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1 Introduction
In the past years, several authors have described various methods to solve triple integral
equations especially of the form

/OOA(u)K(u,x) du=f(x), O<x<a,

0

/Oo ww)AW)K (u,x)du =g(x), a<x<b,
0

/OOA(u)K(u,x) du=h(x), b<x<oo,
0

where w(u) is the weight function, K(u, x) is the kernel function (see for example [1-10]).

Some mixed boundary value problems of the mathematical theory of elasticity are solved
by reducing them to multiple integral equations. For example, the axisymmetric problem
of a torsion of an elastic space, weakened by a conical crack, under the assumption that
on the boundaries of the crack, the tangential displacements of the shear stress are pre-
scribed, is solved by the application of dual integral equations (see [11]). Harmonic shear
oscillations of a rigid stamp with a plane base coupled to an elastic half-space were stud-
ied in [12] and reduced to dual integral equations. For more applications see [13, 14]. This
type of equations can be solved by a Fredholm integral equation of the second kind by us-
ing the modified Hankel transform operator and the Erdélyi-Kober fractional integration
operator.
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In this paper, we consider triple g-integral equation where the kernel is the third Jackson
q-Bessel function and the g-integral is a Jackson g-integral. It is worth mentioning that
different approaches for solving a dual g-integral equation are in [15]. Also, solutions for
dual and triple sequence involving g-orthogonal polynomials are in [16].

The paper is organized in the following manner. The next section includes the main no-
tations and some results we need in our investigations. In Section 3, we solve the triple
q-integral equations by reducing the system to two simultaneous Fredholm g-integral
equation of the second kind, we shall use a method due to Singh et al. [7]. The approach
depends on fractional g-calculus. Furthermore, we will conclude the solutions of two dual
q-integral equations to be special cases of the solution of the triple g-integral equation,
and we show that this coincides with the results in [15]. In the last section, we use a result
from [15] for a solution of dual g2-integral equations to solve triple ¢*-integral equations.
The result of this section is a g-analog of the results introduced by Cooke in [2].

2 g-Notations and results
Throughout this paper, we will assume that g is a positive number less than one and
we follow Gasper and Rahman [17] for the definitions of the g-shifted factorial, multi-
ple g-shifted factorials, basic hypergeometric series, Jackson g-integrals, the g-gamma,
and beta functions. We also follow Annaby and Mansour [18] for the definition of the
g-derivative at zero.

Fort>0,let A, Bys, and R, . be the sets defined by

Agpi= {tq”:neNo}, B, := {tq‘":neN},

Ryt = {tqk ke Z},

where Ny :={0,1,2,...}, and N := {1,2,...}. Notice, if £ = 1 we write A;, B;, and R, ., and
we define the following spaces:

Lgy(Rgs) = {fﬁ f llgn I=/O ‘t"f(t)’ dgt < oo},
1
Lgy(Ag):= {f I llag.n :=/0 |e" (2)| dgt < oo},

Lgn(By) := {fﬁ f 5, :=/1 ’t"f(t)| dgt < oo},

where n e Cand L, ,(R;,.) = Ly n(Ag) N Ly, (By).
Koornwinder and Swarttouw [19] introduced the following inverse pair of g-Hankel in-
tegral transforms under the side condition f,g € Lg(Rq,+):

a0 = /O S @ (w ) ds f(x) = /0 2O, (s ) dh, 2.1)

where AL, x e Ry ..
Now we recall some definitions and results which will be needed in the sequel. Let « € C,
the g-binomial coefficient is defined by

a L k=0,
k], 7| g et g o,

(@D
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The third Jackson g-Bessel function ]53)(2; q), see [20] and [21], is defined by

( ) (3)( ) (qv+1;q)oo i( ) qn(n+1)/222n+v c ( )
hzq) =17 (zq) = ——— -)y'——, zeC, 2.2
@D “= (@ D@+ @)

and it satisfies the following relations (see [22]):

1-v, —v
D[ (54)]@) = - I _Zq Joi(az:4%), (2.3)
D[()'(54°)](2) = lz_vq].;_l (z:4°). (2.4)

