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1 Introduction

It is well known that there are many species whose individual members have a life history
that takes them through an immature stage and a mature stage. Based on this fact, stage-
structured predator-prey systems have been investigated by many authors in recent years
[1-8].In [5], Xu considered the global stability and permanence of a predator-prey system
with a stage structure for the predator:

dx(t) 2 ayx(t)ys(t)
Tdr rx(t) ax (t) i+mx(2t) ’

an() _ M nyi(t) — Dyi(t), W

Tdt 1+mx(t—1)

D)~ Dy, () - rays(2),

where x(£) represents the density of the prey at time ¢. y;(£) and y,(£) represent the densities
of the immature predator and the mature predator at time ¢, respectively. In [7], Li and Li
investigated the Hopf bifurcation problem of a predator-prey system with stage structure

for the prey:
10 = gy () — ryxa(£) — by (8),
dxz = bx1(2) — raxa () — blxz(t) M, (2)

1+mx2(t)
dy_() _ azx%(t—t)y(t—t)

dt "~ 1+mx%(t—r)

- ry(?),

where x;(¢) and x,(t) represent the densities of the immature prey and the mature prey at
time ¢, respectively. y(¢) represents the density of the predator at time ¢.
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Obviously, all the above researchers consider predator-prey systems with stage structure
only for the predator or the prey. Since both predator and prey have a life history that
takes them through an immature stage and a mature stage, it is reasonable to consider
the predator-prey system with a stage structure for both the predator and the prey. Based
on this consideration, Wang and Feng [9] proposed a predator-prey system with a stage
structure for both the predator and the prey:

dx) (8)

dt
dxo

= rx%y(t) — i (£) — dix (2),
= na(t) — dyxa(t) - axy () - TE2ED,

t)

4 dt ( 1+mxy (t) (3)
¢ £ya(t

0 - ﬂiiimc)g(zt()_) —roy(t) — dsy (t),

dya ()

2= = rayi(t) — daya(2),

where x;(¢) and x,(¢) represent the densities of the immature prey and the mature prey at
time ¢, respectively. y;(£) and y,(¢) represent the densities of the immature predator and
the mature predator at time ¢, respectively. « is the intra-specific competition rate among
the mature prey; a; is the predation rate of the mature predator; a, is the conversion factor
from the mature prey to the immature predator; di, da, ds, and d, are the death rates of
the immature prey, mature prey, immature predator, and mature predator, respectively.
r1 (ry) is the transformation rate from the immature prey (predator) to the mature prey
(predator). r is the birth rate of the immature prey and m is the half saturation rate of the
mature predator. Wang and Feng [9] studied the local and global stability of system (3).

As is well known, it is necessary to incorporate time delay into dynamical systems in
order to reflect the dynamics of the systems depending on the past history of the sys-
tems. Dynamical systems with time delay have been investigated by many authors [10—
13]. Ferrara et al. [10] investigated the properties of the Hopf bifurcation of a delayed
continuous-time growth model with a special mound-shaped production function. Bianca
et al. [12] studied the existence and properties of Hopf bifurcations in a delayed-energy-
based model of capital accumulation. There are also some dynamical systems with two
or multiple delays that have been studied by some scholars [14—21]. In [14], Bianca et al.
studied the Hopf bifurcation of an economic growth model with two delays. In [16], Cui
and Yan investigated a three-species Lotka-Volterra food chain system with two delays
by taking the sum of the two delays as the bifurcation parameter and showed the effects
of the two delays on the dynamical behaviors of the system. In [17], Meng et al. consid-
ered a two-competitor, one-prey system with two feedback delays and they investigated
the Hopf bifurcation problem by choosing the possible combination of the two delays as
the bifurcation parameter. They also discussed the direction of the Hopf bifurcation and
stability of the bifurcating periodic solutions by using a center manifold theorem and the
normal form method. To the best of our knowledge, there are few papers on the effect of
time delays on system (3). Based on this and motivated by the work above, in the present
paper, we incorporate the feedback delay of the mature prey and the time delay due to the
gestation of the mature predator into system (3) and investigate the Hopf bifurcation of
the following delayed system:

=1 (t) — rixi (8) — dixi (8),
2L = () — daxa () — axy (£)x2(t — 1) — M,

1) _ avnalt-rnlt-) el (4)
t t— -

ol _ emleinon) ) ),

dyr(t)

=5 =rn(t) — daya(2),
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where 17 is the feedback delay of the mature prey and t; is the time delay due to the ges-
tation of the mature predator.

