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Abstract
A Lotka–Volterra commensal symbiosis model with first species subject to the Allee
effect is proposed and studied in this paper. Local and global stability property of the
equilibria are investigated. An amazing finding is that with increasing Allee effect, the
final density of the species subject to the Allee effect is also increased. Such a
phenomenon is different from the known results, and it is the first time to be
observed. Numeric simulations are carried out to show the feasibility of the main
results.

MSC: 34C25; 92D25; 34D20; 34D40

Keywords: Lotka–Volterra commensal symbiosis model; Allee effect; Global stability

1 Introduction
The aim of this paper is to investigate the dynamic behaviors of the following two species
commensal symbiosis model incorporating the Allee effect to the first species:

dx
dt

= x(b1 – a11x)
x

β + x
+ a12xy,

dy
dt

= y(b2 – a22y),
(1.1)

where bi, aii, i = 1, 2, β and a12 are all positive constants, bi, i = 1, 2, is the intrinsic growth
rate of the species x and y, respectively; bi

aii
, i = 1, 2, is the carrying capacity of species x and

y, respectively; a12 reflects the efficiency of every single population y that can contribute
to population x. We use the term F(x) = x

β+x to describe the Allee effect of the first species,
which has the following property:

(1) F ′ (x) = β

(β+x)2 > 0 for all x ∈ (0, +∞), that is, the Allee effect decreases as density
increases;

(2) limx→+∞ F(x) = 1, that is, the Allee effect vanishes at high densities.
During the last decades, many scholars investigated the dynamic behaviors of the mu-

tualism model or commensalism model [1–26]. Such topics as the stability of the positive
equilibrium [1–3, 8–12, 14–17, 19, 20, 24], the persistence of the system [4, 6, 7, 13], the
existence of the positive periodic solution [18, 21, 22, 25], the extinction of the species
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[5, 23] etc. have been extensively investigated. Recently, Han and Chen [20] proposed the
following commensalism model:

dx
dt

= x(b1 – a11x) + a12xy,

dy
dt

= y(b2 – a22y).
(1.2)

System (1.2) admits a positive equilibrium P0(x0, y0), where

x0 =
b1a22 + b2a12

a11a22
,

y0 =
b2

a22
.

(1.3)

Concerned with the stability property of this equilibrium, the authors obtained the fol-
lowing result.

Theorem A The positive equilibrium P0(x0, y0) of system (1.2) is globally stable.

On the other hand, the Allee effect, which represents a negative density dependence
where the population growth rate reduces at low population size, has recently been studied
by many scholars (see [26–37] and the references cited therein). Specially, Hüseyin Mer-
dan [36] proposed the following predator–prey system with Allee effect on prey species:

dx
dt

= rx(1 – x)
x

β + x
– axy,

dy
dt

= ay(x – y),
(1.4)

where β is a positive constant, which describes the intensity of the Allee effect. Hüseyin
Merdan showed that the system subject to an Allee effect takes a longer time to reach its
steady-state solution, and the Allee effect reduces the population densities of both preda-
tor and prey at the steady-state.

Recently, Wu et al. [37] proposed the following two species commensal symbiosis model
with Holling type functional response and Allee effect on the second species:

dx
dt

= x
(

a1 – b1x +
c1yp

1 + yp

)
,

dy
dt

= y(a2 – b2y)
y

β + y
,

(1.5)

where ai, bi, i = 1, 2, p, β , and c1 are all positive constants, p ≥ 1. They showed that the
Allee effect has no influence on the final density of the species, and the unique positive
equilibrium of system (1.5) is globally stable.

It came to our attention that the Allee effect has different influence on systems (1.4) and
(1.5). The Allee effect reduces the density of the species in system (1.4), while it has no
influence on the final density of the species in system (1.5). Maybe the reason is that the
authors made different assumptions: in system (1.4), the authors assumed that the first
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species (prey species) admits the Allee effect, while in system (1.5), the authors assumed
that the second species is subjected to the Allee effect. One of the interesting issues pro-
posed is as follows: Noting that [37] studied the influence of the Allee effect on the com-
mensalism model, it is natural to ask: what would happen if we assumed the first species
suffers to the Allee effect in a commensalism model? This leads us to proposing system
(1.1).

We arrange the paper as follows. In the next section, we investigate the existence and
local stability property of the equilibria of system (1.1). In Sect. 3, the Dulac criterion is
applied to investigate the global stability property of positive equilibrium of system (1.1).
In Sect. 4, an example together with its numeric simulations is presented to show the
feasibility of the main results. We end this paper with a brief discussion.

2 Local stability
We now analyze the stability of steady-state solutions of system (1.1), subject to an Allee
effect on the first population. Defining

f (x, y) := x(b1 – a11x)
x

β + x
+ a12xy and g(x, y) := y(b2 – a22y),

the steady-state solutions of (1.1) are obtained by solving the equations f (x, y) = 0 and
g(x, y) = 0. Obviously, the model has four steady-state solutions: A1(0, 0), B1( b1

a11
, 0),

C1(0, b2
a22

), and D1(x∗, y∗), where

x∗ =
1
2

a12b2 + a22b1 +
√

4a11a22a12b2β + (a12b2 + a22b1)2

a11a22
,

y∗ =
b2

a22
.