Also, for %(v) > -1, the g-Bessel function J, (-; ¢?) satisfies (see [19])
(_q2;q2)oo(_q2v+2;q2)oo qnv’ ne NO;

(qZ;qZ)oo qnz—(wrl)n, neN. (25)

(@d5q%)| <

The functions cos(z; g) and sin(z; g) are defined by

@) 1 .
cos(z;q) := W(Zq 2(1-q)) I (20 - 9)/ Vg 4%),
2, 2 .
sin(z; q) := %(z(l - q)) 7]% (z(l - q);q2), zeC.

We need the following results from [18].

Proposition 2.1 Let o, B € C, p,t € Ry.. Then, for R(B) > R(x) > -1,

/ e (§64°)p(07) dot

0

0) E > IO’
_ _2\1-B+a 9
e — qp)(qlz(j’gfa) £ p P2 PE 0% ) poamrs € <.

Proposition 2.2 Let v and a be complex numbers such that R(v) > —1. Then, for p,u €
R

q,t?

o 1-g)T
/ M D‘_”u_o’q“]v_a(up/q;qz).
P

e (pz/xz; qz)a—ljv (s q2) dgx = (1- )

Proposition 2.3 Let x, v, and y be complex numbers and u € Ry, .. Then, for R(y) > -1
and R(v) > -1, the following identity holds:

/0 p””(quz/xz;qz)y]v(M,O;qz) dgp

="M 1 -q)(1-4°) Ty + Do (un; 4°). (2.6)
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Moreover, if R(y) > 0 and R(v) > -1, then
/ pzy_v_l(x2/pz;q2)yflfu (u,o;qz)dq,o

—v, - (q2§q2)oo (Mx 2)
= (1 L g (2 2). 2.7
wouTl-ae @)\ g 27

The following are consequences of the above results.

Lemma 2.4 Let x, u, and « be complex numbers such that u € R, ., ®(a) > -1, and R(v) >
—1. Then

U Jyo (ux:q7)

Q-4 .. -2 /x 1.2 2,2 2 2
=——=" x*"p_, o vt ; up;q”)d,p |. 2.8
qu(l_a)x ax| ¥ | P (@°p*1x%q%)_Jo(up;q°) dgp (2.8)

Proof Applying (2.6) with y = —«, we have

/(; p "N 0?15 q%)_Jo(upiq”) dgp
xv+a+1 oa— 1(1 q)(l q ) r 2(1 _a)]v_a+1(ux; qz) (29)

—2a

Multiplying both sides of equation (2.9) by x™**, and then calculating the g-derivative of

the two sides with respect to x and using (2.4), we get the required result. O
Similarly, by using (2.9) we obtain the following result.

Lemma 2.5 Let x, u, and o be complex numbers such that u € Ry ., R(a) > 0, and R(v) >
—1. Then

U ysa (th; qz)
(1 _ q2 aq2a+v—2xoz+v—l [ed]

) —2a-v+1(,2/ .2, 2 )
Ta0-a) Dqx P **10%:4°)_Jo(upiq®) dgp. (2.10)

We end this section by introducing some g-fractional operators that we use in solving
the triple g-integral equations under consideration. The technique of using fractional op-
erators in solving dual and triple integral equations is not new. See for example [15, 23, 24].

A g-analog of the Riemann-Liouville fractional integral operator is introduced in [25]
by Al-Salam through

)= f (@15 Porf O gty @ & [-1,-2,...).

q()

In [26], Agarwal defined the g-fractional derivative to be

D=0 = s [t o0,
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Also, we have (see [18], Lemma 4.17)

o-1

o Ty _ 1-o X
I;DYf (%) =f(x) - I f(O)m, O<ac<l. (2.11)
In [25], Al-Salam defined a two parameter g-fractional operator by

g7"x"
Fq () Jx

K ¢(x) = @/t @)1t P(tg" ) dyt,

a #-1,-2,.... This is a g-analog of the Erdélyi and Sneddon fractional operator, cf. [27,
28],

K™ f(x) =

F’z;) / T e e de.

