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Abstract
Bifurcation and chaotic behavior of a discrete-time singular bioeconomic system are
investigated. First, the traditional catch equation is modified after accounting for the
handling time of the catch in a singular bioeconomic system. To discover the richer
dynamics compared with the continuous form, the proposed system is considered
difference scheme. Specially, the tangent space local parameterization condensed
method for DAEs is generalized. The new local parameterization method is sufficiently
general to be applicable to this type of discrete singular system. Also the dynamic
behaviors of the system are investigated, by using normal form theory, center
manifold theorem and bifurcation theory, it is shown that the system undergoes a
Neimark–Sacker bifurcation and a flip bifurcation, on varying step-size in some range.
In addition, numerical simulations are presented not only to illustrate our results with
the theoretical analysis, but also to exhibit the complex dynamical behaviors.
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1 Introduction
The study of bioeconomics has a very long history. Bioeconomics is closely related to the
early development of theories in fishery economics. The basic model due to Gordon (1954)
and Schaefer (1957) is

dx
dt

= G(x) – h(x, E),

and the instantaneous profit rate is

v = ph(x, E) – cE, (1.1)

where the “catch equation”

h(x, E) = qEx (1.2)

is called the Schaefer catch–effort relation [1]. x is the biomass at time t. E is the harvesting
effort, in the fishery setting, which is typically specified as the number of (standard) vessels
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actively fishing at time t. The units of harvesting effort would then be Standard Vessel
Units (SVU). c is the cost of effort, and p is the ex-vessel price of fish. The parameter q
is a constant, called catchability, units of q are SVU–1 × (time unit)–1. Thus, q represents
the proportion of the current stock x caught by one standard vessel in one time unit (to
normalize units, one could let q = 1). To be specific we will now use time units of days
(rather than years). Thus G(x) now represents the population growth per day and h is the
daily harvesting rate, both being measured in tonnes per day.

Predator–prey models with harvesting is always a hot research topic (see [2–9]). The
most general form of the two-dimensional predator–prey model is Kolmogorov’s model
[10]:

⎧
⎨

⎩

ẋ = xf (x, y),

ẏ = yg(x, y),
(1.3)

here x and y denote the prey and predator populations at time t, respectively. In recent
years, to analyze this model from an economic point of view, many researchers have stud-
ied a class of bioeconomic systems which combine system (1.3) with prey (or predator)
harvesting and (1.1), and obtained some excellent results, such as the stability of equilib-
ria, limit cycle, Hopf bifurcation, saddle-node bifurcation, singular induced bifurcation
(see [4–6, 8, 9, 11, 12]). It is given by

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = xf (x, y) – h(x, E),

ẏ = yg(x, y),

v = ph(x, E) – cE,

(1.4)

here E is the effort applied to harvesting the prey at time t. The extended model is a sys-
tem of differential-algebraic equations (DAEs) with differential variables x, y and algebraic
variable E. In these literatures, h(x, E) is traditionally taken as qEx. However, the Schaefer
catch–effort relation has some flaws as Ref. [13] points out:

(i) All processes affecting stock productivity (e.g., growth, mortality and recruitment)
are subsumed in the effective relationship between effort and catch. This
hypothesis has been proved to be not reasonable.

(ii) The catchability coefficient q is not always constant. Improvements in technology
and fishing power make q often vary through time.

(iii) The harvesting function did not account for the handling time of the catch and the
competition between standard vessels which are utilized for harvesting of resource.
On the contrary, evidence for a nonlinear harvest function is quite strong for a
number of stocks [14].

In economics there is a tradition of formulating the dynamical systems as processes in
discrete time from the outset, as difference equations instead of as differential equations.
The cobweb model, the Cournot duopoly model, and the Samuelson–Hicks business cycle
model are all examples of this tradition. On the other hand, in population ecology many
authors are more focused on discrete-time models for the following reasons: one is that,
for nonoverlapping generations, births occur in regular, well-defined “breeding seasons”.
This contradicts the assumption that births occur continuously [15]. The other is that the
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discrete-time models can also govern efficient computing models for continuous ones in
order to achieve the numerical emulation. However, as far as we know, there are few stud-
ies of the difference scheme of system (1.4) which represents a class of discrete singular
systems and no one has considered the general method to be applied to deal with it by
now.

The main objective of this paper is to investigate the dynamic behaviors of a discrete-
time economic predator–prey model. The model, featuring a more realistic nonlinear har-
vesting function, will give rise to some interesting dynamic behaviors, as we see in Sect. 4.
The paper is organized as follows. We develop a local parameterization method based on
the tangent space local parameterization of DAEs in [16] and use it to deal with the afore-
mentioned discrete singular system in the next section. In Sect. 3, we analyze the stability
of the fixed point. In addition, we also classify the fixed point based on the geometric
properties of trajectories distribution near it. Surprisingly, little study has been done on
this aspect for discrete systems. Section 4 is devoted to the main results of this paper, the
proposed system is investigated as it undergoes a Neimark–Sacker bifurcation and a flip
bifurcation. Section 5 contains a numerical verification of some key results. Conclusion
and discussion are presented in Sect. 6.

2 Statement of model and local parameterization
Consider the scaled equation, describing a singular bioeconomic system (see [6, 9, 17–19])
with nonlinear harvesting function, as

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = x(a – kx – y) – xE
1+mx ,

ẏ = y(–s + x),

v = pxE
1+mx – cE.

(2.1)

For the practical significance, the system (2.1) is defined on the set

R3
+ =

{
(x, y, E) ∈ R3

+ | x ≥ 0, y ≥ 0, E ≥ 0
}

,

and is subject to positive initial conditions,

x(0) > 0, y(0) > 0, E(0) > 0.