Concerned with the local stability property of the above four equilibria, we have the fol-
lowing.

Theorem 2.1 D1(x∗; y∗) is locally asymptotically stable; A1(0, 0), B1( b1
a11

, 0) and C1(0, b2
a22

)
are all unstable.

Proof The Jacobian matrix of model (1.1) at an equilibrium E(x, y) is

J(x, y) =

(
� a12x
0 b2 – 2a22y

)
, (2.1)

where

� =
(–2xa11 + b1)x

β + x
+

–a11x2 + b1x
β + x

–
(–a11x2 + b1x)x

(β + x)2 + a12y.

The local stability of these solutions is discussed below.
For A1(0, 0), we have

J(A1) =

(
0 0
0 b2

)
. (2.2)
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Obviously, the two eigenvalues of J(A1) are λ1 = 0 and λ2 = b2 > 0. Hence, the equilibrium
A1 is non-hyperbolic. To determine the stability property of this equilibrium, now let us
consider the transformation X = x, Y = y, τ = b2t, then system (1.1) becomes

dX
dτ

= X(b1 – a11X)
X

b2(β + X)
+

a12

b2
XY ,

dY
dτ

= Y –
a22

b2
Y 2.

(2.3)

Expanding system (2.3) in the power series up to the third order around the origin, we get

dX
dτ

= P2(X, Y ),

dY
dτ

= Y + Q2(X, Y ),
(2.4)

where

P2(X, Y ) =
X2b1

b2β
+

a12XY
b2

+
X3

b2β

(
–a11 –

b1

β

)

+
X4(a11β + b1)

b2β3 –
X5(a11β + b1)

b2β4 + P6(X, Y ),

Q2(x, y) = –
a22Y 2

b2
.

(2.5)

Here P6(X, Y ) is the power series with terms XiY j satisfying i + j ≥ 6. Noting that in
P2(X, Y ) the coefficient of the term X2b1

βb2
is b1

βb2
> 0, by Theorem 7.1 in Chaper 2 of [38], the

boundary equilibrium (0, 0) of system (2.4) is saddle-node. Consequently, the equilibrium
A1(0, 0) of system (1.1) is saddle-node, hence, it is unstable.

Now let us consider the equilibrium B1( b1
a11

, 0). The Jacobian matrix of system (1.1) about
the equilibrium B1( b1

a11
, 0) is given by

(
– b12

a11
(β + b1

a11
)–1 a12b1

a11

0 b2

)
. (2.6)

(2.6) shows that the two eigenvalues of J(B1) are λ1 = – b12

a11
(β + b1

a11
)–1 < 0 and λ2 = b2 > 0.

Hence, the equilibrium B1 is unstable.
Now let us consider the equilibrium C1(0, b2

a22
), the Jacobian matrix of system (1.1) about

the equilibrium C1(0, b2
a22

) is given by

(
a12b2

a22
0

0 –b2

)
. (2.7)

(2.7) shows that the two eigenvalues of J(C1) are λ1 = a12b2
a22

> 0 and λ2 = –b2 < 0. Hence,
the equilibrium C1 is unstable.
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Now let us consider the stability property of the positive equilibrium D1(x∗, y∗). Note
that (x∗, y∗) satisfies the equations

(
b1 – a11x∗) x∗

β + x∗ + a12y∗ = 0,

b2 – a22y∗ = 0.
(2.8)

Hence, from (2.1)

�
(
x∗, y∗) =

(–2x∗a11 + b1)x∗

β + x∗ +
–a11x∗2 + b1x∗

β + x∗

–
(–a11x∗2 + b1x∗)x∗

(β + x∗)2 + a12y∗

= –a12y∗ –
a11(x∗)2

β + x∗ – a12y∗

–
x∗

β + x∗
(
–a12y∗) + a12y∗

= a12y∗
(

–1 +
x∗

β + x∗

)
–

a11(x∗)2

β + x∗

= –
βa12y∗

β + x∗ –
a11(x∗)2

β + x∗ . (2.9)

By using (2.1), (2.8), and (2.9), the Jacobian matrix of system (1.1) about the equilibrium
D1(x∗, y∗) is given by

(
– βa12y∗

β+x∗ – a11(x∗)2

β+x∗ a12x∗

0 –a22y∗

)
. (2.10)

(2.10) shows that the two eigenvalues of J(D1) are λ1 = – βa12y∗
β+x∗ – a11(x∗)2

β+x∗ < 0 and λ2 =
–a22y∗ < 0. Hence, the equilibrium D1 is locally asymptotically stable.

This ends the proof of Theorem 2.1. �

3 Global stability
Previously, we have shown that three boundary equilibria of system (1.1) are all unsta-
ble, and the positive equilibrium is locally asymptotically stable. In this section, we will
investigate the global dynamic behaviors of system (1.1). Indeed, we have the following
result.

