ones. The type of synchronization considered
here is known as inverse generalized synchronization, which was considered in [51] for
continuous-time fractional chaotic systems.

Definition 2 The pair (18) is said to be inverse generalized synchronized with respect to
ϕ if there exist a controller U = (ui)1≤i≤m and a map ϕ : Rm −→R

n such that

lim
t−→+∞

∥∥e(t) := X(t) – ϕ
(
Y (t)

)∥∥ = 0. (19)

Suppose that ϕ can be written as

ϕ
(
Y (t)

)
= HY (t) + h

(
Y (t)

)
, (20)

where H ∈ R
n×m and h : Rm → R

n is a nonlinear function. The error dynamics between
the drive and response systems (18) can be derived for t ∈Na+1–υ as

C�υ
a e(t) = C�υ

a X(t) – C�υ
aϕ

(
Y (t)

)

= AX(t + υ – 1) + f
(
X(t + υ – 1)

)
– H × C�υ

a Y (t) – C�υ
a h

(
Y (t)

)

= AX(t + υ – 1) + f
(
X(t + υ – 1)

)
– H × g

(
Y (t + β – 1)

)

– C�υ
a h

(
Y (t)

)
– H × U . (21)

For i > n, we can simply choose

ui = 0, i = n + 1, n + 2, . . . , m. (22)

This way, (21) can be written as follows:

C�υ
a e(t) = (A – L)e(t + υ – 1) + R – Ĥ × Û , t ∈Na+1–υ , (23)
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where Û = (u1, . . . , un)T , Ĥ is an invertible n × n matrix,

R = LX(t) + (A – L)HY (t) + (A – L)h
(
Y (t)

)
+ f

(
X(t)

)
– Hg

(
Y (t)

)
– C�υ

a h
(
Y (t)

)
, (24)

and L ∈R
n×n is a control matrix chosen such that all the eigenvalues λi, i = 1, . . . , n, of A–L

satisfy the conditions

|λi| < 2υ and
∣∣arg(λi)

∣∣ = π , i = 1, 2, . . . , n. (25)

In order to achieve inverse generalized synchronization, our choice of the remaining con-
trol parameters can be made as follows:

Û = Ĥ–1 × R, (26)

where Ĥ–1 ∈ R
n×n is the inverse of matrix Ĥ . By substituting (26) into (23), the error dy-

namics can be described as

C�υ
a e(t) = (A – L)e(t + υ – 1), t ∈Na+1–υ . (27)

With this dynamic, we can follow the same steps as in the proof of Theorem 3 to establish
the following result.

Theorem 4 Subject to control laws (22) and (26) and by selecting the control matrix L
according to (25), the pair (18) is inverse generalized synchronized with respect to ϕ.

5 Numerical results
In order to put the control laws proposed in Theorems 3 and 4 to the test, we will present
two numerical examples for a pair of fractional chaotic systems with different dimen-
sions. In [33], the author introduced a complete fractional-order Hénon map based on
the same discrete fractional calculus definitions adopted in our study. In addition, a frac-
tional form of the 3D generalized Hénon map was proposed in [46] with the same notation
used herein.

Before we go ahead and show our numerical results, let us first review some aspects of
the drive and response systems. We consider as a drive system the 2D fractional Hénon
map of the form

⎧
⎨

⎩

C�υ
a x1(t) = x2(t + υ – 1) + 1 – a1x2

1(t + υ – 1) – x1(t + υ – 1),
C�υ

a x2(t) = b1x1(t + υ – 1) – x2(t + υ – 1),
(28)

for t ∈ Na+1–υ , which exhibits a chaotic attractor, for instance, when (a1, b1) = (1.4, 0.3),
a = 0, and υ = 0.984. The resulting chaotic attractor is shown in Fig. 1 and its general
shape is similar to that of the integer order one.
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Figure 1 Phase space plot for the fractional Hénon map with (a1,b1) = (1.4, 0.3), υ = 0.984, a = 0, and
x1(0) = x2(0) = 0

As for the response system, we consider the 3D fractional generalized Hénon map. The
system is described for t ∈Na+1–υ as

⎧
⎪⎪⎨

⎪⎪⎩

C�υ
a y1(t) = –y1(t + υ – 1) – b2y3(t + υ – 1) + u1(t + υ – 1),

C�υ
a y2(t) = b2y3(t + υ – 1) + y1(t + υ – 1) – y2(t + υ – 1) + u2(t + υ – 1),

C�υ
a y3(t) = 1 + y2(t + υ – 1) – a2y2

3(t + υ – 1) – y3(t + υ – 1) + u3(t + υ – 1),

(29)

where u1, u2, and u3 are controllers. Subject to (a2, b2) = (0.99, 0.2), a = 0, and υ = 0.984,
the uncontrolled map (29) with u1 = u2 = u3 = 0 is chaotic as shown in Fig. 2. In the remain-
der of this section, we will put the findings of Theorems 3 and 4 to the test by considering
two specific examples, a 3D generalized synchronization and a 2D inverse generalized
synchronization.

