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Abstract
Discrete epidemic models are popularly used to detect the pathogenesis, spreading,
and controlling of the diseases. The three-dimensional discrete SIRS epidemic models
are more suitable than the two-dimensional discrete models to describe the
spreading characters of the diseases. In this paper, the complex dynamical behaviors
of a three-dimensional discrete SIRS epidemic model with standard incidence rate are
discussed. We choose the time step size parameter as a bifurcation parameter, the
existence, stability, and direction of Hopf bifurcation are proved by using the normal
form theorem and bifurcation theory. Moreover, the numerical simulations not only
illustrate our results, but they also exhibit the complex dynamical behaviors, such as
the invariant cycle, period-7 orbits and period-12 orbits with more than one attractors
and chaotic sets. The flip bifurcation caused by the step size parameter is also
obtained by a numerical simulation. Most importantly, when the adequate contact
rate and the death rate of the infective individuals are chosen as the bifurcation
parameters, there also exist a Hopf bifurcation, a flip bifurcation, chaos, and strange
attractors. These results provide significant information for the disease controlling
when there appear complex dynamical behaviors in the epidemic model.
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1 Introduction
As is well known, in the study of epidemic theory, mathematical models have been widely
used to detect the stability, periodicity, extinction, permanence, bifurcations, and more
complex dynamical behaviors of the diseases (see, for example, [–] and the references
cited therein). There are two kinds of mathematical models to detect the dynamical be-
haviors of the diseases: the continuous-time models described by differential equations
and the discrete-time models described by difference equations. Recently, discrete-time
epidemic models have received more and more attention (see, for example, [–] and
the references cited therein). The detailed reasons can be found in [].

Usually, in the study of disease spreading, the population is classified into three types
of individuals: susceptible individuals (S), infective individuals (I), and recovered individ-
uals (R). The basic epidemic models are as follows: SI models (the disease is difficult to
cure); SIS models (the disease can be cured); SIR models (the disease is cured with lifelong
immunity), and SIRS models (the disease is cured with temporary immunity). However,
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lots of diseases have temporary immunity, such as influenza, pertussis, gonorrhoea, and
so on. Therefore, the SIRS epidemic models are important and significant for detecting
the pathogenesis, spreading, and controlling of the epidemics.

The following continuous-time SIRS epidemic model with standard incidence rate is
considered:

Ṡ(t) = A – dS – λ
SI

S + I + R
+ σR,

İ(t) = λ
SI

S + I + R
– (d + γ )I, ()

Ṙ(t) = γ I – (d + σ )R,

which has been studied in [], where S(t), I(t), and R(t) denote the numbers of suscep-
tible, infective, and recovered individuals at time t, respectively. A is the recruitment rate
of the population, di (i = , , ) is the death rate of S(t), I(t), and R(t), respectively. λ is the
adequate contact rate, γ is the recovery rate of the infective individuals, σ is the rate by
which the recovered individuals become susceptible again. For the model (), the authors
showed that when the basic reproduction number � = λ

d+γ
< , then the disease-free

equilibrium E is a globally asymptotically stable, endemic equilibrium and E∗ does not
exist; and when the basic reproduction number � > , then the disease-free equilibrium
E is unstable, and the endemic equilibrium E∗ is locally asymptotically stable [].

In [], by using the forward Euler scheme we discretized model () into the following
SIRS epidemic model with standard incidence rate:

⎧
⎪⎨

⎪⎩

Sn+ = Sn + h[A – dSn – λ SnIn
Sn+In+Rn

+ σRn],
In+ = In + h[λ SnIn

Sn+In+Rn
– (d + γ )In],

Rn+ = Rn + h[γ In – (d + σ )Rn],
()

where parameters A, di (i = , , ), λ, σ , and γ are given as in model (), and h is the time
step size.

From the above process of discretization, we can imagine that, when the time step size
h is small enough, the properties of the stability of model () should be the same as that of
model (). There will appear an important and interesting problem for model (): whether
there exists a critical value h∗, such that when  < h < h∗, if the basic reproduction num-
ber � = λ

d+γ
< , then the disease-free equilibrium E is globally asymptotically stable.

And if � > , then E is unstable, while the endemic equilibrium E∗ exists and is locally
asymptotically stable.

The local stability of the disease-free equilibrium and endemic equilibrium for discrete-
time SIRS epidemic models with general nonlinear incidence rates was first studied in
[]. As an application of the main results, in [] for model () the authors showed that
there is a constant h∗ >  such that when h ∈ (, h∗) if the basic reproduction number
� = λ

d+γ
< , then the disease-free equilibrium E is locally asymptotically stable, and

if � > , then the disease-free equilibrium E is unstable, the endemic equilibrium E∗ is
locally asymptotically stable (see Corollary  in []). Further, the numerical simulations
in [] show that when � >  and h > h∗, the dynamical behavior of discrete-time model
() is more complex than the corresponding continuous-time model (). Moreover, the
permanence and extinction of the disease for model () are obtained in [].
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However, the study of the complex dynamical behaviors of model (), especially the Hopf
bifurcation, also is very important for the transmission and controlling of the disease. We
note that the investigations on the complex dynamical behaviors of model () are still
unclear. In particular, the studies on the existence, stability, and direction of the Hopf bi-
furcation are only based on numerical simulations.