Equation (2.1) is a semi-explicit autonomous differential-algebraic equations with differ-
ential index 1, xE

1+mx is the harvesting function with constant m being related to the han-
dling or processing time [17, 19]. Though this nonlinear harvesting function is more real-
istic, not many researchers have used it in their studies. For m = 0 it reduces to the Schaefer
catch–effort equation (1.2).

We put (x, y, E)T � X and use X0 = (x0, y0, E0)T to denote the equilibria of (2.1). It can be
checked that system (2.1) has a unique equilibria,

X0 =
(

s, a – ks –
v

(p – cm)s – c
,

(1 + ms)v
(p – cm)s – c

)T

.
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We have X0 ∈ R3
+, in this work, we take parameters (a, k, s, p, m, c, v) from the set

π =
{

(a, k, s, p, m, c, v)
∣
∣
∣ a – ks –

v
(p – cm)s – c

> 0, (p – cm)s – c > 0
}

.

For (2.1), if derivatives are replaced by finite difference approximations, then we get the
forward Euler difference scheme with step-size δ:

⎧
⎪⎪⎨

⎪⎪⎩

xn+1 = xn + δxn(a – kxn – yn – En
1+mxn

),

yn+1 = yn + δyn(–s + xn),

0 = pxnEn
1+mxn

– cEn – v,

(2.2)

or in map form

⎧
⎪⎪⎨

⎪⎪⎩

x �→ x + δx(a – kx – y – E
1+mx ),

y �→ y + δy(–s + x),

0 = pxE
1+mx – cE – v.

(2.3)

We can easily verify that the fixed point of (2.3) is also X0. Now we will determine the local
equivalent parameterization system of (2.3).

We first rewrite (2.1) into the constrained form [16], that is, the differential equations
on the manifold,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ = x(a – kx – y) – xE
1+mx ,

ẏ = y(–s + x),

Ė = δf̃3(x, y, E),

0 = pxE
1+mx – cE – v.

(2.4)

The algebraic equation sets an invariant manifold (denoted by M) in R3 [16] whose num-
ber of independent coordinates is 2. Ė is described through a derivation of the algebraic
equation along the solution path with respect to time t and it is not necessary for the
concrete formula as we will see later. Accordingly, (2.2) becomes the following difference
algebraic equations of the constrained form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xn+1 = xn + δxn(a – kxn – yn – En
1+mxn

),

yn+1 = yn + δyn(–s + xn),

En+1 = En + δf̃3(xn, yn, En),

0 = pxnEn
1+mxn

– cEn – v.

(2.5)

It will be convenient to introduce some notation:

f1(x, y, E) = x + δx
(

a – kx – y –
E

1 + mx

)

,

f2(x, y, E) = y + δy(–s + x),
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f3(x, y, E) = E + δf̃3(x, y, E),

g(x, y, E) =
pxE

1 + mx
– cE – v,

and the vector-valued function

f = (f1, f2)T , f̃ = (f1, f2, f3)T .

In terms of the above notations, (2.5) becomes

⎧
⎨

⎩

Xn+1 = f̃ (Xn),

g(Xn) = 0,
(2.6)

or in map form

⎧
⎨

⎩

X �→ f̃ (X),

g(X) = 0.
(2.7)

Note that the form of (2.6) or (2.7) is generic (representing difference algebraic equations
in constrained form). We next generalize the tangent space local parameterization method
for general differential-algebraic equations in constrained form to parameterize (2.6) or
(2.7). First we give a decomposition for M in R3 as follows:

X – X0 = U0Y + V0Ỹ , ∀X ∈ M,

or

X = X0 + U0Y + V0Ỹ , ∀X ∈ M. (2.8)

[U0, V0] is an arbitrary order-three orthogonal matrix whose columns consist of a basis for
R3 with U0 is 3 × 2 and V0 is 3 × 1. Y := (y1, y2)T ∈ R2 is the coordinate associated with the
projection of X – X0 onto the column space of U0, and Ỹ ∈ R is the coordinate associated
with the projection of X – X0 onto the column space of V0; note that Ỹ might be locally
represented by Y . Indeed,

g(X0 + U0Y + V0Ỹ ) = 0.

Let G(Y , Ỹ ) = g(x0 + U0Y + V0Ỹ ), therefore

det
(
DỸ G(Y , Ỹ )

)
= DỸ g(X0 + U0Y + V0Ỹ ) = Dg · V0 �= 0,

where D is a derivation operator. Hence, there exists a smooth map: h : R2 → R guaranteed
by the implicit function theorem such that Ỹ = h(Y ) locally holds. Putting it in (2.8) gives
a local parameterization of the solution manifold with parameter Y as follows:

X = X0 + U0Y + V0h(Y ) ≡ ψ(Y ), (2.9)
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where

ψ(Y ) =

⎛

⎜
⎝

ψ1(y1, y2)
ψ2(y1, y2)
ψ3(y1, y2)

⎞

⎟
⎠ .

Obviously, ψ is related to h.
From (2.9) together with the first equation of system (2.6) we get

ψ(Yn+1) = f̃
(
ψ(Yn)

)
,

which gives

X0 + U0Yn+1 + V0h(Yn+1) = f̃
(
ψ(Yn)

)
,

multiplying by UT
0 gives

UT
0 X0 + Yn+1 = UT

0 f̃
(
ψ(Yn)

)
,

that is,

Yn+1 = UT
0 f̃

(
ψ(Yn)

)
– UT

0 X0, (2.10)

or in map form

Y �→ UT
0 f̃

(
ψ(Y )

)
– UT

0 X0,

which is the local parameterization of (2.7) near X0 with parameter Y .
Specifically, if take

U0 =

⎛

⎜
⎝

1 0
0 1
0 0

⎞

⎟
⎠ , V0 =

⎛

⎜
⎝

0
0
1

⎞

⎟
⎠ ,

then

UT
0 f̃

(
ψ(Yn)

)
= f

(
ψ(Yn)

)
. (2.11)

Here we see that f̃3(X) vanishes, which is why it is not necessary to give the concrete for-
mula of f̃3 in Ė of the equation of (2.4). Hence using (2.10) and (2.11), we obtain the fol-
lowing parameterization system:

Yn+1 = f
(
ψ(Yn)

)
– UT

0 X0,

or in map form

Y �→ f
(
ψ(Y )

)
– UT

0 X0,
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that is,

Y �→ f
(
ψ(Y )

)
– (x0, y0)T . (2.12)

Equation (2.12) is topologically equivalent, near the origin, to the difference algebraic sys-
tem (2.3) in a neighborhood of X0.