5.1 3D generalized synchronization
It is easy to see that the linear part of the response system (29) is given by

B =

⎛

⎜⎝
–1 0 –b2

1 –1 b2

0 1 –1

⎞

⎟⎠ . (30)

Based on the proposed approach described in Sect. 3, the error system corresponding to
the generalized synchronization strategy is defined as

(
e1(t), e2(t), e3(t)

)T =
(
y1(t), y2(t), y3(t)

)T – φ
(
x1(t), x2(t)

)
, (31)

where

φ
(
x1(t), x2(t)

)
=

(
x1(t), x2(t), x1(t)x2(t)

)T . (32)
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Figure 2 Phase portraits for the hyperchaotic Hénon map with (a2,b2) = (0.99, 0.2), υ = 0.984, a = 0, and
(y1(0), y2(0), y3(0)) = (0.1, 0.2, 0.5)

According to Theorem 3, there exists a control matrix C, which can be chosen as

C =

⎛

⎜⎝
0 0 –b2

1 – 1
2 b2

0 1 – 2
3

⎞

⎟⎠ , (33)

which clearly satisfies conditions (13) and (14), and by extension systems (28) and (29) are
generalized synchronized in 3D. Now that matrices B and C and function φ are known, it
is rather easy to construct the control law according to (12). The resulting error system is
of the form

⎧
⎪⎪⎨

⎪⎪⎩

C�υ
a e1(t) = –e1(t + υ – 1),

C�υ
a e2(t) = – 1

2 e2(t + υ – 1),
C�υ

a e3(t) = – 1
3 e3(t + υ – 1).

(34)

The time evolution of the errors is depicted in Fig. 3. Clearly, synchronization is achieved
as the errors converge to zero in sufficient time.

5.2 2D inverse generalized synchronization
For the 2D inverse generalized scenario, the linear part of the slave system is

A =

(
–1 1
b1 –1

)
. (35)
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Figure 3 Time evolution of the generalized synchronization errors e1(t), e2(t), and e3(t) with υ = 0.984 and
a = 0

Following the synchronization process described in Sect. 4, the error system is given by

(
e1(t), e2(t)

)T =
(
x1(t), x2(t)

)T – ϕ
(
y1(t), y2(t), y3(t)

)
, (36)

where

ϕ
(
y1(t), y2(t), y3(t)

)
=

(
y1(t) – 2y2(t), y1(t) + y2

3(t)
)T . (37)

The function ϕ can be written as

ϕ
(
y1(t), y2(t), y3(t)

)
= H × (

y1(t), y2(t), y3(t)
)T + h

(
y1(t), y2(t), y3(t)

)
, (38)

where

H =

(
1 –2 0
0 1 0

)
(39)

and

h
(
y1(t), y2(t), y3(t)

)
=

(
0, y2

3(t)
)T . (40)
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Figure 4 Time evolution of the inverse generalized synchronization errors e1(t) and e2(t) with υ = 0.984 and
a = 0

Using the steps of Sect. 4, we have

Ĥ =

(
1 –2
0 1

)
and Ĥ–1 =

(
1 2
0 1

)
. (41)

According to Theorem 4, the control matrix L can be selected as

L =

(
0 0

b1 – 1 –2

)
, (42)

which clearly satisfies condition (25). Recall from (26) that the controller requires us to
determine Ĥ–1 and R, which may be calculated using L as in (42) and A as in (35). Con-
structing the controllers is, therefore, straightforward and is governed by (22) and (26). As
a result, systems (28) and (29) are inverse generalized synchronized in two dimensions.
Figure 4 depicts the convergence of the errors, which belong to the fractional system

⎧
⎨

⎩

C�υ
a e1(t) = –e1(t + υ – 1) + e2(t + υ – 1),

C�υ
a e2(t) = e1(t + υ – 1) – e2(t + υ – 1).

(43)

5.3 Discussion of results
It is important to note that the novelty of the results reported in this paper stems from the
fact that the GS scheme achieved in this paper is a generalization of a number of different
synchronization types including complete synchronization, anti-synchronization, projec-
tive synchronization, matrix projective synchronization, and functional matrix projective
synchronization. Similarly, a number of different types considered in the literature fall
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under the IGS type including inverse synchronization, anti-synchronization, inverse pro-
jective synchronization, inverse matrix projective synchronization, and inverse functional
matrix projective synchronization.