Theorem 3.1 The positive equilibrium D1(x∗, y∗) of system (1.1) is globally asymptotically
stable.

Proof To end the proof of Theorem 3.1, it is enough to show that system (1.1) has no limit
cycle in the first quadrant. Set

P1 = x(b1 – a11x)
x

β + x
+ a12xy, Q1 = y(b2 – a22y). (3.1)
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From Theorem 2.1 we know that system (1.1) admits a unique local stable positive equi-
librium D1(x∗, y∗). Now let us consider the Dulac function u1(x, y) = 1

x2y . By simple com-
putation, we have

∂(u1P1)
∂x

+
∂(u1Q1)

∂y

=
1

x2y

(
(–2xa11 + b1)x

β + x
+

–a11x2 + b1x
β + x

–
(–a11x2 + b1x)x

(β + x)2 + a12y
)

– 2
1

x3y

(
(–a11x2 + b1x)x

β + x
+ a12xy

)

+
–2a22y + b2

x2y
–

–a22y2 + b2y
x2y2

= –
�(x, y)

(β + x)2x2y

< 0, (3.2)

where

�(x, y) = a11βx2 + a12β
2y + 2a12βxy + a12x2y + a22β

2y + 2a22βxy + a22x2y + b1x2.

By the Bendixson–Dulac theorem [27], there is no closed orbit in the area R+
2 . So D1(x∗, y∗)

is globally asymptotically stable. This completes the proof of Theorem 3.1. �

Remark 3.1 Compared with Theorem 3.1 and Theorem A, one could easily see that the
Allee effect has no influence on the stability property of the positive equilibrium, that is,
for the system with or without Allee effect, the system always admits a unique positive
equilibrium, which is globally asymptotically stable.

Remark 3.2 Noting that D1(x∗, y∗) is the unique positive equilibrium of system (1.1), which
is locally asymptotically stable and globally asymptotically stable, and x∗ depends on the
parameter β , it means that the Allee effect could have influence on final density of the
species. However, it could not lead to the extinction of the species, since the positive equi-
librium is always globally attractive. Such a finding is very different to that of the Allee ef-
fect to the predator–prey system as shown by Hüseyin Merdan [36], where with increase
in the Allee effect, the species may be driven to extinction, and the commensalism model
with Allee effect on the second species as shown by Wu et al. [37], where the Allee effect
has no influence on the final density of the species.

Also, since

dx∗(β)
dβ

=
a12b2√

4a11a22a12b2β + (b1a22 + b2a12)2
> 0,

x∗(0) =
b1a22 + b2a12

a11a22
= x0,
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it follows that with increasing Allee effect, the final density of the first species is also in-
creasing. Such a phenomenon is very different to that of the phenomenon observed by
Hüseyin Merdan [36] and Wu et al. [37].

4 Numeric simulations
Example 4.1 Now let us consider the following example.

dx
dt

= x(1 – x)
x

β + x
+ xy,

dy
dt

= y(2 – y).
(4.1)

In this system, corresponding to system (1.1), we take b1 = 1, b2 = 2, a11 = 1, a22 = 1, a12 = 1.
It follows from Theorem 3.1 that, for all β > 0, system (4.1) always admits a unique pos-
itive equilibrium which is globally asymptotically stable. Figure 1 presents the dynamic
behaviors for the case β = 2. Now let us take β = 0, 0.5, and 2, respectively, together with
the initial condition (x(0), y(0)) = (0.5, 0.1). Figure 2 shows that with increase in the Allee
effect (i.e., the increase in β), the density of the first species is also increasing.

Figure 1 Dynamic behaviors of system (4.1) with
β = 2, the initial condition (x(0), y(0)) = (6, 2), (0.1, 0.1),
(3, 3), (0.2, 3), (6, 0.1) and (6, 3), respectively

Figure 2 Dynamic behaviors of the first
component of system (4.1) with the initial condition
(x(0), y(0)) = (0.5, 0.1)
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5 Discussion
Many scholars incorporated the Allee effect to the ecosystem and considered the dynamic
behaviors of the system, see [28–37]. Some of them [29, 36, 37] focused on the stability
property of the positive equilibrium. Çelik and Duman [29] showed that Allee effects have
a stabilizing role in the discrete-time predator–prey model, while Merdan [36] showed
that the continuous predator–prey system subject to an Allee effect takes a much longer
time to reach its stable steady-state solution. Such a phenomenon also was observed in
the commensalism model [37]. It came to our attention that with increasing Allee effect,
the density of the predator and prey species both decrease [36], and the density of the
second species has no change for the commensalism model [37]. In this paper, we showed
that the density of the first species is the increasing function of the Allee effect. Such a
phenomenon is observed for the first time. Note that with increasing final density, the
chance for the extinction of the species will be reduced. It seems that the cooperation
between the species plays a crucial role in the persistence property of the endangered
species. Also, the more endangered species could have more benefit from cooperation
with other species.
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