Remark 2.1 The fixed point X0 of (2.3) corresponds to the fixed point O(0, 0) of (2.12).

Remark 2.2 Since the form of (2.6) or (2.7) has generality, the new parameterization
method is also generic (Xn can be of arbitrary finite dimensions). Specifically, if we take
the tangent space and normal vector space of solution manifold at X0 as U0 and V0, re-
spectively, then the local parameterization (2.9) reduces to the tangent space local param-
eterization condensed method for DAEs in [16].

3 Fixed points classification and stability analysis
Our goal in this section is to examine the local stability of (2.3) based upon the standard
linearization technique.

From g(ψ(Y )) = 0 we obtain

Dg(X)Dψ(Y ) = 0. (3.1)

Differentiating (2.9) with respect to y and multiplying both sides by UT
0 gives

UT
0 Dψ(Y ) = I2. (3.2)

Combine (3.1) and (3.2) to yield

Dψ(Y ) =

(
Dg(X)

UT
0

)–1 (
0
I2

)

=

⎛

⎜
⎝

1 0
0 1

– Ep
((p–cm)x–c)(1+mx) 0

⎞

⎟
⎠

for future use. Note that Dψ(Y ) has nothing to do with h, so we can give the concrete form
of (2.12) by a Taylor formula.

The Jacobian matrix of the system (2.12) evaluated at the origin is given by

D
(
f
(
ψ(y)

)
– (x0, y0)T)∣

∣
(0,0)

= Df (X)|X0 Dψ(Y )|(0,0)

=

(
f1x f1y f1E

f2x f2y f2E

)∣
∣
∣
∣
∣
X0

⎛

⎜
⎝

1 0
0 1

– E0p
((p–cm)s–c)(1+ms) 0

⎞

⎟
⎠

=

(
1 – δs(k – vm

((p–cm)s–c)(1+ms) ) + vpδs
((p–cm)s–c)2(1+ms) –δs

δ(a – ks – v
(p–cm)s–c ) 1

)

.
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Hence the characteristic equation associated to the Jacobian matrix is given by

F(λ) = λ2 + Bλ + C = 0, (3.3)

where

⎧
⎪⎪⎨

⎪⎪⎩

B = δs(k – vm
((p–cm)s–c)(1+ms) ) – pδsv

((p–cm)s–c)2(1+ms) – 2,

C = 1 + pδsv
((p–cm)s–c)2(1+ms) – δs(k – vm

((p–cm)s–c)(1+ms) )

+ sδ2(a – ks – v
(p–cm)s–c ).

Putting λ = 1 and λ = –1 in F(λ), respectively, we get

F(1) = sδ2y0 = sδ2
(

a – ks –
v

(p – cm)s – c

)

and

F(–1) = 4 +
2E0pδs

((p – cm)s – c)(1 + ms)2 – 2δs
(

k –
E0m

(1 + ms)2

)

+ δ2sy0

= 4 +
2pδsv

((p – cm)s – c)2(1 + ms)
– 2δs

(

k –
vm

((p – cm)s – c)(1 + ms)

)

+ sδ2
(

a – ks –
v

(p – cm)s – c

)

.

Let λ1 and λ2 denote the two roots of (3.3), referred to as the eigenvalues (or multipliers)
of the fixed point O(0, 0). We first recall the relevant definitions of topological types for
fixed points (see [20]).

Definition 3.1 O(0, 0) is called
(i) a hyperbolic fixed point, if the moduli of all eigenvalues do not equal 1; and

(ii) a nonhyperbolic fixed point, if |λ1| = 1 or |λ2| = 1.

Definition 3.2 If O(0, 0) is a hyperbolic fixed point, then it is called
(i) a sink, if |λ1| < 1 and |λ2| < 1;

(ii) a source, if |λ1| > 1 and |λ2| > 1; and
(iii) a saddle, if λ1,2 are real, with |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1).

Moreover, we can classify fixed points based on the geometric properties of trajectory
distribution near them.

Definition 3.3 O(0, 0) is called
(i) a saddle, if λ1,2 are real, with |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1);

(ii) a node, if λ1,2 are real, with |λ1,2| < 1 (or |λ1,2| > 1);
(iii) a focus (sometimes called spiral point), if λ1,2 = r(cos θ ± i sin θ ), r �= 1; and
(iv) a center, if λ1,2 = cos θ ± i sin θ .

Thus, we have the following lemma from the relations between roots and coefficients of
the quadratic equation [21].
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Lemma 3.1 Suppose that F(1) > 0, then we have
(i) |λ1| < 1 and |λ2| < 1 iff F(–1) > 0 and C < 1;

(ii) |λ1| > 1 and |λ2| > 1 iff F(–1) > 0 and C > 1;
(iii) |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1) iff F(–1) < 0;
(iv) λ1 and λ2 are complex and |λ1| = |λ2| = 1 iff B2 – 4C < 0 and C = 1; and
(v) λ1 = –1 and |λ2| �= 1 iff F(–1) = 0 and B �= 0, 2.