The literature related to the synchronization of fractional chaotic maps is still very lim-
ited. Perhaps the most relevant studies are [38–41]. In [38], the authors discuss the dy-
namics of the fractional logistic map and propose a simple synchronization scheme for
a pair of identical maps. The work in [39] concerns identical synchronization, which is
based on [18], and uses the results reported in [52, 53]. Also, [40] deals with the chaotic
synchronization of linearly coupled discrete fractional Hénon maps. The study considers
identical drive and response systems and the synchronization scheme achieved is basic. As
for [41], the fractional difference operator employed is different from ours, which makes
it difficult to compare the results except to say that the Caputo operator used here is more
practical for most applications.

Unlike all of the previous studies, our work is more general both in terms of the
drive/response pair considered and the types of synchronization achieved. The GS and
IGS synchronization schemes proposed here are applicable to a wide range of fractional
maps. In addition, the method used to establish asymptotic stability is the linearization
scheme proved in [4].

6 Conclusion and future works
In this paper, we have proposed control strategies for two distinct synchronization types
dedicated to discrete-time fractional-order chaotic systems characterized by different di-
mensions. The first type is referred to as generalized synchronization and the second as
inverse generalized synchronization. The proposed control parameters are nonlinear in
nature. In order to ensure that the proposed schemes converge towards zero, we establish
the asymptotic stability of the zero solution to the error system by means of the lineariza-
tion method. In order to assess the validity of the findings, numerical results have been
presented for a 2D master and a 3D slave. The discrete-time systems employed here are
well known in the literature. Two distinct cases have been considered: a 3D generalized
synchronization and a 2D inverse generalized synchronization. Matlab simulation results
have confirmed the convergence of the error in sufficient time.

We note that the global asymptotic stability of controllers is usually established by means
of the direct Lyapunov method. Unfortunately, since the method has yet to be proven for
fractional discrete systems with delay, we were not able to use it in our study. We plan to
address this in a future study. In addition, discrete-time fractional chaotic systems have
received considerable interest in the field of data, image, and video encryption. It is com-
mon to use a large set of random or pseudo-random keys in a secret or public key en-
cryption scenario. The basic idea is that chaotic maps can be used instead of conventional
algorithmic key generators. It has been claimed in the literature that the dependence of
fractional chaotic maps on changes in the fractional order adds a new degree of freedom,
which makes them more suitable for encryption purposes. It is the intention of the authors
to put this claim to the test in a future study by comparing the synchronization scheme
discussed herein with previous results in a data encryption scenario.

Acknowledgements
The authors would like to thank the editor and reviewers for taking the time to consider this manuscript and provide
positive feedback.



Khennaoui et al. Advances in Difference Equations  (2018) 2018:303 Page 13 of 14

Funding
The authors declare that no funding has been received for work that resulted in this manuscript.

Competing interests
The authors declare that they do not have any competing interests in this manuscript.

Authors’ contributions
All authors contributed equally to this manuscript. All authors read and approved the final manuscript.

Author details
1Department of Mathematics and Computer Sciences, University of Larbi Ben M’hidi, Oum El Bouaghi, Algeria.
2Mathematics and Computer Science Department, Tebessa University, Tebessa, Algeria. 3Department of Electrical
Engineering, College of Engineering, Taibah University, Yanbu, Saudi Arabia. 4Dipartimento Ingegneria Innovazione,
Universita del Salento, Lecce, Italy. 5Institute for Advanced Study, Shenzhen University, Shenzhen, P.R. China. 6Modeling
Evolutionary Algorithms Simulation and Artificial Intelligent, Faculty of Electrical & Electronics Engineering, Ton Duc
Thang University, Ho Chi Minh City, Vietnam.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 10 May 2018 Accepted: 15 August 2018

References
1. Goodrich, C., Peterson, A.C.: Discrete Fractional Calculus. Springer, Berlin (2015)
2. Baleanu, D., Jajarmi, A., Asad, J., Blaszczyk, T.: The motion of a bead sliding on a wire in fractional sense. Acta Phys. Pol.

A 131(6), 1561–1564 (2017)
3. Jajarmi, A., Hajipour, M., Mohammadzadeh, E., Baleanu, D.: A new approach for the nonlinear fractional optimal

control problems with external persistent disturbances. J. Franklin Inst. 335(9), 3938–3967 (2018)
4. Cermak, J., Gyori, I., Nechvatal, L.: On explicit stability conditions for a linear fractional difference system. Fract. Calc.