Therefore, in this study, the time step size h is chosen as a bifurcation parameter to study
the existence of Hopf bifurcation for model () by using the normal form method and
the bifurcation theory. Finally, we present numerical simulations to illustrate our results,
and actualize the Hopf bifurcation and complex dynamical behaviors of model (). Most
importantly, the adequate contact rate λ and the death rate d of the infective individuals
are chosen as the bifurcation parameters and the numerical simulations give the Hopf
bifurcation, flip bifurcation, chaos, and strange attractors for model ().

The organization of this paper is as follows. In Section , as preliminaries, we introduce
the results obtained in [] on the existence and local stability of equilibria of model ().
In Section , the existence and direction of a Hopf bifurcation of model () are discussed.
Section  presents the numerical simulations, which not only illustrate the theoretical
results but also exhibit the complex dynamical behaviors such as the invariant cycle, more
than one strange attractors, and chaotic sets. Finally, in Section  we give a discussion.

2 Local stability of equilibria
The basic reproductive rate for model () is � = λ

d+γ
, which denotes the average number

of secondary infections generated by an initial population of infected individuals over their
lifetimes. Now, on the existence of the nonnegative equilibria of model (), in [] we have
established the following result.

Theorem 
() Model () always has a disease-free equilibrium E( A

d
, , ).

() If the basic reproductive rate � > , then model () also has an endemic equilibrium
E∗(S∗, I∗, R∗), where

⎧
⎪⎨

⎪⎩

S∗ = (d+r)(γ +d+σ )
(d+σ )(λ–d–γ ) I∗,

R∗ = γ

d+σ
I∗,

I∗ = (d+σ )(λ–d–γ )
d(d+γ )(γ +d+σ )+(λ–d–γ )(dd+dσ+dγ ) .

Obviously, model () is a special model in [] when the disease incidence rate g(S, I, R) =
λ SI

S+I+R . Then the results about the local stability of disease-free equilibrium E( A
d

, , )
and the endemic equilibrium E∗(S∗, I∗, R∗) are the same as in Theorems  and  in [],
respectively. We omit them in this study, avoiding a repetition.

For detecting the bifurcation of model (), we know that when the disease-free equilib-
rium E( A

d
, , ) and the endemic equilibrium E∗(S∗, I∗, R∗) are non-hyperbolic, there will

exist bifurcation and complex dynamical behaviors for the two equilibria, respectively. In
Section , we choose the time step size h as a bifurcation parameter to detect the existence,
stability, and bifurcation direction for the Hopf bifurcation by the normal form theorem
and bifurcation theory. In Section , the numerical simulations are discussed to illustrate
our results about the bifurcation and complex dynamical behaviors.
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3 Analysis of Hopf bifurcation
In this section, for a function f (x, x, . . . , xn), we denote by fxi , fxixj and fxixjxk the first order
partial derivative, the second order partial derivative, and the third order partial derivative
of f (x, x, . . . , xn) with respect to xi, xj, and xk , respectively.

For the endemic equilibrium E∗(S∗, I∗, R∗), the corresponding characteristic equation of
the Jacobian matrix J(E∗) can be written as

F(w) = w + b(h)w + b(h)w + b(h) = , ()

where

b(h) = – – h(a – a – γ – σ – d – d – d),

b(h) =  + h(a – γ – σ – d – d – a – d) + h[(aa + aγ )

– (σ + d)(a – γ – d) – (a + d)(a – γ – σ – d – d)
]
,

b(h) = – + h(a + γ + d + d + d + σ – a)

+ h[–aγ – aa + (d + σ )(a – γ – d)

+ (a + d)(a – γ – σ – d – d)
]

+ h[aγ (a + d) – (a + d)(d + σ )(a – γ – d)

+ aa(d + σ ) – aγ (a + σ )
]
,

and

a =
λI∗(I∗ + R∗)

(S∗ + I∗ + R∗) , a =
λS∗(S∗ + R∗)

(S∗ + I∗ + R∗) , a =
λS∗I∗

(S∗ + I∗ + R∗) .

Let

A = b
 – b, B = bb – b, C = b

 – bb,

and

� = B – AC.

We choose the parameters A, d, λ, σ , d, γ , d, h satisfying � >  and the conjugate
complex roots w, with the modules equal to one, that is, the case (I) in condition () of
Theorem  in []. Then there appears a Hopf bifurcation from the endemic equilibrium
E∗(S∗, I∗, R∗) of model ().

