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Abstract
The concept of αβ-statistical convergence was introduced by Aktuğlu (J. Comput.
Appl. Math. 259:174–181, 2014). In this paper, we apply αβ-statistical convergence to
investigate modified discrete operator approximation properties.
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1 Introduction and preliminaries
The notion of statistical convergence was introduced by Fast [2] and Steinhaus [3] inde-
pendently in the same year 1951 as follows.

Let K ⊂ N and Kn = {k ≤ n : k ∈ K}. Then the natural density of K is defined by δ(K) =
limn

|Kn|
n if the limit exists, where |Kn| denotes the cardinality of Kn.

A sequence x = (xk) is said to be statistically convergent to L if for every ε > 0, δ{k ∈ N :
|xk – L| ≥ ε} = 0 or limn

|{k≤n:|xk –L|≥ε}|
n = 0. We write st-lim xk = L.

Statistical convergence is a generalization of concept of ordinary convergence. So, every
convergent sequence is statistically convergent, but not conversely. For example, let

xk =

⎧
⎨

⎩

1, k = m2,

0, k �= m2,
m = 1, 2, 3, . . . .

Then, st-lim xk = 0, but (xk) is not convergent.
Approximation theory has important applications in the theory of polynomial approx-

imation, various areas of functional analysis, and numerical solutions of differential and
integral equations. In the recent years, with the help of the concept of statistical conver-
gence, various statistical approximation results have been proved.

Gadjiev and Orhan [4] studied a Korovkin-type approximation theorem by using the
notion of statistical convergence for the first time in 2002. Later, generalizations and ap-
plications of this concept have been investigated by various authors [5–11].

Aktuğlu [1] introduced αβ-statistical convergence as follows. Let α(n) and β(n) be two
sequences of positive numbers satisfying the following conditions:

P1: α and β are both nondecreasing,
P2: β(n) ≥ α(n),
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P3: β(n) – α(n) → ∞ as n → ∞.
Let � denote the set of pairs (α,β) satisfying P1, P2, P3.

For a pair (α,β) ∈ �, 0 < γ ≤ 1, and K ⊂N, we define

δα,β (K ,γ ) = lim
n→∞

|K ∩ Pα,β
n |

(β(n) – α(n) + 1)γ
,

where Pα,β
n is the closed interval [α(n),β(n)], and |S| represents the cardinality of S.

Definition 1.1 ([1]) A sequence x is said to be αβ-statistically convergent of order γ to L,
denoted by stγαβ-limn→∞ xn = L if for every ε > 0,

δα,β({
k : |xk – L| ≥ ε

}
,γ

)
= lim

n→∞
|{k ∈ Pα,β

n : |xk – L| ≥ ε}|
(β(n) – α(n) + 1)γ

= 0.

For γ = 1, we say that x is αβ-statistically convergent to L, and this is denoted by
stαβ-limn→∞ xn = L.

Let X be a compact subset of R, and let 0 < γ ≤ 1; then we can consider the following
definition for a sequence of functions fr : X →R.

Definition 1.2 A sequence of functions fr is said to be αβ-statistically uniformly conver-
gent to f on X of order γ and denoted by fk ⇒ f (αβγ -stat) if for every ε > 0,

δα,β({
k :

∥
∥fk(x) – f (x)

∥
∥

C(X) ≥ ε
}

,γ
)

= lim
n→∞

|{k ∈ Pα,β
n : ‖fk(x) – f (x)‖C(X) ≥ ε}|
(β(n) – α(n) + 1)γ

= 0.

Theorem 1.3 ([1]) Let (α,β) ∈ �, 0 < γ ≤ 1, and let Ln : C(X) → C(X) be a sequence of
positive linear operators satisfying

Ln(ev, x) ⇒ f
(
αβγ -stat

)
, v = 0, 1, 2.

Then for all f ∈ C(X),

Ln(f , x) ⇒ f
(
αβγ -stat

)
.