Appl. Anal. 18(3), 651–672 (2015)
5. Baleanu, D., Wu, G., Bai, Y., Chen, F.: Stability analysis of Caputo-like discrete fractional systems. Commun. Nonlinear

Sci. Numer. Simul. 48, 520–530 (2017)
6. Wu, G.C., Baleanu, D., Luo, W.H.: Lyapunov functions for Riemann–Liouville-like fractional difference equations. Appl.

Math. Comput. 314, 228–236 (2017)
7. Wu, G.C., Baleanu, D., Huang, L.L.: Novel Mittag-Leffler stability of linear fractional delay difference equations with

impulse. Appl. Math. Lett. 82, 71–78 (2018)
8. Wu, G.C., Baleanu, D.: Stability analysis of impulsive fractional difference equations. Fract. Calc. Appl. Anal. 21, 354–375

(2018)
9. Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50(1), 69–77 (1976)
10. Lozi, R.: Un atracteur étrange du type attracteur de Hénon. J. Phys. (Paris) 39, 9–10 (1978)
11. Itoh, M., Yang, T., Chua, L.O.: Conditions for impulsive synchronization of chaotic and hyperchaotic systems. Int.

J. Bifurc. Chaos Appl. Sci. Eng. 11, 551–558 (2001)
12. Hitzl, D.L., Zele, F.: An exploration of the Hénon quadratic map. Phys. D: Nonlinear Phenom. 14(3), 305–326 (1985)
13. Stefanski, K.: Modelling chaos and hyperchaos with 3D maps. Chaos Solitons Fractals 9(1–2), 83–93 (1998)
14. Kapitaniak, T.: Chaos for Engineers: Theory, Applications, and Control. Springer, Berlin (2000)
15. Banerjee, S., Rondoni, L.: Applications of Chaos and Nonlinear Dynamics in Science and Engineering Vol. III. Springer,

Berlin (2013)
16. Curry, D.M.: Practical application of chaos theory to systems engineering. Proc. Comput. Sci. 8, 39–44 (2012)
17. Aihara, K.: Chaos and its applications. Proc. IUTAM 5, 199–203 (2012)
18. Pecora, L.M., Carrol, T.L.: Synchronization in chaotic systems. Phys. Rev. A 64, Article ID 821 (1990)
19. Ma, Z., Liu, Z., Zhang, G.: Generalized synchronization of discrete systems. Appl. Math. Mech. 28(5), 609–614 (2007)
20. Ouannas, A., Azar, A.T., Abu-Saris, R.: A new type of hybrid synchronization between arbitrary hyperchaotic maps. Int.

J. Mach. Learn. Cybern. 8, 1887–1894 (2017)
21. Ouannas, A., Grassi, G.: A new approach to study co-existence of some synchronization types between chaotic maps

with different dimensions. Nonlinear Dyn. 86(2), 1319–1328 (2016)
22. Ouannas, A., Odibat, Z.: Generalized synchronization of different dimensional chaotic dynamical systems in

discrete-time. Nonlinear Dyn. 81(1), 765–771 (2015)
23. Ouannas, A.: A new generalized-type of synchronization for discrete chaotic dynamical systems. J. Comput. Nonlinear

Dyn. 10(6), Article ID 061019 (2015)
24. Ouannas, A., Grassi, G.: Inverse full state hybrid projective synchronization for chaotic maps with different dimensions.

Chin. Phys. B 25(9), Article ID 090503 (2016)
25. Ouannas, A., Odibat, Z., Shawagfeh, N.: Universal chaos synchronization control laws for general quadratic discrete

systems. Appl. Math. Model. 45, 636–641 (2017)
26. Ouannas, A., Grassi, G., Karouma, A., Ziar, T., Wang, X., Pham, V.T.: New type of chaos synchronization in discrete-time

systems: the F-M synchronization. Open Phys. 16, 174–182 (2018)
27. Grassi, G.: Generalized synchronization between different chaotic maps via dead-beat control. Chin. Phys. B 21(5),

Article ID 050505 (2012)
28. Edelman, M., Tarasov, V.E.: Fractional standard map. Phys. Lett. A 374, 279–285 (2009)
29. Mumkhamar, J.: Chaos in a fractional order logistic map. Fract. Calc. Appl. Anal. 26, 511–519 (2013)
30. Wu, G.C., Baleanu, D.: Discrete fractional logistic map and its chaos. Nonlinear Dyn. 75, 283–287 (2014)