Now, the existence, stability, and bifurcation direction of the Hopf bifurcation are de-
tected by the normal form theorem and bifurcation theory. First of all, the existence of a
Hopf bifurcation is computed by bifurcation theory. The step size h is chosen as the bifur-
cation value, which is denoted by h∗. Giving h∗ a perturbation h∗∗, model () is described
by

⎧
⎪⎨

⎪⎩

Sn+ = Sn + (h∗ + h∗∗)[A – dSn – λ SnIn
Sn+In+Rn

+ σRn],
In+ = In + (h∗ + h∗∗)[λ SnIn

Sn+In+Rn
– (d + γ )In],

Rn+ = Rn + (h∗ + h∗∗)[γ In – (d + σ )Rn].
()
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Let U(n) = Sn – S∗, V (n) = In – I∗, and P(n) = Rn – R∗ in model (); then we transform
the endemic equilibrium E∗(S∗, I∗, R∗) into the origin, and we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

U(n + ) = U(n) + (h∗ + h∗∗)[A – d(U(n) + S∗)
– λ (U(n)+S∗)(V (n)+I∗)

U(n)+V (n)+P(n)+N∗ + σ (P(n) + R∗)],
V (n + ) = V (n) + (h∗ + h∗∗)[λ (U(n)+S∗)(V (n)+I∗)

U(n)+V (n)+P(n)+N∗

– (d + γ )(V (n) + I∗)],
P(n + ) = P(n) + (h∗ + h∗∗)[γ V (n) – (d + σ )P(n)],

()

where N∗ = S∗ + I∗ + R∗. The characteristic equation associated with the linearization sys-
tem of model () at (, , ) is given by

w + b
(
h∗, h∗∗)w + b

(
h∗, h∗∗)w + b

(
h∗, h∗∗) = , ()

where bi(h∗, h∗∗), i = , , , with the same form as in equation ().
According to the well-known Cardano formula, equation () has one real root,

w = –
b(h∗, h∗∗)


+

(

–
q


+
√

D
) 


–

(
q


+
√

D
) 


,

and a pair of conjugate complex roots w, = α ± βi, where

α = –
b(h∗, h∗∗)


–




[(

–
q


+
√

D
) 


–

(
q


+
√

D
) 


]

,

β =
√




[(

–
q


+
√

D
) 


–

(
q


+
√

D
) 


]

,

D =
(

q


)

+
(

p


)

,

p =
b(h∗, h∗∗) – b(h∗, h∗∗)


,

q =
b(h∗, h∗∗) – b(h∗, h∗∗)b(h∗, h∗∗) + b(h∗, h∗∗)


.

Further, we need

k =
d|w,|
dh∗∗

∣
∣
∣
∣
h∗∗=

�= . ()

Moreover, it is required that, when h∗∗ = , wm
, �= , m = , , , , which is equivalent to

α �= –



, β �= ±
√




,
(
α – β) – αβ �= . ()

Hence, the eigenvalues w, do not lie in the intersection of the unit circle with the coor-
dinate axes when h∗∗ = , and conditions () and () hold.
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In the following, we study the normal form of model (). Expanding model () as a Taylor
series at (U(n), V (n), P(n)) = (, , ) to the third order, it becomes

⎧
⎪⎨

⎪⎩

U(n + ) = aU(n) + aV (n) + aP(n) + F∗(U(n), V (n), P(n)),
V (n + ) = aU(n) + aV (n) + aP(n) + G∗(U(n), V (n), P(n)),
P(n + ) = aU(n) + aV (n) + aP(n),

()

where

F∗(U(n), V (n), P(n)
)

= aU(n) + aU(n)V (n) + aU(n)P(n) + aV (n)P(n)

+ aV (n) + aP(n) + bU(n) + bU(n)V (n) + bU(n)P(n)

+ bU(n)V (n) + bU(n)P(n) + cV (n)P(n) + cV (n)P(n)

+ cU(n)V (n)P(n) + cV (n) + cP(n)

+ o
((∣

∣U(n)
∣
∣ +

∣
∣V (n)

∣
∣ +

∣
∣P(n)

∣
∣
)),

()

G∗(U(n), V (n), P(n)
)

= aU(n) + aU(n)V (n) + aU(n)P(n) + aV (n)P(n)

+ aV (n) + aP(n) + bU(n) + bU(n)V (n) + bU(n)P(n)

+ bU(n)V (n) + bU(n)P(n) + cV (n)P(n) + cV (n)P(n)

+ cU(n)V (n)P(n) + cV (n) + cP(n)

+ o
((∣

∣U(n)
∣
∣ +

∣
∣V (n)

∣
∣ +

∣
∣P(n)