In [15], the authors introduced a slight modification of the operator K;**. This operator is
denoted by K and defined by

~1 511
g0 = T [T tia),ar i otan do (212)
q
where @ # —1,-2,.... In case of n = —a, we set

o —a o ala=1)/2 -—a,o
Kof ) = q*x°q Ko f (%)

q—(x(a—l)/Z

= W xoo ta_l (.X‘/t, q)a—lf(qt) dqt. (2.13)

Note that this operator satisfies the following semigroup identity:
IC;Ing)(x) = K;‘*ﬁ¢>(x) for all « and 8. (2.14)

The proof of (2.14) is completely similar to the proof of Theorem 5.13 in [18] and is omit-
ted.

Lemma2.6 Leta € C,x € B, If ® € Lyo1(By) and G(x) = Dq,xngCD(x), then

O(x) = —q“IIC}I“GG).

Proof According to (2.13), we have

q—a(a—l)/Z %) .
G(x)= ——D,, 7 (x/t;q) 1P (gqt) dt
Fq(a) 1 x Dat 8 B
q—a(a—l)/Z o0
_ —[ [ Oustattdren) viat) gt -5 q)a_@(qx)}. (215)
yle) Lk
Note that

(=g

Dq,x(x/t§ Q)rx—l = H1— q)

1
———(gx/t;q)a—2 = - —[o = 1](gx/t; q)a—2
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and

f a0 dyt - f g0 dyt + (1 ().
q x

Hence,
q—ot(oc—l)/Z oo
Gx) = ——————[a-1] [ / £ (qxlt; @2 P(qt) dygt —x* (g5 q)a_1<1>(qx)]
Fq(a) x
q—ot(oz—l)/Z 00 )
= [a-1] t* % (qxlt; @) P(qt) d it
I, (@) " qxit; q)a—2PgL) aq
q—a(u—l)/Z o0 ) . (@-1)
. S T Qoo ®(qt) d,t = —g" K@D d(gx).
) |, @ a0t = g K 0l
This implies
(a-1) _ a-1
K@) = —q" Gx/q).
Using (2.14), we obtain the result and completes the proof. d

3 Asystem of triple g-integral equations
The goal of this section is to solve the following triple g-integral equations:

/o V@) (up;q*) dgu=filp),  p € Agas G
/o w2y @1+ w) o (upsq*) dgu =f(p) € Agp N Bya 32
/o Y (@), (up; ¢*) dgu = f5(p), P € By, (3:3)

where 0 <a < b < 00, and &, v are complex numbers satisfying
RWw)>-1 and O0<NR(x)<1.

¥ is an unknown function to be determined, f; (i = 1,2, 3) are known functions, and w is a
non-negative bounded function defined on R ..

Clearly from (2.5), a sufficient condition for the convergence of the g-integrals on the
left-hand side of (3.1)-(3.2) is that

1# € Lq,v (Rq,+) N Lq,v72a (Rq,+)~ (3.4)

For getting the solution of the triple g-integral equations (3.1)-(3.3), we define a function
Cby

C(u) := u’z"‘l/f(u)[l + w(u)], uekR,,.

This implies

V() = 02 Clat) - u2°'c<u>[ W) ]
1+ w(u)
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and the triple g-integral equations (3.1)-(3.3) can be represented as

foouz"‘C(u) V(o) dgu - /Oooumc(u)[ ) ]]v(up;qz) dqu

0 1+ w(u)

=f1(:0): pE Aq,m (3.5)

/0 C), (up;q*) dgu =fo(p), o € Agp N Bya, (3.6)
o W) .
/0 u*Cu) u(up;qz) dgu — /0 “W—M’f(muz C(w)], (u,o;qz) dqu

=f3(0), P € Byp. (3.7)

Since equation (3.6) is linear in C, we may assume that C := C; + C; and
fh=gi+g, onAg,NB,,
where g; defined on A, and g, defined on B, ,. Therefore,
oo
f Cw))y (up;q°) dgu =g (p),  p € Agp,
0
/ C], (up;q*) dgu = g2(p),  p € Bya.
0
So, the triple g-integral equations (3.5)-(3.7) can be rewritten in the following form:

/0 u* [Cl(u) + Cz(u)]]v (u,o; qz) dyu

o w(u) L2
_‘/0 u [Cl(u) + Cz(u)] m]\; (I/l,O,q )dqu
:fl (/0)’ pE Aq,a» (3.8)
fo Culw)u (403 q?) dgit = 21(0), € Agas (3.9)
/o Co(w)], (up; q°) dgu = g2(p),  p € Bya, (3.10)

/ u2ot [Cl(u) + Cz(u)]]v (I/[,O; qZ) dq"‘
0

o0 ( ) .,
_/(; 1 j_l/:(u) s [Cl(u) + Cz(u)]]u (M,O;qz) dqu
:fs(,O): pE qub' -

Proposition 3.1 Let v, ¥, be the functions defined by
wl (x) = f u® Cl(u)]v—a (ux; qz) dqur X € Bq,b: (3'12)
0

V() :=/ u® Co(W)]yra (4 @°) dgut, % € Agas (3.13)
0
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provided that 0 < R(a) <1, R(v) > -1, R + @) >0, and C, € Ly, (R,.), Co € Ly (Ry4)
where

RW) + 2> R(E) > -NROW) +2R(1 - ).

Then, for u € R, ,, we have

b 00
Ci(u) = u™ [/ x®1(%)])— (ux; qz) dgx + f xYr1 (%)) - (ux; qz) dqx:|, (3.14)
0 b
CZ(u) = ul—a |:/ xl//Z (x)]vwz (th; q2) dqx + / xq)Z(x)]w-a (ux; 612) dqx]’ (315)
0 a
where
1 -g?)x*t T vil( 2 2,2, 2
®y(x) = WDW [x /0 a)p" @ p*Ix%q%)_, dqp}
= (1-¢%)"* 77105 ("0 (W) @), x €Ay, (3.16)
(1 _ )a 2a+v—2xoz+v—1 00 oy

a(l

=—q (1 q )a atv— 1D IC (1~ a)[ ,)—v/2g2(\/f)]<%>, x€ By, (317)

Proof We start with proving (3.16). Let x € A,,. Multiplying both sides of (3.9) by
x72p (g% 02 /x%; ¢%)_o and then integrating with respect to p from 0 to x, we get

x o0
/ a2 I ), / Ci@)(up; q*) dqudyp
0 0
= / o™ p" N p* /0% q%)_, dyp. (3.18)
0
Notice that the double g-integral on the left-hand side of (3.18) is absolutely convergent

for 0 < () < 1 and for i(v) > —1 provided that C; € L,,(R,,+). So, we can interchange the
order of the g-integrations to obtain

/ Cl(u)x'z‘*/ p’ <q§ ,q> Jo(up;q*) dgp dygu
0 0

/ ai(p)x > p"*! <q ';) iq )_ dgp. (3.19)

By calculating the g-derivative of the two sides of (3.19) with respect to x and using (2.8),
we get

/000 u*Cr(u)]—o (ux; qz) dgu=®(x), x€Ayp, (3.20)
where

(1_ 2)01 o=l —2a v+
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To prove (3.17), let x € B,,,. Multiplying both sides of (3.10) by p=2*""*(x*/p?; 4*)_, and
g-integrating with respect to p from x to co, we get

/ P (&%), / Co()]y(up; q°) dgudgp
x 0

- [ @) d. (321)
From (2.5), we can prove that '/, (1;4*) is bounded on R, , provided that R(z + v) > -1.
So, if we take ¢ such that R(v) + 2 > R(£) > —NR(v) + 2N(1 — ), we can prove that the double
q-integral

/ pl2ey (xz/,oz;qz)_a/ Cow)], (up; °) dqudyp
. 0

is absolutely convergent and then we can interchange the order of the g-integration to
obtain

oo o0
/ Co(w) / P2 (6?0 q%)_ Jo (up; @) dgp dgu
0 x
oo
— / gz(p)p—Za—v+1(x2/p2;qZ)_a dqp. (322)
X