Khennaoui et al. Advances in Difference Equations  (2018) 2018:303 Page 14 of 14

31. Wu, G.C., Baleanu, D., Zeng, S.D.: Discrete chaos in fractional sine and standard maps. Phys. Lett. A 378, 484–487
(2014)

32. Liu, Y.: Discrete chaos in fractional Hénon maps. Int. J. Nonlinear Sci. 18(3), 170–175 (2014)
33. Hu, T.: Discrete chaos in fractional Hénon map. Appl. Math. 5, 2243–2248 (2014)
34. Xiao, H., Ma, Y., Li, C.P.: Chaotic vibration in fractional maps. J. Vib. Control 20, 964–972 (2014)
35. Liu, C.X., Huang, L.L., Wu, K.T.: Chaos in discrete fractional cubic logistic map and bifurcation analysis. J. Comput.

Complex. Appl. 1(2), 105–111 (2015)
36. Huang, L.L., Baleanu, D., Wu, G.C., Zeng, S.D.: A new application of the fractional logistic map. Rom. J. Phys. 61(7–8),

1172–1179 (2016)
37. Kassim, S., Hamiche, H., Djennoune, S., Bettayeb, M.: A novel secure image transmission scheme based on

synchronization of fractional-order discrete-time hyperchaotic systems. Nonlinear Dyn. 88, 2473–2489 (2017)
38. Wu, G., Baleanu, D.: Chaos synchronization of the discrete fractional logistic map. Signal Process. 102, 96–99 (2014)
39. Wu, G., Baleanu, D., Xie, H., Chen, F.: Chaos synchronization of fractional chaotic maps based on the stability

condition. Physica A 460, 374–383 (2016)
40. Liu, Y.: Chaotic synchronization between linearly coupled discrete fractional Hénon maps. Indian J. Phys. 90, 313–317

(2016)
41. Megherbi, O., Hamiche, H., Djennoune, S., Bettayeb, M.: A new contribution for the impulsive synchronization of

fractional-order discrete-time chaotic systems. Nonlinear Dyn. 90, 1519–1533 (2017)
42. Xin, B., Liu, L., Hou, G., Ma, Y.: Chaos synchronization of nonlinear fractional discrete dynamical systems via linear

control. Entropy 19, Article ID 351 (2017)
43. Jajarmi, A., Hajipour, M., Baleanu, D.: New aspects of the adaptive synchronization and hyperchaos suppression of a

financial model. Chaos Solitons Fractals 99, 285–296 (2017)
44. Zhang, G., Liu, Z., Ma, Z.: Generalized synchronization of different dimensional chaotic dynamical systems. Chaos

Solitons Fractals 32, 773–779 (2007)
45. Terry, J.R., VanWiggeren, G.D.: Chaotic communication using generalized synchronization. Chaos Solitons Fractals

12(1), 145–152 (2001)
46. Shukla, M.K., Sharma, B.B.: Investigation of chaos in fractional order generalized hyperchaotic Hénon map. Int.

J. Electron. Commer. 78, 265–273 (2017)
47. Atici, F.M., Eloe, P.W.: Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ., Spec. Ed.

I 2009, Article ID 3 (2009)
48. Abdeljawad, T.: On Riemann and Caputo fractional differences. Comput. Math. Appl. 62, 1602–1611 (2011)
49. Hajipour, M., Jajarmi, A., Baleanu, D.: An efficient nonstandard finite difference scheme for a class of fractional chaotic

systems. J. Comput. Nonlinear Dyn. 13(2), Article ID 021013 (2017)
50. Anastassiou, G.A.: Principles of delta fractional calculus on time scales and inequalities. Math. Comput. Model. 52,

556–566 (2010)
51. Ouannas, A.: On inverse generalized synchronization of continuous chaotic dynamical systems. Int. J. Appl. Comput.

Math. 2(1), 1–11 (2016)
52. Abu-Saris, R., Al-Mdallal, Q.: On the asymptotic stability of linear system of fractional order difference equations. Fract.

Calc. Appl. Anal. 16, 613–629 (2013)
53. Mozyrska, D., Wyrwas, M.: The Z-transform method and delta type fractional difference operators. Discrete Dyn. Nat.

Soc. 2013, Article ID 852734 (2013)


	Generalized and inverse generalized synchronization of fractional-order discrete-time chaotic systems with non-identical dimensions
	Abstract
	MSC
	Keywords

	Introduction
	Basic concepts
	Generalized synchronization
	Inverse generalized synchronization
	Numerical results
	3D generalized synchronization
	2D inverse generalized synchronization
	Discussion of results

	Conclusion and future works
	Acknowledgements
	Funding
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