∣
∣
)),

()

and

a =  – h∗(d + a), a = –h∗a,

a = h∗σ + ha, a = h∗λ
I∗(I∗ + R∗)

N∗ ,

a = –h∗λ
N∗(I∗ + R∗) – I∗(I∗ + R∗)

N∗ , a = –h∗λ
I∗(S∗ – I∗ – R∗)

N∗ ,

a = –h∗λ
S∗(I∗ – S∗ – R∗)

N∗ , a = h∗λ
S∗(S∗ + R∗)

N∗ ,

a = –h∗λ
S∗I∗

N∗ , b = –h∗λ
I∗(I∗ + R∗)

N∗ ,

b = h∗λ
N∗(I∗ + R∗) – I∗(I∗ + R∗)

N∗ , b = h∗λ
I∗N∗ – I∗(I∗ + R∗)

N∗ ,

b = h∗λ
N∗(S∗ + R∗) – S∗(S∗ + R∗)

N∗ , b = –h∗λ
I∗N∗ – S∗I∗

N∗ ,

c = h∗λ
S∗N∗ – S∗(S∗ + R∗)

N∗ , c = –h∗λ
S∗N∗ – S∗I∗

N∗ ,

c = –h∗λ
N∗(R∗ + N∗) – (S∗R∗ + I∗R∗ + R∗ + S∗I∗)

N∗ ,
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c = –h∗λ
S∗(S∗ + R∗)

N∗ , c = h∗λ
S∗I∗

N∗ ,

a = h∗a, a =  – h∗(d + γ ) + h∗a,

a = –ha, ai = –ai,

bj = –bj, cj = –cj (i = , . . . , , j = , . . . , ),

a = , a = h∗γ , a =  – h∗(d + σ ).

Let

T =

⎛

⎜
⎝

t t t

  
t t t

⎞

⎟
⎠ ,

where

t = AC – BD, t = AD + BC,

A = a +
aa(α – a)
β + (α – a) , B =

aaβ

β + (α – a) ,

C =
α – a

β + (α – a) , D =
β

β + (α – a) ,

t =
aa – a(b + a)

(b + a)(b + a)
, t =

a(α – a)
β + (α – a) ,

t =
aβ

β + (α – a) , t = –
a

b + a
.

It is obvious that T is invertible and

det T = tt + tt – tt – tt.

Using a translation,

⎛

⎜
⎝

U(n)
V (n)
P(n)

⎞

⎟
⎠ = T

⎛

⎜
⎝

Xn

Yn

Zn

⎞

⎟
⎠ ,

then model () becomes

⎧
⎪⎨

⎪⎩

Xn+ = αXn – βYn + F(Xn, Yn, Zn),
Yn+ = βXn + αYn + G(Xn, Yn, Zn),
Zn+ = –bZn + H(Xn, Yn, Zn),

()

where

F(Xn, Yn, Zn) =
[
–tF∗(U(n), V (n), P(n)

)

+ (tt – tt)G∗(U(n), V (n), P(n)
)]

(det T)–,
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G(Xn, Yn, Zn) =
[
(t – t)F∗(U(n), V (n), P(n)

)

+ (tt – tt)G∗(U(n), V (n), P(n)
)]

(det T)–,

H(Xn, Yn, Zn) =
[
tF∗(U(n), V (n), P(n)

)

+ (tt – tt)G∗(U(n), V (n), P(n)
)]

(det T)–,

and F∗(U(n), V (n), P(n)), G∗(U(n), V (n), P(n)) are given in () and ().
From the above translation we further obtain

FXnXn = FXnXn (, , )

=
[
–(t + tt – tt)

(
at

 + at

+ att + at + a + at


)]
(det T)–,

FYnYn = FYnYn (, , )

=
[
–(t + tt – tt)

(
at

 + att + at


)]
(det T)–,

GXnXn = GXnXn (, , )

=
[
(t + tt – t – tt)

(
at

 + at

+ att + at + a + at


)]
(det T)–,

GYnYn = GYnYn (, , )

=
[
(t + tt – t – tt)

(
at

 + att + at


)]
(det T)–,

HXnXn = HXnXn (, , )

=
[
(t + tt – tt)

(
at

 + at

+ att + at + a + at


)]
(det T)–,

HYnYn = HYnYn (, , )

=
[
(t + tt – tt)

(
at

 + att + at


)]
(det T)–,

FXnYn = FXnYn (, , )

=
[
–(t + tt – tt)

(
att + at

+ a(tt + tt) + at + att
)]

(det T)–,

GXnYn = GXnYn (, , )

=
[
(t + tt – t – tt)

(
att + at,

+ a(tt + tt) + at + att
)]

(det T)–,

HXnYn = HXnYn (, , )

=
[
(t + tt – tt)

(
att + at

+ a(tt + tt) + at + att
)]

(det T)–,

FXnZn = FXnZn (, , )