Throughout this paper, K represents a compact subinterval ofR+, and ej stands for ej(t) =
tj, j ∈N0 = {0} ∪N.

Agratini [12] investigated a general class of positive approximation processes of discrete
type expressed by series and modified them into finite sums. Agratini [12] defined the
operator

Ln(f ; x) =
∞∑

k=0

φn,k(x)f (xn,k), x ≥ 0, f ∈ F , (1)

where F stands for the domain of Ln containing the set of all continuous functions on R
+

for which the series in (1) is convergent, by using the following three requirements:
For each n ∈ N:
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(i) For every k ∈N0, there exists a sequence of γk such that xn,k = O(n–γk ) (n → ∞) a
net on R

+, 	n = (xn,k)k≥0 is fixed.
(ii) A sequence (φn,k)k≥0 is given, where φn,k ∈ C′(R+) and C′(R+) is the space of all

real-valued functions continuously differentiable in R
+. This sequence satisfies the

following conditions:

φn,k ≥ 0, k ∈N0,
∞∑

k=0

φn,k(x) = e0,
∞∑

k=0

φn,k(x)xn,k = e1. (2)

(iii) There exists a positive function ψ ∈R
N×R

+ , ψ ∈ C(R+), with the property

ψ(n, x)φ′
n,k(x) = (xn,k – x)φn,k(x), k ∈N�, x ≥ 0. (3)

Agratini [12] indicated the following technical result.

Lemma 1.4 Let Ln(f ; x) =
∑∞

k=0 φn,k(x)f (xn,k), x ≥ 0, f ∈ F , and let ζn,r be the rth central
moment of Ln. For every x ∈ R

+, we have the following identities:

ζn,0(x) = 1, ζn,1(x) = 0, (4)

ζn,r+1(x) = ψ(n, x)
(
ζ ′

n,r(x) + rζn,r+1(x)
)
, r ∈N, (5)

ζn,2(x) = ψ(n, x). (6)

In this paper, we present αβ-statistical convergence approximation properties of the
operator investigated by Agratini [12].

2 Main results
Theorem 2.1 Let Ln(f ; x) =

∑∞
k=0 φn,kf (xn,k). If stγαβ-limn→∞ ψ(n, x) = 0 uniformly on K ,

then for every f ∈ F , we have stγαβ-limn→∞ ‖Ln(f ; x) – f (x)‖ = 0.

Proof Due to

Ln(e0; x) =
∞∑

k=0

φn,k = e0,

Ln(e1; x) =
∞∑

k=0

φn,kxn,k = e1,

we can obtain that

stγαβ- lim
n→∞

∥
∥Ln(e0; x) – e0

∥
∥ = 0,

stγαβ- lim
n→∞

∥
∥Ln(e1; x) – e1

∥
∥ = 0.

We know from [12] that ζn,r(x) = Ln((e1 – xe0)r ; x), r ∈ N0. If we choose r = 2, then we can
write ψ(n, x) = ζn,2(x) = Ln((e1 –xe0)2; x). Since Ln is a linear operator, we can easily see that
ψ(n, x) = Ln(e2; x) – x2. So, ‖ψ(n, x)‖C(K ) = ‖Ln(e2; x) – x2‖C(K ). Since stγαβ-limn→∞ ψ(n, x) =
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0 uniformly on K , we have ‖ψ(n, x)‖C(K ) = ‖Ln(e2; x) – x2‖C(K ). Then from Theorem 1.3 we
obtain that stγαβ-limn→∞ ‖Ln(f ; x) – f (x)‖C(K ) = 0. �

We give some information to investigate αβ-statistical approximation properties of
modified discrete operators defined by Agratini [12]. If we specialize the net 	n and the
function ψ , then we consider that a positive sequence (an)n≥1 and the function ψi ∈ C(R+),
i = 1, 2, . . . , l, exist such that, for every n ∈N, we have

xn,k =
k
an

≤ k, k ∈N, with lim
n→∞

1
an

= 0,

ψ(n, x) =
l∑

i=1

ψi(x)
ai

n
, x ≥ 0.