This paper is organized as follows. In Section 2, we discuss the local stability of the
positive equilibrium and the existence of local Hopf bifurcation of system (4). In Section 3,
the properties of the Hopf bifurcation such as the direction and stability are determined by
using the normal form method and center manifold theorem. Some numerical simulations
are performed to illustrate the theoretical results in Section 4. In Section 5, we derive some

concluding remarks concerning the whole analysis.

2 Local stability of positive equilibrium and existence of Hopf bifurcation

ﬂd4 (r2 +d3 )
arro—mda(ro+ds)’ then system (4)

rr
rn +d1

has a unique positive equilibrium E*(x}, x5, y5,y5), where

It is easy to show that if ayry > mdy(ry + d3) and >dy+

oo rx; oo da(rs + ds3)
1 r+ dl’ 2 aslry — Wld4(7'2 + dg)’
. days . L+ mxy)(nxg — doxy — a(x3)?)
= ’ Yo = * .
ry ar1xy

Let %1 () = x1(£) — &7, %2(£) = %2(¢) — &3, y1.(¢) = y1(¢) = 37, y2(¢) = y2(¢) — y3. Dropping the
bars for convenience, system (4) gets the following form:

—di}t(t) = anx1(t) + anxa(t),
d
xjt(t) = a1 (£) + axnxa () + azay2(8) + bynxa (t — 1) + fo,

d

yd;t(t) = azyi(t) + cxa(t — T2) + c3a)a(t — 1) + 5,
d
y%t(t) = ag3yi () + asay(t),

where
K
a1y,
k
an =—(dy + ), ap =r, a =1r1, as = —dy - aXo = T3
1+ mx3)
£ 3
ar1xy
ay =——— asz = —(dz + 1), as3 =77, a4q = —da,
1+ mx;
* *
ay, axXy
*
by = —axj, €32 = T C3gp=T——
1+ mx3) 1+ mx;
and

fo = arsx3(t) + azexa(£)y2(t) + azzxa ()2 (¢ — T1)
+ Axgx3 ()2 () + anox3 () + -+,
fz= a34x§(t —Tg) + azs®a(t — T2)y2(t — 72)

+ azexs(t — 1)y (t—T) + azpxy(t — ) + o+,

with

k
maiy, a
aze = dy7 = —a,

- A+ mx3)3’ 1+ mxs)?’
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may m?ay;
g = —— = apg = ————
(1 + mx3)3’ (1 + mx3)*’
g mayy; 4 as
34 = -7 5= 5
A+ mx3)3’ A + mx})?’
. may . m*ayy;
36=—7—— 3 37= -
(1 + mx3)3’ (1 + mxb)*

The linearized system of (5) is

% = anxi(t) + anxa(t),

% = anx1(t) + axnxy(t) + axy(t) + bnxx(t — 1), )
d

yd;t(t) = az3y1(t) + c3xa(t — T2) + 3492 (¢ — T2),

dys (t)

75— = aazyi(t) + asays (2).

The characteristic equation of system (6) at the positive equilibrium E* is of the form

A+ A3)® + Aod® + Aih + Ag + (B3A® + ByA? + By + Bo)e ™

+(CoA? + Cia+ Co)e ™™ + Dy + Dp)e M1+%) =, (7)
where

Ag = (anar — ana )asda,

Ay = (apan — anaxn)(ass + ass) — azzass(an + az),

Ay = anay + azdau — ands + (an + az)(ass + daa),

Az =—(an + ax + ass + daa),

By = anazzaaabso, By = —(anass + andaa + aszass)bay,
By = (au + ass + asa)by, B3 = —by,

Co = (a12a21 — A11422)A43C34 + A11A24@43C32,

C1 = agzczalan + asy) — adascss, Cy = —asscsq,

Dy = —anaszbyrcsa, D1 = aszbyicsy.
Case 1. 71 = 15 = 0. Equation (7) becomes
M+ Ad3 + ApA? + Apd + Ay =0, (8)
where

AIO =A0 +Bo +C0 +D0,
An =A1 +Bl+C1 +D1,

A12 =A2 +B2 + Cz, A13 =A3 +Bg.
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a1y
(1+mx2§)2
(8) have negative real parts if the condition (H;): (9) is satisfied. We have