=
[
–(t + tt – tt)

(
att + a(t + t)
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+ a(tt + tt) + a(t + t) + a + att
)]

(det T)–,

GXnZn = GXnZn (, , )

=
[
(t + tt – t – tt)

(
att + a(t + t)

+ a(tt + tt) + a(t + t) + a + att
)]

(det T)–,

FYnZn = FYnZn (, , )

=
[
–(t + tt – tt)

(
att + at

+ a(tt + tt) + at + att
)]

(det T)–,

GYnZn = GYnZn (, , )

=
[
(t + tt – t – tt)

(
att + at

+ a(tt + tt) + at + att
)]

(det T)–,

FXnXnXn = FXnXnXn (, , )

=
[
–(t + tt – tt)

(
bt

 + bt
 + bt

t + bt

+ btt
 + ct + ct

 + ctt + c + ct


)]
(det T)–,

GXnXnXn = GXnXnXn (, , )

=
[
(t + tt – t – tt)

(
bt

 + bt
 + bt

t + bt

+ btt
 + ct + ct

 + ctt + c + ct


)]
(det T)–,

FYnYnYn = FYnYnYn (, , )

=
[
–(t + tt – tt)

(
bt

 + bt
t

+ btt
 + ct


)]

(det T)–,

GYnYnYn = GYnYnYn (, , )

=
[
(t + tt – t – tt)

(
bt



+ bt
t + btt

 + ct


)]
(det T)–,

FXnXnYn = FXnXnYn (, , )

=
{

–(t + tt – tt)
[
bt

t + btt

+ b
(
t
t + ttt

)
+ bt + b

(
tt

 + ttt
)

+ ct
 + ctt + c(tt + tt) + ct

t
]}

(det T)–,

GXnXnYn = GXnXnYn (, , )

=
{

(t + tt – t – tt)
[
bt

t + btt

+ b
(
t
t + ttt

)
+ bt + b

(
tt

 + ttt
)

+ ct
 + ctt + c(tt + tt) + ct

t
]}

(det T)–,

FXnYnYn = FXnYnYn (, , )

=
{

–(t + tt – tt)
[
btt

 + bt


+ b
(
t
t + ttt

)
+ b

(
tt

 + ttt
)
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+ ct
 + ctt + ctt


]}

(det T)–,

GXnYnYn = GXnYnYn (, , )

=
{

(t + tt – t – tt)
[
btt

 + bt


+ b
(
t
t + ttt

)
+ b

(
tt

 + ttt
)

+ ct
 + ctt + ctt


]}

(det T)–.

In order for the system to undergo the Hopf bifurcation of model (), we let

g =



[
FXnXn + FYnYn + i(GXnXn + GYnYn )

]
,

g =



[
FXnXn – FYnYn – GXnYn + i(GXnXn – GYnYn + FXnYn )

]
,

g =



[
FXnXn – FYnYn + GXnYn + i(GXnXn – GYnYn – FXnYn )

]
,

G =


[
FXnXnXn + FXnYnYn + GXnXnYn + GYnYnYn

+ i(GXnXnXn + GXnYnYn – FXnXnYn – FYnYnYn )
]
,

h =



(HXnXn + HYnYn ),

h =



(HXnXn – HYnYn – iHXnYn ),

G =


[
FXnZn + GYnZn + i(GXnZn – FYnZn )

]
,

G =


[
FXnZn – GYnZn + i(FYnZn + GXnZn )

]
,

w =
h

b
, w =

h

b + iβ
,

g = G + (wG + wG).

Further, we let

c() =
i

β

(

gg – |g| –


|g|

)

+



g

and

μ = –
Re(c())
Re(wh∗ )

, β =  Re
(
c()

)
.

Now by the Hopf theorem of [] we can obtain the main result of this section.

Theorem  If conditions (), () hold and μ �= , then model () undergoes a Hopf bifurca-
tion at equilibrium E∗(S∗, I∗, R∗) when the parameter h∗∗ changes in a small neighborhood
of the origin. The direction of the Hopf bifurcation of model () is determined by the sign
of μ: if μ >  (μ < ), then the Hopf bifurcation is supercritical (subcritical) and the
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bifurcating periodic solutions exist for h > h∗ (h < h∗). β determines the stability of the bi-
furcating periodic solutions: the bifurcating periodic solutions are stable (unstable) if β < 
(β > ).

Remark  In [], the authors carried out numerical simulations to obtain a Hopf bifurca-
tion. On the contrary, in this paper, we use the bifurcation theorem to prove the existence,
stability, and direction of the Hopf bifurcation of a three-dimensional discrete-time SIRS
epidemic model. The main results in this paper also solve the open problem in [].