Using Lemma 3.1, we obtain the following results.

Theorem 3.1 Assuming parameters (a, k, s, p, m, c, v) ∈ π , system (2.3) has a unique posi-
tive fixed point X0 and

(i) it is a sink iff

4 + 2δ�1 – 2δ�2 + δ2�3 > 0 and �1 – �2 + δ�3 < 0;

(ii) it is a source iff

4 + 2δ�1 – 2δ�2 + δ2�3 > 0 and �1 – �2 + δ�3 > 0;

(iii) it is a saddle iff

4 + 2δ�1 – 2δ�2 + δ2�3 < 0; and

(iv) it is nonhyperbolic if one of the following conditions is satisfied:
(iv1) δ�3 = �2 – �1 and (�2 – �1)2 – 4�3 < 0;
(iv2) 4 + 2δ�1 – 2δ�2 + δ2�3 = 0 and δ�2 – δ�1 �= 2, 4.

Theorem 3.2 With the assumption of Theorem 3.1, X0 is
(i) a stable node iff

δ(�2 – �1) < 2 and 1 + δ�1 – δ�2 + δ2�3 > 0;

(ii) an unstable node iff

�2 – �1 < 0;

(iii) a stable focus iff

(�2 – �1)2 – 4�3 < 0 and δ�3 < �2 – �1;

(iv) an unstable focus iff

(�2 – �1)2 – 4�3 < 0 and δ�3 > �2 – �1,

where

�1 =
psv

((p – cm)s – c)2(1 + ms)
,
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�2 = s
(

k –
vm

((p – cm)s – c)(1 + ms)

)

,

�3 = s
(

a – ks –
v

(p – cm)s – c

)

.

4 Bifurcation analysis
Based on the analysis of Sect. 3, we discuss a codimension-one bifurcation (Neimark–
Sacker bifurcation and flip bifurcation) of system (2.3) at the fixed point.

4.1 Neimark–Sacker bifurcation and invariant curve
First, let C = 1, then we have

s
(

a – ks –
v

(p – cm)s – c

)

δ2 +
psvδ

((p – cm)s – c)2(1 + ms)

– s
(

k –
vm

((p – cm)s – c)(1 + ms)

)

δ = 0.

Solving this equation gives

δ1 =
�2 – �1

�3
.

We choose δ as a bifurcation parameter to discuss the Neimark–Sacker bifurcation when
δ varies in a small neighborhood of δ1. If we consider δ∗ = δ – δ1, then δ = δ1 is equivalent
to δ∗ = 0.

The linearization of (2.12) has the characteristic equation at O(0, 0)

F(λ) = λ2 + B
(
δ∗)λ + C

(
δ∗) = 0,

where

⎧
⎪⎪⎨

⎪⎪⎩

B(δ∗) = (δ∗ + δ1)s(k – vm
((p–cm)s–c)(1+ms) ) – (δ∗+δ1)psv

((p–cm)s–c)2(1+ms) – 2,

C(δ∗) = 1 + (δ∗+δ1)psv
((p–cm)s–c)2(1+ms) – (δ∗ + δ1)s(k – vm

((p–cm)s–c)(1+ms) )

+ s(δ∗ + δ1)2(a – ks – v
(p–cm)s–c ).

Let

�1 =
{

(a, k, s, p, m, c, v, δ) | (a, k, s, p, m, c, v) ∈ π , 0 < δ = δ1, (�2 – �1)2 < 4�3
}

.

Then, if (k, a, m, s, p, c, v, δ) ∈ �1, the characteristic values are complex conjugate numbers
λ and λ with |λ| = |λ| = 1, where

λ,λ = –
B(δ∗)

2
± i

2

√

4C
(
δ∗) – B2

(
δ∗), |λ|δ∗=0 =

√
C(0) = 1,

and

α =
d|λ(δ∗)|

dδ∗

∣
∣
∣
∣
δ∗=0

=
1
2

�2 – �1
√

1 + �1δ1 – �2δ1 + �3δ
2
1

=
�2 – �1

2
> 0.
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In addition, it is required that when δ∗ = 0, λm, λ
m �= 1 (m = 1, 2, 3, 4), which is equivalent

to B(0) �= –2, 0, 1, 2, that is, δ1�2 – δ1�1 �= 0, 2, 3, 4. Note that �2 > �1, thus

H = δ1�2 – δ1�1 �= 2, 3, 4. (4.1)

If we put

x +
(
δ∗ + δ1

)
x(a – kx – y) –

xE
1 + mx

– x0 � F1(X),

y +
(
δ∗ + δ1

)
y(–s + x) – y0 � F2(X),

and

(F1, F2)T � Fδ∗ ,

then

Y �→ F
(
ψ(Y )

)
– (x0, y0)T (4.2)

is a one-parameter map with parameter δ∗.
We next determine, in order to get the normal form of (4.2), the Taylor expansion of the

right-hand side of (4.2) at the origin to order three, that is,

(
y1

y2

)

�→
(

a1y1 + a2y2 + a11y2
1 + a12y1y2 + a111y3

1 + O((|y1| + |y2|)4)
b1y1 + b2y2 + b12y1y2 + O((|y1| + |y2|)4)

)

, (4.3)

where the terms with 0 coefficients are omitted. By the chain rule, we have the following:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = ∂F1(ψ(Y ))
∂y1

|(0,0) = 1 + (δ∗ + δ1)s(–k + E0m
(1+ms)2 + E0p

(1+ms)2((p–cm)s–c) ),

a2 = ∂F1(ψ(Y ))
∂y2

|(0,0) = –(δ∗ + δ1)s,

a11 = ∂2F1(ψ(Y ))
∂y2

1
|(0,0)

= (–c2km3s3+2ckm2ps3–3c2km2s2–kmp2s3)(δ1+δ∗)
(cms–ps+c)2(ms+1)