(7)

Under these assumptions, the requirement of Theorem 2.1 is fulfilled. Starting from (1),
under the additional assumptions (7), Agratini defined

Ln,δ(f ; x) =
[an(x+δ(n))]∑

k=0

φn,kf
(

k
an

)

, x ≥ 0, f ∈ F , (8)

where δ = (δ(n))n≥1 is a sequence of positive numbers. The study of these operators was
developed in polynomial weighted spaces connected to the weights ωm, m ∈ N0, ωm(x) =

1
1+x2m , x ≥ 0. For every m ∈ N0, the spaces Em := {f ∈ C(R+) : ‖f ‖m := supx≥0 ωm(x)|f (x)| <
∞} are endowed with the norm ‖ · ‖m.

Lemma 2.2 ([12]) Let Ln, n ∈ N, be defined by (1), and let assumptions (7) be fufilled. If
ψi ∈ C2m–2(R+), i = 1, 2, 3, . . . , l, then the central moment of (2m)th order satisfies

ζn,2m(x) ≤ C(m, K)
an

, x ∈ K , (9)

where C(m, K) is a constant depending only on m and the compact set K ⊂R
+.

Theorem 2.3 Let Ln,δ(f ; x) =
∑[an(x+δ(n))]

k=0 φn,kf ( k
an

) be defined by [13] If ψi ∈ C2m–2(R+),
i = 1, 2, . . . , l, and stγαβ-limn→∞

√anδ(n) = 0, then stγαβ-limn→∞ ‖Ln,δ(f ; x) – f (x)‖C(K ) = 0, for
every f ∈ Em ∩ F .

Proof To prove Theorem 2.3, we need the elementary inequality

t2m ≤ 22m–1(x2m + (t – x)2m)
, t ≥ 0, x ≥ 0, m ∈N. (10)

On the other hand, for f ∈ Em, there exist constants A, B ∈ R
+ and m ∈ N such that |f | ≤

A + Bt2m. Thus, using (1), we get |f (t)| ≤ A + B(22m–1(x2m + (t – x)2m)) = A + B22m–1x2m +
B22m–1(t – x)2m = gm(x) + 22m–1B(t – x)2m, where gm := A + B22m–1e2m. Then

∣
∣
∣
∣f

(
k
an

)∣
∣
∣
∣ ≤ gm(x) + 22m–1B

(
k
an

– x
)2m

, k ∈ N0, x ≥ 0.
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Since x, δ(n), and an are positive, if k ≥ [an(x + δ(n))] + 1, then

k
an

≥ x.

So we can write

{
k ∈N0 : k ≥ [

an
(
x + δ(n)

)]
+ 1

} ⊂
{

k ∈N0 :
∣
∣
∣
∣

k
an

– x
∣
∣
∣
∣ > δ(n)

}

:= In,x,δ .

Let Rn := Ln – Ln,δ . Thus it follows that

∣
∣Rn(f ; x)

∣
∣ =

∣
∣
∣
∣
∣

∞∑

k=[an(x+δ(n))]+1

φn,kf
(

k
an

)∣
∣
∣
∣
∣

≤
∞∑

k=[an(x+δ(n))]+1

φn,k

[

gm(x) + 22m–1B
(

k
an

– x
)2m]

≤
∞∑

k∈In,x,δ

φn,k(x)gm(x) + 22m–1B
∞∑

k∈In,x,δ

φn,k(x)
(

k
an

– x
)2m

≤ gm(x)
1

δ2m(n)

∞∑

k=0

φn,k(x)
(

k
an

– x
)2m

+22m–1B
∞∑

k=0

φn,k(x)
(

k
an

– x
)2m

= gm(x)
1

δ2m(n)
ζn,2m(x) + 22m–1Bζn,2m(x).