Remark  In [–, –], the authors only considered a two-dimensional discrete-
time epidemic model. As is well known, the diseases are spreading in different populations,
such as susceptible individuals S, infective individuals I , and recovered individuals R. For
better understanding the pathogenesis and the spread of the disease process, a higher-
dimensional epidemic model should be studied. Therefore, in this paper, we study the
Hopf bifurcation and flip bifurcation of a three-dimensional discrete-time SIRS epidemic
model, which is more realistic for the spread of the disease process.

4 Numerical simulation
In this section, six examples are provided to illustrate our theoretical results in Theorem .
In Examples  and , the time step size h is selected as the bifurcation parameter. The first
one shows the Hopf bifurcation diagrams and the corresponding phase portraits of model
() to confirm the above theoretical analysis, and it indicates new interesting complex
dynamical behaviors. In the third section we have not proven the existence of the flip
bifurcation of model (). Therefore, the second example is about the flip bifurcation of
model (), which is only obtained by using numerical simulations. The adequate contact
rate λ and the death rate d have a significant role to play in the disease spreading in model
(). Hence, λ and d also are chosen as the bifurcation parameter in Examples - to detect
the bifurcation and chaos behaviors.

Example  We choose A = ., d = ., d = ., d = ., λ = ., γ = ., σ = .,
h ∈ [., .], and the initial values (S, I, R) = (, ., .). By computing we obtain the
basic reproductive rate � = 

 > , E∗(S∗, I∗, R∗) = (., ., .). When h∗ =
., we obtain � = . > , which implies that the Jacobian matrix J(E∗) has three
eigenvalues, w = ., w, = α ± βi = –. ± .i with |w,| = . Further, by
simple computing, we obtain k = . and

α = –. �= –



, β = . �= ±
√




,
(
α – β) – αβ = . �= .

Then conditions (), () hold and μ = .× – �= , which indicates that there exists
a Hopf bifurcation of model (). Since β = –. and μ = . × –, the Hopf
bifurcation is stable and supercritical (see Figures -).

Figures - show that the endemic equilibrium E∗(., ., .) of model ()
is stable for h < ., and it loses its stability when h = .; moreover, when h >
. there appear complex dynamical behaviors. For example, when the time step size
h changes from . to . there appear period- orbits, and when the step size h
increases continuously there appear chaos and period- orbits, which can be found in the
phase portraits.
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Figure 1 Hopf bifurcation of S-h model (2) with
h ∈ [2.8, 3.2].

Figure 2 Hopf bifurcation of I-h model (2) with
h ∈ [2.8, 3.2].

Figure 3 Hopf bifurcation of R-h model (2) with
h ∈ [2.8, 3.2].

The phase portraits (Figures -) of the bifurcation diagrams (Figures -) provide de-
tailed information about the dynamical behaviors changing from a stable equilibrium to
Hopf bifurcation, chaos, and then more complex dynamical behaviors. Figure  shows
when h = . < ., then the endemic equilibrium E∗(., ., .) has lo-
cal stability. Following the increase of h there exists a stable periodical solution, that is, the
Hopf bifurcation which can be seen in Figure . When h continues becoming bigger the
stable invariant circle is broken slowly and there appear more than one periodical attrac-
tors from Figures -. The period- orbits and period- orbits can be found in Figures 
and , respectively. Furthermore, there exist more complex dynamical behaviors when h
is much bigger as in Figure .
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Figure 4 h = 2.86.

Figure 5 h = 2.9.

Figure 6 h = 3.138.

Figure 7 h = 3.15.
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Figure 8 h = 3.155.

Figure 9 h = 3.179.

Figure 10 h = 3.183.

Figure 11 h = 3.2.



Hu et al. Advances in Difference Equations  (2016) 2016:155 Page 15 of 22

In the following examples, we only provide the bifurcations diagrams.

Example  We choose A = , d = ., d = ., d = ., λ = ., γ = ., σ = .,
h ∈ [, .], and the initial values (S, I, R) = (, , ). By computing we obtain the
basic reproductive rate � = 

 > , E∗(S∗, I∗, R∗) = (., ., .). From the
flip bifurcation diagrams (see Figures -), there exists a critical value of h, and here we
denote it by h∗. When h∗ = ., we compute that � = –. <  and the three real
eigenvalues of the Jacobian matrix J(E∗) are w = –, w = ., and w = ..

Figures - show that the endemic equilibrium E∗(., ., .) of
model () is stable for h < h∗ = . and loses its stability when h = h∗ = .. The flip
bifurcation and chaotic behaviors appear when h > h∗. In detail, the period- orbits ap-

Figure 12 Flip bifurcation of S-h model (2) with
h ∈ [4, 5.2].

Figure 13 Flip bifurcation of I-h model (2) with
h ∈ [4, 5.2].

Figure 14 Flip bifurcation of R-h model (2) with
h ∈ [4, 5.2].
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pear when h is approximatively changing in (., .]; the period- orbits appear when
h goes from . to ., and following the increase of h, model () undergoes period-,
-, and quasi-periodic orbits, and chaos sets in ultimately.