+ (4ckmps2–3c2kms–kp2s2+c2E0m)(δ1+δ∗)
(cms–ps+c)2(ms+1)

+ (2ckps–c2k–cE0p)(δ1+δ∗)
(cms–ps+c)2(ms+1) ,

a12 = ∂2F1(ψ(Y ))
∂y1∂y2

|(0,0) = –δ∗ – δ1,

a111 = ∂3F1(ψ(Y ))
∂y3

1
|(0,0) = – (c2m2–2cmp+p2)E0c(δ∗+δ1)

(cms–ps+c)3(1+ms) ,

b1 = ∂F2(ψ(Y ))
∂y1

|(0,0) = (δ∗ + δ1)y0,

b2 = ∂F2(ψ(Y ))
∂y2

|(0,0) = 1, b12 = ∂2F2(ψ(Y ))
∂y1∂y2

|(0,0) = δ∗ + δ1.

Let

σ = –
B(0)

2
, ω =

√
4C(0) – B2(0)

2
,
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then through the change of basis with

(
y1

y2

)

= T

(
z1

z2

)

,

T =

(
a2 0

σ – a1 –ω

)

,

T–1 =

(
1

a2
0

–σ+a1
a2ω

– 1
ω

)

,

we can change system (4.3) into the normal form

(
z1

z2

)

�→
(

σ –ω

ω σ

)(
z1

z2

)

+

(
f 1(z1, z2)
f 1(z1, z2)

)

, (4.4)

where the nonlinear terms are

f 1(z1, z2) = (a2a11 + a12σ – a12a1)z2
1 – a12ωz1z2 + a111a2

2z3
1 + O

((|z1| + |z2|
)4),

f 2(z1, z2) =
(σ – a1)(a2a11 – a1a12 + a12σ ) – a2b12(σ – a1)

ω
z2

1

+
(

a2b12 –
(σ – a1)a12ω

ω

)

z1z2

+
(σ – a1)a111a2

2
ω

z3
1 + O

((|z1| + |z2|
)4),

together with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f 1z1 = 2(a2a11 + a12σ – a12a1)z1 – a12ωz2 + 3a111a2
2z2

1, f 1z2 = –a12ωz1,

f 1z1z1 = 2(a2a11 + a12σ – a12a1) + 6a111a2
2z1,

f 1z1z2 = –a12ω, f 1z2z2 = 0, f 1z1z1z1 = 6a111a2
2,

f 1z1z1z2 = 0, f 1z1z2z2 = 0, f 1z2z2z2 = 0,

f 2z1 = 2(σ–a1)(a2a11–a1a12+a12σ )–a2b12(σ–a1)
ω

z1 + (a2b12 – (σ – a1)a12)z2

+ 3(σ–a1)a111a2
2

ω
z2

1,

f 2z2 = (a2b12 – (σ – a1)a12)z1,

f 2z1z1 = 2(σ–a1)(a2a11–a1a12+a12σ )–a2b12(σ–a1)
ω

+ 6(σ–a1)a111a2
2

ω
z1,

f 2z1z2 = a2b12 – (σ – a1)a12, f 2z2z2 = 0, f 2z1z1z1 = 6(σ–a1)a111a2
2

ω
,

f 2z1z1z2 = 0, f 2z1z2z2 = 0, f 2z2z2z2 = 0.

In order for system (4.4) to undergo a Neimark–Sacker bifurcation at O(0, 0), we require
that the following quantity is not zero [22]:

l = – Re

(
(1 – 2λ)λ2

1 – λ
γ20γ11

)

–
1
2
|γ11|2 – |γ02|2 + Re(λγ21),
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where

γ20 =
(f 1z1z1 – f 1z2z2 + 2f 2z1z2 ) + i(f 2z1z1 – f 2z2z2 – 2f 1z1z2 )

8
,

γ11 =
(f 1z1z1 + f 1z2z2 ) + i(f 2z1z1 + f 2z2z2 )

4
,

γ02 =
(f 1z1z1 – f 1z2z2 – 2f 2z1z2 ) + i(f 2z1z1 – f 2z2z2 + 2f 1z1z2 )

8
,

γ21 =
(f 1z1z1z1 + f 1z1z2z2 + f 2z1z1z2 + f 2z2z2z2 ) + i(f 2z1z1z1 + f 2z1z2z2 – f 1z1z1z2 – f 1z2z2z2 )

16
.

Note that here all the derivatives are taken at O(0, 0). From the above discussion, we obtain
the following result.

Theorem 4.1 Assume that (a, k, s, p, m, c, v, δ) ∈ �1 and the condition (4.1) holds. If l �= 0,
then the system (2.3) undergoes a Neimark–Sacker bifurcation at the fixed point (x0, y0, E0)
when the bifurcation parameter δ varies in a small neighborhood of δ1. Moreover, if l < 0
(resp. l > 0), then an attracting (resp. repelling) invariant closed curve bifurcates from the
fixed point for δ > δ1 (resp. δ < δ1).

4.2 Flip bifurcation and chaos
We proceed to investigate the flip bifurcation. For (3.3), let F(–1) = 0 we obtain

4 +
2pδsv

((p – cm)s – c)2(1 + ms)
– 2δs

(

k –
vm

((p – cm)s – c)(1 + ms)

)

+ sδ2
(

a – ks –
v

(p – cm)s – c

)

= 0.

Solving this equation gives

δ2 =
�2 – �1 –

√
(�2 – �1)2 – 4�3

�3
.

Here we still choose δ as a bifurcation parameter to discuss the flip bifurcation when δ

varies in a small neighborhood of δ2. In the same way as above, we consider δ∗ = δ –δ2, then
δ = δ2 is equivalent to δ∗ = 0. Since we would like to study the system as we vary δ∗ near 0,
we treat δ∗ as a variable (which has no dependence on time) and hence the parameter-
free center manifold theorem can easily be extended for a parameter-dependent sys-
tem.