Calculating the g-derivative of the two sides of (3.22) with respect to x and using (2.10)

yields
oo
/ u* Co()] o (ux:4°) dgtt = P2 (x),  x € By, (3.23)
0
where
(l_qZ)aq2a+v—2xa+v—l 00 Loe 0, 9 o
P =— D oy ; d,p.
2() r(—w) we | &0l (*/0%q%)_, dqp

By the above argument, if we assume that ¥, and v, are given by (3.12) and (3.13), then

OO o L2 _ d’l(x)’ xEAq,by
fo W Cy (u) v_a(ux,q)dqx—i h(s), weBis (3.24)

and

¢2(x)’ X € Bq,a;

(3.25)
Yo(x), x €Ay

/m u” Co()] e (43 4°) dgx = {
0

Hence, (3.14) and (3.15) follow by applying the inverse pair of g-Hankel transforms (2.1)
on (3.24) and (3.25). This completes the proof. O

Remark 3.2 From the definitions of v; and ¢;, i = 1,2, in Proposition 3.1, one can verify
that x™~*¢, is a bounded function in B, and x™~*v, is bounded in A, ,. Also, x™"*“¢, is
bounded in A, and x™"**¥; is bounded in B .
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Proposition 3.3 For p € By, V1(p) satisfies the Fredholm q-integral equation of the form

—202—q+v

1 / 2y () Ki(p,x) dgx, (3.26)

V(o) = Fi(p) + A= J,

where

1(1(,0,96) = ‘/(; L(u)]v—ot (Mx; qz)]v—a (M,O; qz) dqbt,

1+ w(u)
5 q—2a2—a+v a o0 u ) )
F =F - T Jvta 3 V- 5 dsud 4
) =E0) - S [an0) [ s e ia?)
and
202 —a+v 2\—a 00
o4 1+q1-q°) / 20-v-1 2,2, 2
Fi(p) = p"™ v ; d
(o) =p 1-gPT, ) : VU (qx) (0% 1455 47),_y dgx
q—Zaz—aJrv

(e v 2 s
- (1-¢2 [./; dex)/O 1+ w(u)jvm(ux’q Voo (93 4°) dqudyx

b oo
+ f x®; (%) f o) /v_a(ux;qz)]u_a(up;qz)dqudqx].
0 0

1+ w(u)

Proof Equation (3.11) can be written in the following form:

| Cn i) dyu=6lo), e By (327)
0
where
> 20 1 2
G(p) :fs(P)—/o u CZ(u)Tw(u)]‘)(umq )dqu
o (u)
+/0 u® Cl(u)“wiulf(m],}(up;qz) dgu. (3.28)

By using equations (2.3) and (3.27), we get
G(p) =-(1-q)p"'q" ' Dypp'™ / W* W] (upq ™ ) dgu. (3.29)
0
Substituting the value of C(u) from (3.14) into (3.29), we obtain

o) b [es)
Dq,ppl_" / u” [/ x®1(%)])—o (ux; q2) dgx + / xyr (%) — (ux; qz) dqx]
0 0 b

g G(p)

g PC By (3.30)

< Joa(upq s q”) dgu = -
From (2.5), there exists M > 0 such that

Voo (ux;4%)| < M(ux)™™ forall u,x € Ry,
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Hence, from Remark 3.2, the double g-integration is absolutely convergent and we can

interchange the order of the g-integrations to obtain

b o0
G(p) = -(1-q)p"'q""! [ / x®1(x) dyx + / xr (x) dqx]
0 b
X Dy,pp'™ / U], (uoq 5 4%)) oo (ux4%) dgu,  p € By (331)
0

Therefore, applying Proposition 2.1 with R(v — «) > R(v — 1) > -1 we obtain

(-9 -¢»)"

G(p) = Col-a) p”_qu,p/ xl_"_al//l(x)(pz/xZ;qz)_a dgx. (3.32)

P

By using

/x ft)dyt= o7 /x i ﬂT{)dqzt, Dy (f(07)) = p(L+ @) (D2f)(p%)s (3.33)

we obtain

—(v+a)

_(1- 2 1— 2\ 0
_ MPUDqZ,/ﬂ /2 X 2 wl(\/;)(pz/x;qz)iadqzx
p

Glo) = qu(l - )

= (1= (1= ) ¢ > p" (DKL ()72 1 ))) (0*14P).