Obviously, det; = A13 =dy +dy + ds + da + 11 + 13 + 2ax5 + > 0. Thus, all roots of

Az 1 0
Az 1
det2 = >0, detg = All AIZ A13 > O,
An Ap
0 Ayp An
Az 1 0 0 ©)
A A A 1
det, = [0 Az A S 0.
0 Ayp An Ap
0 0 0 Ap

Thus, the positive equilibrium of system (4) without delay is locally asymptotically stable
under the condition (H;): (9) holds.
Case2.1>0,17,=0.
When 1, = 0, (7) becomes
)\,4 +A23)»3 +A22)\.2 +A21)\. +A20 + (Bzg)ug + Bgz)\z + Bm)u + Bzo)e_AT] =0, (10)

where

Azp = Ag + Co, Ay =A1+Cy, Az =Ax + Gy, Azz = As,

Bj3 = Bs, By, = By, By =B + Dy, Byo =By + Dy.
Let A = iw; (w; > 0) be a root of (10). Then

3\ 2 2 4

(Baiwr — Byzwy) sinw 7y + (Byg — Bagwi) cos i Ty = Agywi — o) — Ago,
3 2\ o 3

(Baiwr — Bazwy) cos w1 Ty — (Byo — Baywy) sinwi 1y = Agsw; — Aoy,

from which it follows that
coi3 + 6236()16 + ezzwf + ezla)f + ey =0, (11)

where

ey = A2y — B3y, exn = A3 — B3, — 2A50A2 + 2ByBn,

ey = Ay — By + 2420 — 241 As3 + 2By1Bos,  ex3 = A3 — Biy — 240,
Let w? = vy, then (11) becomes

vf + eggvi’ + ezzvf + eV + e =0. (12)
Discussion of the roots of (12) is similar to that in [22]. Denote

4 3 2
filve) =] + ex3vy + exaVy + exivy + ex. (13)
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Clearly, if ep9 < 0, then (12) has at least one positive root. From (13), one can get

fl(n1) = 4V3 + 3ex3V? + 2ep) + €91
Set

41/? + 36231/% +2exv1 +e91 = 0. (14)
Lety; =v; + 3‘%. Then (14) becomes

yi+pn+q1=0,

where
en 3, €3  enen
== — —e¢5,, = = — + é721.
P1=ry " 16 13" Tg T
Define

wo (1) (), g TLE
1—2 3r 1= 2 )

J’11=\3/—%+\/071+ 3—%—\/077

y12:\3/—%+\/071ﬂ1+ 3—%—«/01_1,312,

yo= -2 g+ -1 g

3e
V1i=)’1i—%, i:1)2¢3-

Then we have the following results according to the Lemma 2.2 in [22].

Lemmal For (12),
(i) ifexo > 0 and o > 0, then (12) has positive roots if and only if vi; > 0 and fi(vy1) < 0;
(ii) ifexo = 0 and oy <0, then (12) has positive roots if and only if there exists at least one

Vix € {V11, V12, Vi3}, such that vi, > 0 and fi(v1.) < 0.

In what follows, we assume that we have (Hy;): the coefficients in fi(v;) satisfy one of
the following conditions in («)-(y): (@) ez < 0; (8) €0 > 0, @1 > 0, v41 > 0, and f;(v11) < 0;
(¥) e20 = 0, 1 < 0, and there exists at least one vy, € {v11, 12,13}, such that vi, > 0 and
Silvi) 0.

If the condition (Hy;) holds, (11) has at least one positive root wjo such that (10) has a
pair of purely imaginary roots +iw;o and the corresponding critical value of the delay is

1
Tik = — arccos
w10

(A20Bas + A22Bog _AZIBZI)CU%O —AyBy } 2km

{ (Baa —A23323)w160 + (A21Ba3 + Ag3By — A2 By — Bzo)wfo
(Bao — Baawiy)? + (Baiwio — Bazwiy)?

+ ) k=0,1,2,....

(B2 — Baawiy)? + (Baiwio — Bazwiy)? w10
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Differentiating the two sides of (10), we can get

di -1 4)\3 + 3A23)»2 + 2A22)\. + A21 3823)\2 + 2822)\. + le Tl

—| =- + -—.

dTl }\.()\4 + A23)\3 + A22)\‘2 + Aﬂ)u + Ago) }\(323)\3 + Bgz)\‘z + le)\ + BZO) A
Thus,

Re[ ] A0
el — = ,
du |, (B — Bynw})? + (Byiwig — Bazwiy)?

where v} = w}). Obviously, if the condition (Hx,): f{(v}) # 0 holds, then Re[;—i‘l];llzrw 0.
In conclusion, we have the following results according to the Hopf bifurcation theorem in
[23].