We begin by putting

X =
(
x, y, E, δ∗)T , Y =

(
y1, y2, δ∗)T .

Accordingly, the local parameterization (2.9) should be rewritten as

X = ψ̃(Y ),
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where

ψ̃(Y ) = ψ̃
(
y1, y2, δ∗)

=

⎛

⎜
⎜
⎜
⎝

ψ̃1(y1, y2, δ∗)
ψ̃2(y1, y2, δ∗)
ψ̃3(y1, y2, δ∗)
ψ̃0(y1, y2, δ∗)

⎞

⎟
⎟
⎟
⎠

,

together with

ψ1(y1, y2) � ψ̃1
(
y1, y2, δ∗),

ψ2(y1, y2) � ψ̃2
(
y1, y2, δ∗),

ψ3(y1, y2) � ψ̃3
(
y1, y2, δ∗),

and

δ∗ � ψ̃0
(
y1, y2, δ∗).

We put

F1(X) = x +
(
δ∗ + δ2

)
x(a – kx – y) –

xE
1 + mx

– x0

and

F2(X) = y +
(
δ∗ + δ2

)
y(–s + x) – y0, and F = (F1, F2)T .

Hence we study the three-dimensional extended system

Y �→
(

F(ψ̃(Y )) – (x0, y0)T

δ∗

)

. (4.5)

As in our study of the Neimark–Sacker bifurcation, we expand the right-hand side of (4.5)
in the order-three Taylor polynomial,

⎛

⎜
⎝

y1

y2

δ∗

⎞

⎟
⎠ �→

⎛

⎜
⎜
⎜
⎜
⎝

a1y1 + a2y2 + a11y2
1 + a12y1y2 + a13y1δ

∗ + a23y2δ
∗ + a111y3

1

+ a113y2
1δ

∗ + a123y1y2δ
∗ + O((|y1| + |y2| + |δ∗|)4)

b1y1 + b2y2 + b12y1y2 + b13y1δ
∗ + b123y1y2δ

∗ + O((|y1| + |y2| + |δ∗|)4)
δ∗

⎞

⎟
⎟
⎟
⎟
⎠

,

(4.6)
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where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = ∂F1(ψ̃(Y ))
∂y1

|(0,0,0) = 1 + δ2s(–k + E0m
(1+ms)2 ) + δ2sE0p

(1+ms)2((p–cm)s–c) ,

a2 = ∂F1(ψ̃(Y ))
∂y2

|(0,0,0) = –δ2s, a12 = ∂2F1(ψ̃(Y ))
∂y1∂y2

|(0,0,0) = –δ2,

a11 = ∂2F1(ψ̃(Y ))
∂2y2

1
|(0,0,0)

= (–c2km3s3+2ckm2ps3–3c2km2s2–kmp2s3)δ2
(cms–ps+c)2(ms+1)

+ (c2E0m+2ckps–c2k–cE0p)δ2
(cms–ps+c)2(ms+1)

+ (4ckmps2–3c2kms–kp2s2)δ2
(cms–ps+c)2(ms+1) ,

a13 = ∂2F1(ψ̃(Y ))
∂y1∂δ∗ |(0,0,0) = s(–k + E0m

(1+ms)2 ) + sE0p
(1+ms)2((p–cm)s–c) ,

a23 = ∂2F1(ψ̃(Y ))
∂y2∂δ∗ |(0,0,0) = –s,

a111 = ∂3F1(ψ̃(Y ))
∂3y1

|(0,0,0) = – (c2m2–2cmp+p2)E0cδ2
(cms–ps+c)3(1+ms) ,

a113 = ∂3F1(ψ̃(Y ))
∂2y1∂δ∗ |(0,0,0)

= –c2km3s3+2ckm2ps3–3c2km2s2–kmp2s3

(cms–ps+c)2(ms+1)

+ 4ckmps2–3c2kms–kp2s2+c2E0m
(cms–ps+c)2(ms+1)

+ 2ckps–c2k–cE0p
(cms–ps+c)2(ms+1) ,

a123 = ∂3F1(ψ̃(Y ))
∂y1∂y2δ∗ |(0,0,0) = –1, b1 = ∂F2(ψ̃(Y ))

∂y1
|(0,0,0) = δ2y0,

b2 = ∂F2(ψ̃(Y ))
∂y2

|(0,0,0) = 1, b12 = ∂2F2(ψ̃(Y ))
∂y1∂y2

|(0,0,0) = δ2,

b13 = ∂2F2(ψ̃(Y ))
∂y1∂δ∗ |(0,0,0) = y0, b123 = ∂3F1(ψ̃(Y ))

∂y1∂y2δ∗ |(0,0,0) = 1.

Construct an invertible matrix

T =

⎛

⎜
⎝

t11 t12 0
1 1 0
0 0 1

⎞

⎟
⎠ ,

T–1 =

⎛

⎜
⎝

t̃11 t̃12 0
t̃21 t̃22 0
0 0 1

⎞

⎟
⎠ ,

where

t11 =
a2

1
2 – 1

2 a1 + 1
2

√
a2

1 + 4a2b1 – 2a1 + 1
,

t12 =
a2

1
2 – 1

2 a1 – 1
2

√
a2

1 + 4a2b1 – 2a1 + 1
,

t̃11 =
1
4

(1 – a1 +
√

a2
1 + 4a2b1 – 2a1 + 1)(–1 + a1 +

√
a2

1 + 4a2b1 – 2a1 + 1)
a2

√
a2

1 + 4a2b1 – 2a1 + 1
,

t̃12 =
1
2

1 – a1 +
√

a2
1 + 4a2b1 – 2a1 + 1

√
a2

1 + 4a2b1 – 2a1 + 1
,

t̃21 = –
1
4

(1 – a1 +
√

a2
1 + 4a2b1 – 2a1 + 1)(–1 + a1 +

√
a2

1 + 4a2b1 – 2a1 + 1)
a2

√
a2

1 + 4a2b1 – 2a1 + 1
,
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t̃22 =
1
2

–1 + a1 +
√

a2
1 + 4a2b1 – 2a1 + 1

√
a2

1 + 4a2b1 – 2a1 + 1
.