Using ζn,2m(x) ≤ C(m,K)
am

n
, we get

∣
∣Rn(f ; x)

∣
∣ ≤

(

gm(x)
1

δ2m(n)
+ 22m–1B

)
C(m, K)

am
n

. (11)

Taking the norm on K , we have

∥
∥Rn(f ; x)

∥
∥

C(K ) ≤ ‖gm‖C(m, K)
[

1√anδ(n)

]2m

+ 22m–1B
C(m, K)

am
n

.

For a given ε > 0, define the sets

A :=
{

k ≤ Pα,β
n :

∥
∥Rk(f , x)

∥
∥ ≥ ε

}
,

A1 :=
{

k ≤ Pα,β
n :

(√
akδ(k)

)–2m ≥ ε

2‖gm‖C(m, K)

}

,

and

A2 :=
{

k ≤ Pα,β
n : ak

–m ≥ ε

22mBC(m, K)

}

.

Then from (8) we clearly have A ⊂ A1 ∪ A2 and δα,β (A;γ ) ≤ δα,β (A1;γ ) + δα,β (A2;γ ). Since
stγαβ-limn→∞

√anδ(n) = ∞ and stγαβ-limn→∞ an
–1 = 0, the proof is complete. �
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If we take α(n) = 1, β(n) = n, and γ = 1, then

δα,β({
k : |xk – L| ≥ ε

}
,γ

)
= lim

n→∞
|{k ≤ n : |xk – L| ≥ ε}|

n
.

Therefore, if we take α(n) = 1, β(n) = n, and γ = 1, then αβ-statistical convergence reduces
to statistical convergence. Thus, Theorems 2.1 and 2.3 reduce to Theorems 1 and 2 of [14],
respectively.
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1. Aktuğlu, H.: Korovkin type approximation theorems proved via αβ -statistical convergence. J. Comput. Appl. Math.

259, 174–181 (2014)
2. Fast, H.: Sur la convergence statistique. Colloq. Math. 2, 241–244 (1951)
3. Steinhaus, H.: Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 2, 73–74 (1951)
4. Gadjiev, A.D., Orhan, C.: Some approximation theorems via statistical convergence. Rocky Mt. J. Math. 32, 129–138

(2002)
5. Mohiuddine, S.A., Alotaibi, A., Hazarika, B.: Weighted A-statistical convergence for sequences of positive linear

operator. Sci. World J. (2014). https://doi.org/10.1155/2014/437863
6. Karakaya, V., Karaisa, A.: Korovkin type approximation theorems for weighted αβ -statistical convergence. Bull. Math.

Sci. 5, 159–169 (2015)
7. Mohiuddine, S.A.: An application of almost convergence in approximation theorems. Appl. Math. Lett. 23, 1382–1387

(2010)
8. Duman, O., Orhan, C.: Statistical approximation by positive linear operators. Stud. Math. 161, 187–197 (2004)
9. Dirik, F., Demirci, K.: Korovkin type approximation theorem for functions of two variables in statistical sense. Turk.

J. Math. 34, 73–83 (2010)
10. Kiris.ci, M., Karaisa, A.: Fibonacci statistical convergence and Korovkin type approximation theorems. J. Inequal. Appl.

2017, 229 (2017)
11. Kadak, U.: Weighted statistical convergence based on generalized difference operator involving (p,q)-gamma

function and its applications to approximation theorems. J. Math. Anal. Appl. 448, 1633–1650 (2017)
12. Agratini, O.: On the convergence of truncated class of operators. Bull. Inst. Math. Acad. Sin. 3, 213–223 (2003)
13. Çakar, Ö., Gadjiev, A.D.: On uniform approximation by Bleimann, Butzer and Hahn on all positive semiaxis. Trans. Acad.

Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 19, 21–26 (1999)
14. Canatan, R.: A note on the statistical approximation properties of the modified discrete operators. Open J. Discrete

Math. 2, 114–117 (2012)

https://doi.org/10.1155/2014/437863

	On the alphabeta-statistical convergence of the modiﬁed discrete operators
	Abstract
	MSC
	Keywords

	Introduction and preliminaries
	Main results
	Acknowledgements
	Funding
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