Replacing p by gp yields

_q—a2+a (1 _ qZ)*Ot(l _ q)—2 [()_V/ZG(q\/_)] (,02)
= D 2 K (V) (VD] () (3.34)

Thus, applying Proposition 3.3 yields

P Yn(p) = (1= g2 (1 - ) “KS[() " Glgv )] (0*14?)

202 —a+v 2\—a -2 e8]
_4q -4 )*(1-q) / -+l 2 /0 2
= @) g x 277 GgVx) (0° 1% q°),,_ dpx.

Using [5 f(0)dpt=(1+q) [~ tf(£*) dyt, we obtain

q—2a2—a+v(1 _ qZ)—u(l +q)
1-9)°T p()

P*"Y(p) = f 2 G(ga) (0P Ix% ), .
P

From (3.28), we can write the last equation in the following form:

q—Zaz—aw(l _ q2)—oz
(- gPT, @

(o] MZa )
X / ——Cy(u)], (qux;q )dqu
0

1+ w(u)

V-o

Yi(p) + p ;1 +4) f R VST
P
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o0 ) y
_/0 - ff/:{(u) u> Cl(u)]v(qux;qz) dqu] dgx

b q—2a2—a+v(1 _q2)—a(1 + q)
1-q)*Tp()

=p
o0
X / 7 (qx) (02 1x%54%),,_ dg%, P € By (3.35)
o
From the condition on the function C,, we can prove that the double g-integration

* damveif 2,2, 2 > u 2
/p y20v- (p %% q )0“1/0 Cz(u)m]l,(qux;q )dqudqx

is absolutely convergent. Therefore, we can interchange the order of the g-integrations

and use Proposition 2.2 to obtain

—202—a+v o0 o
vile)+ q(l -q)? |:./o 1 +uW(u) Co()]s-a (up3 4°) dyu

_/ u*w(u) G, (up;qz) dqu]
0

1+ w(u)

e q—ZaZ—aﬂ)(l _qZ)—a(l + q)
1-q)*Tp()

=p
x/ x24TV 1f(qx)(,o Ix%;q )a 19q% P € Byp. (3.36)
o

Substituting the value of C;(x) and Cy(u) from equations (3.15) and (3.14) into equation
(3.36), and then interchanging the order of the g-integrations we get

1/f [/ 1/’2( ) / ]v+oz (ux’ )]v—a (Mp;q2) dql/l dqx
< uw(u) . o
- /h xwl(x)/(; 1+ w(u)]"_a (%:4°) - (u,O,q ) dq"‘dqx]
= Fl(p), pE Bq,b! (337)
where

_ VUt q\)74ot (1 + q)(l - qz)ia x Za —v-1

Flp) = o g | e ), de
v—do 00 0
- (lq— )2 |:/ x@z(x)/ LI—LW(M)]W-Q (ux; q2)]v—ot (MP;qZ) dqu dqx

+ /0 x®y(x) f uw(u) ]u_a(ux, )Ju_a(up;qz)dqudqx}

Equation (3.37) is nothing else but the Fredholm g-integral equation of the second kind
(3.26). This completes the proof. d

Proposition 3.4 For p € A, q, Y2(p) satisfies the Fredholm q-integral equation of the form

- 1 a
(0) = Fap) + = /0 XK (0 22 () d g, (338)
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where

_ © uw(u) . )
I<2(/07x) = /0 1+ W(u)]th (Mxvq )]v+a (Mp,q )dqbl;
- 1 o0 o0

Fy(p) = Fa(p) - i /b xl/fl(x)/o #W(u)]v_a(ux; ) vra (403 q°) dgu dyx,

and

F(p) =

A=) %A +qp*>2 [* .
(1 _q)ZF z(a) ‘/0 (q2x2/02;q2)a_1x 1 l(x) dqx
q

1 0 %) MW(M) ., .,
+(1—q)2/a x%(x)/o Lo iy o (50 Vosa (43 6°) dguedgx

u

1 b o© , ,
- (1 _q)Z /0 xq)l(x)/o Tw(u)]v—a (ux:q )]V+Ot (M,O,q )dqlxl dqx.