Now, make the translation
⎛

⎜
⎝

y1

y2

δ∗

⎞

⎟
⎠ = T

⎛

⎜
⎝

z1

z2

δ∗

⎞

⎟
⎠

to system (4.6), then we get

⎛

⎜
⎝

z1

z2

δ∗

⎞

⎟
⎠ →

⎛

⎜
⎝

–1 0 0
0 λ2 0
0 0 1

⎞

⎟
⎠

⎛

⎜
⎝

z1

z2

δ∗

⎞

⎟
⎠ +

⎛

⎜
⎝

ϕ1(z1, z2, δ∗)
ϕ2(z1, z2, δ∗)

0

⎞

⎟
⎠ , (4.7)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ1(z1, z2, δ∗) = α11z2
1 + α22z2

2 + α12z1z2 + α13z1δ
∗ + α23z2δ

∗ + α123z1z2δ
∗ + α113z2

1δ
∗

+ α223z2
2δ

∗ + α111z3
1 + α222z3

2 + α112z2
1z2 + α122z1z2

2 + α133z1δ
∗2

+ α233z2δ
∗2 + O((|z1| + |z2| + |δ∗|)4),

ϕ2(z1, z2, δ∗) = β11z2
1 + β22z2

2 + β12z1z2 + β13z1δ
∗ + β23z2δ

∗ + β123z1z2δ
∗ + β113z2

1δ
∗

+ β223z2
2δ

∗ + β133z1δ
∗2 + β233z2δ

∗2 + O((|z1| + |z2| + |δ∗|)4),

with
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α11 = t̃11a11t2
11 + t̃11a12t11 + t̃12b12t11,

α12 = 2t̃11a11t11t12 + t̃11a12t11 + t̃11a12t12 + t̃12b12t11 + t̃12b12t12,

α13 = t̃11a13t11 + t̃12b13t11 + t̃11a23, α22 = t̃11a11t2
12 + t̃11a12t12 + t̃12b12t12,

α23 = t̃11a13t12 + t̃12b13t12 + t̃11a23, α111 = t̃11a111t3
11, α112 = 3t̃11a111t2

11t12,

α113 = t̃11a113t2
11 + t̃11a123t11 + t̃12b123t11 + t̃11a223, α122 = 3t̃11a111t11t2

12,

α123 = 2t̃11a113t11t12 + t̃11a123t11 + t̃11a123t12 + t̃12b123t11 + t̃12b123t12 + 2t̃11b223,

α133 = t̃11a233, α222 = t̃11a111t3
12,

α223 = t̃11a113t2
12 + t̃11a123t12 + t̃12b123t12 + t̃11a223,

α233 = t̃11a233,

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β11 = t̃21a11t2
11 + t̃21a12t11 + t̃22b12t11,

β12 = 2t̃21a11t11t12 + t̃21a12t11 + t̃21a12t12 + t̃22b12t11 + t̃22b12t12,

β13 = t̃21a13t11 + t̃22b13t11 + t̃21a23, β22 = t̃21a11t2
12 + t̃21a12t12 + t̃22b12t12,

β23 = t̃21a13t12 + t̃22b13t12 + t̃21a23,

β113 = t̃21a113t2
11 + t̃21a123t11 + t̃22b123t11 + t̃21a223,

β123 = 2t̃21a113t11t12 + 2t̃21a223 + t̃21a123t11 + t̃21a123t12 + t̃22b123t11 + t̃22b123t12,

β133 = t̃21a233, β223 = t̃21a113t2
12 + t̃21a123t12 + t̃22b123t12 + t̃21a223,

β233 = t̃21a233.
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Having gone through these coordinate changes, the parameter-dependent center manifold
of (4.7) can be approximately represented as follows:

W c(0, 0, 0) =
{(

z1, z2, δ∗) ∈ R3 | z2 = h
(
z1, δ∗), h(0, 0) = 0, Dh(0, 0) = 0

}
,

h
(
z1, δ∗) = c0δ

∗2 + c1z1δ
∗ + c2z2

1 + O
((|z1| +

∣
∣δ∗∣∣)3). (4.8)

Since the center manifold is invariant under the flow, one can substitute z2 = h(z1, δ∗) into
the second formula of (4.7) and obtain

h
(
–z1 + ϕ1

(
z1, h

(
z1, δ∗), δ∗), δ∗) – λ2h

(
z1, δ∗) – ϕ2

(
z1, h

(
z1, δ∗), δ∗) = 0. (4.9)

Substituting (4.8) into (4.9), and then comparing the coefficients for δ∗2, δ∗z1 and z3
1, we

get

c0 = 0, c1 = –
β13

1 + λ2
, c2 =

β111

1 – 2α11 – β12
= 0.

Therefore, we consider the map which is (4.7) restricted to the center manifold W c(0, 0),

F : z1 → –z1 + d11z2
1 + d12z1δ

∗ + d112z2
1δ

∗ + d122z1δ
∗2 + d22δ

∗2 + d111z3
1 + d222δ

∗3

+ O
((|z1| +

∣
∣δ∗∣∣)4), (4.10)

where

d11 = α11, d112 = α113 + α12c1, d22 = α33, d222 = α333, d12 = α13,

d122 = α133 + α23c1, d111 = α111.