Example  We choose h = ., A = ., d = ., d = ., d = ., γ = ., σ = .,
λ ∈ [., ), and the initial values (S, I, R) = (, ., .). By computing we obtain the ba-
sic reproductive rate � = λ

 . From λ ∈ [., ), then we have � = λ
 > . Therefore,

there exists an endemic equilibrium E∗(S∗, I∗, R∗), which is a function of λ. Figure  illus-
trates that when the disease contact rate λ is smaller than the critical value λ∗ ≈ . the
equilibrium values of S are locally stable. It is increasing for In and Rn when λ ∈ [.,λ∗]

Figure 15 Hopf bifurcation of S-λ model (2) with
λ ∈ [0.5, 1).

Figure 16 Hopf bifurcation of I-λ model (2) with
λ ∈ [0.5, 1).

Figure 17 Hopf bifurcation of R-λ model (2) with
λ ∈ [0.5, 1).
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(see Figures  and ). Finally, there appears a Hopf bifurcation for Sn, In, and Rn when λ

is bigger than λ∗ (see Figures -).

Example  We choose h = ., A = ., d = ., d = ., d = ., γ = .,
σ = ., λ ∈ [., ), and the initial values (S, I, R) = (, , ). By computing we ob-
tain the basic reproductive rate � = λ

 . Since λ ∈ [., ), then we have � = λ
 > . As

in Example , the endemic equilibrium E∗(S∗, I∗, R∗) exists and is a function of λ. From Fig-
ures -, we see that the equilibrium values of S, I , and R, which are locally stable when
λ is smaller than the critical value λ∗ ≈ . (see Figures -). When λ is bigger than
λ∗ ≈ . there appears a flip bifurcation, and model () undergoes chaotic behaviors
with the continuous increasing of λ.

Figure 18 Flip bifurcation of S-λ model (2) with
λ ∈ [0.2, 1).

Figure 19 Flip bifurcation of I-λ model (2) with
λ ∈ [0.2, 1).

Figure 20 Flip bifurcation of R-λ model (2) with
λ ∈ [0.2, 1).
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Example  We choose h = ., A = ., d = ., d = ., λ = ., γ = ., σ = .,
d ∈ [., .), and the initial values (S, I, R) = (, ., .). By computing we obtain
the basic reproductive rate � = 

d+ . From d ∈ [., .), we have � > . There-
fore, there exists an endemic equilibrium E∗(S∗, I∗, R∗), which is a function of d. From
Figures -, we see that when d ≈ . there appears a Hopf bifurcation for Sn, In,
and Rn. When d is bigger than . the Hopf bifurcation disappears and the endemic
equilibrium E∗(S∗, I∗, R∗) is local stable. But the value change of the three species is differ-
ent following the changing of d. Particularly, when d is becoming bigger than . the
equilibrium values of S, which are locally stable (see Figure ). Since d is the death rate
of In, it is certain that In is decreasing following the increasing of d and this results in the
decreasing of Rn (see Figures  and ).

Figure 21 Hopf bifurcation of S-d2 model (2)
with d2 ∈ [0.05, 0.5).

Figure 22 Hopf bifurcation of I-d2 model (2)
with d2 ∈ [0.05, 0.5).

Figure 23 Hopf bifurcation of R-d2 model (2)
with d2 ∈ [0.05, 0.5).
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Example  We choose h = ., A = , d = ., d = ., λ = ., γ = ., σ = .,
d ∈ [., .], and the initial values (S, I, R) = (, , ). By computing we obtain
the basic reproductive rate � = 

d+ . One can also obtain � = 
d+ >  from d ∈

[., .]. Therefore, there exists an endemic equilibrium E∗(S∗, I∗, R∗), which is a func-
tion of d. Figures - show that model () undergoes chaos and flip bifurcation when
the death rate d of the infective individuals In varies from . to .. Particularly, when
d varies from . to the critical value d∗

 ≈ . there appear chaotic behaviors and a
flip bifurcation. When d is bigger than d∗

 the equilibrium values of S, I , and R, which are
locally stable (see Figures  and ).

Figure 24 Flip bifurcation of S-d2 model (2) with
d2 ∈ [0.15, 0.5].

Figure 25 Flip bifurcation of I-d2 model (2) with
d2 ∈ [0.15, 0.5].

Figure 26 Flip bifurcation of R-d2 model (2) with
d2 ∈ [0.15, 0.5].
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Remark  Example  shows when the parameters satisfy the conditions in Theorem  for
model () there will appear a Hopf bifurcation from the endemic equilibrium E∗(S∗, I∗, R∗)
(see Figures -). In addition, the flip bifurcation also appears in Example  when the step
parameter h is changing at the neighborhood of h∗ (see Figures -). Furthermore, these
results indicate that chaos dynamical behaviors of model () can be obtained according to
the paths of the flip bifurcation and the Hopf bifurcation when the step size h is changed,
and we should control the disease transmitting between the different individuals Sn, In,
and Rn.