Proof The proof is similar to the proof of Proposition 3.3 and is omitted. g

Theorem 3.5 The solution of (3.1)-(3.2) is given by

2u

(1) = ———(C1(w) + Cyw)).

1+ w(u)

The functions Cy, Cy, ¢1, and ¢ are given by Proposition 3.1, and yry, vV, satisfies the Fred-
holm q-integral equations (3.38) and (3.26) of second kind.

Example 1 1. Take b = ag™™ and assume that m — oco. If we assume that f; = f, f, = f, and
w = 0. Then the system (3.1)-(3.3) is reduced to the dual g-integral equations

fo Vo (405 ) dgie =F(0), € Agar (3:39)
/00 w2y w), (u,o;qz) du=0, peBy,. (3.40)

0

Hence, from Theorem 3.5,

V() = ul*® fo Yo () vra (uxs q°) dgx,  u € Ry,

B R A C o v+l
Va(p) = (=0T (@ /0 (@°%*10%q°), %" f (x) dyx
e A=),
- D ) ().
Hence,

_ 2\« 00
Y () = % fo KL (D) () v (35 47) g,

This coincides with the result in [15], Theorem 4.1, for solutions of double g-integral equa-
tions.
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2. Let a = g™ and assume that m — oco. If we assume that f; = 0, and f; = f, we obtain

the dual g-integral system of equations

/ w2y W), (u,o;qz) du=0, peAy (3.41)
0
o0
/ )], (up;q*) dgu=f, p€Byp. (3.42)
0
Hence, from Theorem 3.5,
¥ (u) = u'* / w1 () oo (ux:q°) dgx,  u € Ry,
b
(1 _qZ)—aq—2upa+v /oo 0,9 o S
__ : a—v d.x.
¥ni(p) - ), (P*15% ), ¥ (%) dyge
This is a special case of Theorem 5.1 in [15].
Example 2 We consider the triple g-integral equations
o0
/ vWo(up;q*)dgu=0, peAya (3.43)
0
o0
/ uw i (u)o (u,o;qz) dgu=1, p€AyNBya, (3.44)
0
/ V(o (up;q*) dgu=0, p€Byp. (3.45)
0
Hence, we have v=0,g1=1,8,=0,fi=f3=0,w=0,and o = %
From Theorem 3.5,
¥ (u) = u(Ci(u) + Cr(w)),
where
(1-g)(1 - %) Sin(25;9)
C
1) = I%(112) u
,/1 q> xu/q
d )
T T,072) / Vi) COS(1 g 1 )%
=T 1/2 / Vbl Sm( -q 2) o
1 a
Vol +4) X372 Yol®) dgx, p € By, (3.46)

hip) = q(L-q)T2(1/2) Jo qp* —x*

_ 1+q)p oox/_l/ﬁ(x
valp) = - 1- q)F22(1/2)/ qx2 — p2 g%

N (1 + q)3/2 /b dqx ' (3‘47)
aY% 1- qF22 (1/2) plq qu - 102
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We used [19], pp.455-466 or Proposition 2.4 of [15] to calculate ¥; and v, in equations
(3.46) and (3.47), respectively. Substituting from (3.46) into (3.47), we obtain the second

order Fredholm g-integral equation

__aPl+a) / Sy (Koo £1d
¥a(o) (1—q)21";2(1/2) ; Y (6)Ka(p, £) dyt
(1+9)*" bodux
+W§2(1/2) p/p/qm’ (3.48)

where p € A, , and

o x
Ky(p,t) = dt.
2(0:1) /b (2 — gx)(p* —qx?) 1

4 Solving system of triple g*-integral equations by using solutions of dual
g-integral equations
In [2], Cooke solved certain triple integral equations involving Bessel functions by using a