In order for system (4.10) to undergo a flip bifurcation at the origin, we require that the
two quantities

α̃1 =
(

2
∂F

∂δ∗∂z1
+

∂F
∂δ∗

∂F
∂z1

)

(0,0)
= 2d12

and

α̃2 =
(

1
2

(
∂2F
∂z2

1

)2

+
1
3

(
∂3F
∂z3

1

))

(0,0)
= 2d2

11 + 2d111

do not equal zero [22].
Let

�2 =
{

(a, k, s, p, m, c, v, δ) | (a, k, s, p, m, c, v) ∈ π , 0 < δ = δ2, δ�2 – δ�1 �= 2, 4
}

,

then we have the following result.

Theorem 4.2 Assuming that (a, k, s, p, m, c, v, δ) ∈ �2. If α̃2 �= 0, then the system (2.3) un-
dergoes a flip bifurcation at the fixed point (x0, y0, E0) when the bifurcation parameter δ

varies in a small neighborhood of δ2. Moreover, if α̃2 > 0 (resp., α̃2 < 0), then the period-2
orbits that bifurcate from (x0, y0, E0) are stable (resp., unstable).
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5 Numerical simulations
In this section, we give two examples to illustrate our theoretical analysis.

Example 5.1 (Neimark–Sacker bifurcation) Here we present a numerical analysis of the
proposed system (2.3) with the following artificially chosen data: a = 4, k = 1, s = 2, p = 1,
m = 0.1, c = 1 and v = 0.6 with (a, k, s, p, m, c, v) ∈ π . It is easy to verify that the system (2.3)
has a unique fixed point (2, 1.25, 0.9) and δ1 = 0.125.

The multipliers of the positive fixed point are λ± ≈ 0.9805 ± 0.1967i with |λ±| = 1 and
α = 0.1563 > 0. Since H = 0.0391 �= 2, 3, 4, the condition (4.1) holds. Then, using The-
orem 4.1, the system (2.3) undergoes a Neimark–Sacker bifurcation at the fixed point
(2, 1.25, 0.9) with l = 0.0017 > 0.

Figures 1, 2 and 3 reveal that the fixed point (2, 1.25, 0.9) of (2.3) is unstable for δ =
0.125 + 0.0014 and becomes stable for δ = 0.125 – 0.035, and a repelling limit cycle appears
around it at δ = 0.125 – 0.0001.

Example 5.2 (Flip bifurcation) Fix a = 16, k = 4, s = 3.9, p = 7, m = 1, c = 1 and v = 1 and
the fixed point (3.9, 0.3554, 0.2188) with (a, k, s, p, m, c, v) ∈ π . After computation we get
the following quantities:

δ2 = 0.1294,

α̃1 = –0.1792,

α̃2 = 0.0022 – 2 × 6.8573 × 10–6 > 0.

Figure 1 δ = δ1 + 0.014, the fixed point (2, 1.25, 0.9) is an unstable focus
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Figure 2 δ = δ1 – 0.0001. An repelling invariant closed curve bifurcates from the fixed point (2, 1.25, 0.9)

Figure 3 δ = δ1 – 0.035, the fixed point (2, 1.25, 0.9) is a stable focus



Liu et al. Advances in Difference Equations  (2018) 2018:133 Page 20 of 22

Figure 4 (a) Bifurcation diagram in (δ, x) plane. (b) Bifurcation diagram in (δ, y) plane. (c) Bifurcation diagram
in (δ, E) plane. (d) Largest Lyapunov exponents corresponding to (a), (b), and (c)

Figures 4(a), 4(b) and 4(c) reveal that the fixed point is stable for δ < 0.1294, and loses its
stability at the flip bifurcation parameter value δ = 0.1294. We also observe that there is a
cascade of period doubling bifurcations. The largest Lyapunov exponents corresponding
to Figs. 4(a), 4(b) and 4(c) are computed in Fig. 4(d).

Figure 5 shows the phase portraits which are associated with Figs. 4(a), 4(b) and 4(c). For
δ ∈ (0.12, 0.1616), there are orbits of period 2, 4, 8, . . . . When δ = 0.1616, one can see that
the largest Lyapunov exponent is positive, thereby confirming that the system is chaotic.
And then for δ ∈ (0.1616, 017) some largest Lyapunov exponents are negative, indicating
the existence of periodic windows in the chaos region.

6 Conclusion
The present paper is concerned with the dynamics of a discrete-time economic predator–
prey system in the presence of a type of nonlinear harvesting function. We find the fixed
point and its stability. Most interestingly, we have seen that our results reveal a far richer
dynamics of the discrete model compared with the continuous one proposed in [9], in-
cluding an invariant circle, cascades of period-doubling bifurcation and chaotic sets. We
confirm the complexity of the dynamic behavior by computing the largest Lyapunov ex-
ponents. This paper extends our previous works (see [8, 9]) and provides a sufficiently
general parameterization method for a wide range of discrete singular systems.

However, in the presented harvesting function, we have no concern about the effects of
competition between boats which will increase the complexity of the normal form and the
amount of calculation. Moreover, for discrete-time systems, Marotto’s theorem [23, 24]
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Figure 5 Phase portraits for different values of δ corresponding to Fig. 4. (a) δ = 0.12, (b) δ = 0.13,
(c) δ = 0.158, (d) δ = 0.161, (e) δ = 0.17

is a sufficient criterion for the existence of chaos. If the fixed point of system (2.3) is a
snap-back repeller under certain parameter conditions, then one can conclude that the
system is chaotic in the Marotto sense. Furthermore, various feedback controls can be
implemented for controlling the bifurcation and chaos in the system (2.3), which should
be useful for fishery management control and biological conversion. Space prevents that
discussion here, but these issues will be the topics of our future research.
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