Remark  The results in Examples - make it clear that not only the step parameter h
but also the adequate contact rate λ and the death rate d for the individuals In can cause
bifurcation behaviors and chaos behaviors for model (). Controlling the key parameters in
the epidemic model has an important role to play in the disease controlling process, such
as the adequate contact rate and the death rate. These results are similar to the results
in [].

5 Discussion and conclusion
The bifurcation analysis of a three-dimensional discrete SIRS epidemic model with stan-
dard incidence rate is discussed in this paper. The existence, stability, and bifurcation di-
rection of the Hopf bifurcation are obtained in Theorem  by the normal form theorem
and bifurcation theory. Further, numerical simulations are used to illustrate our theory
results, and some interesting dynamical behaviors (flip bifurcation, Hopf bifurcation, and
chaos) of model () are also obtained when some key parameters are chosen as the bifur-
cation parameters (see Figures -).

For analyzing the Hopf bifurcation, we choose the time step parameter h as the bifurca-
tion parameter, and the existence and direction of the Hopf bifurcation of model () are
proved by the normal form theorem and bifurcation theory in Theorem . Particularly, if
the time step parameter h is sufficient big, then when the basic reproductive rate � > 
and parameters (A, d, d, d, h,λ,γ ,σ ) satisfy case (I) in condition () of Theorem  in
[] model () there appears a Hopf bifurcation and chaotic attractors (see Figures -),
which implied that the susceptible and infective individuals can coexist in a stable period
cycle. Most important is that from the bifurcation figures we can control the parameters
(A, d, d, d, h,λ,γ ,σ ) to control the disease when the step parameter h is smaller than
the bifurcation values h∗. In addition, when the step parameter h changes, flip bifurcation
diagrams appear in Example  by the numerical simulations (see Figures -). These
figures show that there exists a flip bifurcation, which also can result in chaotic behaviors
in model (). This result enriches the dynamical behaviors for model ().

It is well known that the adequate contact rate λ and the death rate d for the individu-
als In have a key role to play in the disease transmission. We choose λ as the bifurcation
parameters and select some suitable values for the other parameters (A, d, d, d, h,γ ,σ )
and initial values for S, I, R, then there exist a Hopf bifurcation and a flip bifurcation
for model (), which can be seen from Example  and Example  (see Figures - and
Figures -). Eventually, there appear chaos dynamical behaviors. And the same results
also exist when the death rate d is chosen as the bifurcation parameter in Examples 
and  (see Figures - and Figures -). These results indicate that the key parame-
ters in the epidemic model will affect the dynamical behaviors significantly, such as the flip
bifurcation, the Hopf bifurcation, and chaos, which corresponds with the results in [].
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For comparing with previous work [–, –], one only considered the dynamical
behaviors for the two-dimensional discrete-time epidemic model. There are few studies
of the bifurcation analysis of the three-dimensional discrete-time epidemic model. Since
the diseases spread in different populations, such as susceptible individuals S, infective
individuals I , and recovered individuals R, the recovered individuals R can also become
susceptible individuals S, such as in the case of the flue disease. For better understanding
the pathogenesis and the spread of the disease process, a higher-dimensional epidemic
model should be studied, especially, for the bifurcation and chaos dynamical behaviors
studies. Our main results provide important information for the disease control when the
disease transmission appears to show complex dynamical behaviors.

However, the disease has a relation with the initial values because Hopf bifurcation and
flip bifurcation are local bifurcations. If we obtain the global bifurcation, then the disease
has no relation with the initial values. There are still some interesting open problems:
whether we can prove the existence of the flip bifurcation, and whether we can find an
effective way to prove the global stability of model (), such as by constructing Lyapunov
function. In addition, the Hopf bifurcation is a type codimension-one bifurcation, that is,
the bifurcation results by one bifurcation parameter. In [, ], the authors discussed
the codimension-two bifurcation, which is controlled by two bifurcation parameters. For
model (), one addressed whether there exists a codimension-two bifurcation with the
eigenvalues w = ±i, –±√

i
 when two bifurcation parameters are changed. Moreover, other

discretization methods (such as the backward Euler method, the nonstandard finite dif-
ference scheme) can be used on model () to obtain the corresponding discrete model.
For the new discrete model, one may ask whether there exist bifurcation and chaos. These
issues will be discussed in the future.

Some real data from a known epidemic disease to illustrate the validity of our theo-
retical results also should be considered in our future work, such as how to predict the
occurrence and the controlling of disease, and in which way complex behaviors (including
bifurcations, chaos, and strange attractors) have impact on the dynamics of disease.
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