result for Noble [29] for solutions for dual integral equations with Bessel functions as ker-
nel. In this section, we use the result, Theorem A, introduced in [15] to solve the following

triple g-integral equations:

e [ oo (Vob ) dpo =f©), € chp, (1)
£ fo PV (o). (VP& d ) dpp=gE), §€ApNBp, (4.2)
s—ﬁ/(; P_ﬁl//(,O)/'v(\/E;ﬂf) dqu :h(f), E EBqZ’ (43)

where 4, «, B, ¥, i1, v, and k are complex numbers such that
R) > -1, R(w) > -1, Rk)>-1, and O<ac<l,
the functions f(p), g(p), and /(p) are known functions, and ¥ (u) is the solution function

to be determined.
The following is a result from [15] that we shall use to solve the system (4.1)-(4.3).

Theorem A Let o, B, i, and v be complex numbers and let ) := %(u +v) —(x—pB)>-1.
Assume that

NRw) > -1, N(w) > -1, RA)>-1, and RO -p-2a)>0.

Letf e Lpw.g (Ap) and g € qu,%m_l(qu). Then the dual q*-integral equations

= /0 oYV o) dpp =fE), EcAp, (4.4)

£F /0 P (o) (VoE: ) dpp =g€), &e€Bp, (4.5)
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has a solution of the form

1

w(f) _ (1_ )A V420 - 2‘%_)»/2 wi2+a ]A u/2+a)L uf(p)d 2p
0
00
A—v=2
n (1 _ q2 V- )»/2 w/2+a ]A 242 v/2-B,v— Ag(p) dqu,

in qu,%_a Rp )N LqZ,%,ﬁ(qu‘,r) N quy%,ﬂ,y (Ry2,,), for y satisfying

1+ RW)>N(y) > maX{O,ER(v - A)}.

Now we shall solve the system of triple g*-integral equations (4.1)-(4.3). Since the func-

tion g(p) is only defined in A > N B2, we can write

g&) =@ (&) + (&),

& and g, defined in A2 and B2, respectively. So, we may assume that
Y=A;+ Ay,

and we solve the equations in the form

& / Y[A0) + A Vi (VP ) dppp =€), E€Ap, (4.6)
- /0 AV (VOE ) dpp =), EcAp, (47)
e | T A (VB ) dpp =0®), & € By, (4.8)
£F /0 N P [Av(p) + As(0))y (V0&:4*) dipp = (&), & € Bp. (4.9)

We rewrite the equations as two pairs of dual g-integral equations, namely

£ fo P AoV (V08 q Ydpp=g(), EcAp, (10)
S ﬁf 1% ﬁAl \/_ q d 2/) h( _fl(‘i:)r é" Equ, )
£ fo p AV (VPE ) dpp = 22(8), & €Bp, @
E7 [ p 7 AoV (VPE P dgp = f(E) - F(E), E€Ap, '

where

é‘V/ P APV (V&) dpp =fiE), E€Ap,

0

£ /0 Ay (o) (08 ) dpp =folE), €€ B,
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Then we can solve the first and second pairs by Theorem A. For the first pairs

1
Ai(g) = (1-g?) T g e /0 L& @)L (o) dgap

+ (1 _qZ)A—v—ZsA/2—u/2+a/I A (\/E’ qZ)IC;éZ—v/Z—ﬂ,v—A [h(,o) _fZ(,O)] dqu,

where A := %(p, +v)—(x-p8)>-1.
The solution of the second pair has the form

Ar(§) = (1-q") T g ]0 B P& )™ [f(0) = filo)] dgzp

q

+ (l_qZ)l—M—Zglﬂ—K/Zﬂ// ])\(\/E;qZ)K:MZ—/J,/Z—a,;L—AgZ(p) dqu,

q2
a

where A := %(u +Kk)=(y—a)>-1.
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