Theorem 1 Suppose that the conditions (Hy)-(Hay) hold. The positive equilibrium
E*(x}, 5,95, y3) of system (4) is asymptotically stable for 7, € [0, t0) and system (4) un-

dergoes a Hopf bifurcation at E*(x},x3,7,ys) when 11 = 1.

Case 3. 75>0,7=0.

Substitute 7; = 0 into (7) and we have
)\.4 +Ag3)\.3 +A32)\2 +A31)\, +A30 + (B?,z)\.z + Bgl)\ + Bgo)e—M2 = O, (15)
where

A3zp = Ag + By, Az =A; + By, Azy = Ay + By,

Asz = A3 + B3, B3y =Gy, B3 =Ci + Dy, Bs3g = Co + Dyq.

Let A = iwy (wy > 0) be the root of (15). Then

2N o 3
B3y cos wy Ty — (B3g — Bawj) sinwy Ty = Azzw; — Az,

H 2 2 4
{Bglwz SIN wy Ty + (Bgo - Bgza)z) COSwy Ty = A32w2 — Wy —Ag(),
from which it follows that
8 6 4
Wy t €33, + €33, + €317 + €30 = O, (16)

where

es0 = A3y — B3y, es1 = A3 — By — 2A30A3; + 2B30Bs),

e =A%, — B3, + 2430 — 2431433,  e33 =A% — 243,
Let w3 = 1,, then (16) becomes

vg + 6331/3 + 6321/% +e31Vy +e39 = 0. 17)
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Define
falvy) = vg + 8331/3 + 6321/% + e31Vy + e3g.
Then
fove) = 41/3 + 36331’% +2esV) + e31.
Set
41/3 + 36331/% +2e3Vy +e31 = 0. (18)
Lety, =vp + 3%. Then (18) becomes

Y3 +P2y2+q2 =0,

where
—eﬁ—iez —§—632633+e
2= T ey BTy T e
Define

a—22+&3 ﬁ_—1+«/§i
2= 2 3 ) 2 = 9 ’

2 2
y21=\3/—%+\/a_2+ 3—%—@7

yo = -2 v ity L - Jmaf,

Y23 = \3/—% + B3+ —% - JazBa,

Vo = yai— 221,23,
4

According to Lemma 1, we can conclude that if we may consider the condition (Hsz):
the coefficients in f,(v,) satisfy one of the following conditions in (¢’)-(y'): (&) ez < O;
(B') €30 >0, a0 >, v21 > 0, and fo(va1) < 0; (') e30 > 0, @2 < 0, and there exists at least one
Vax € {Va1, Va2, Va3}, such that vo, > 0 and fo(v2,) < 0.

If the condition (Hs;) holds, (16) has at least one positive root w,o such that (15) has a
pair of purely imaginary roots +iw, and the corresponding critical value of the delay is

1
Ty = —— arccos
w20

(A30B3y + A32B30 — A31Bs1)w3y — AsoBso } 2km

{Bswao + (A33B31 — A32B3; — B3g)wyg
B%la’%o +(Bso - B32w%0)2

+ ) k:0,1,2,....
w70

+
2 2 2
B30y + (B3o — B3awi )

Similar as in Case 2, if the condition (Hzp): f5(v5) # 0 holds, where v} = 3, then
Re[ % # 0. In conclusion, we have the following results according to the Hopf bifur-

_]*1
dry 1T2=T20
cation theorem in [23].
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Theorem 2 Suppose that the conditions (Hs1)-(Hsp) hold. The positive equilibrium
E*(x}, %5, 95, y%) of system (4) is asymptotically stable for T, € [0, To) and system (4) un-
dergoes a Hopf bifurcation at E*E*(x},x3,y3,y5) when 13 = Ty.

Case4.11=17=1>0.

Substitute 7; = 75 = T into (7); then (7) becomes

)\,4 + A43)\.3 + A42)\2 + A41)\, + A40 + (343)\,3 + B42)\2 + B41)\ + B40)€_kr

+ (C41)» + C40)372M: = 0, (19)
where

Ao = Ao, Ay =Ay, Ay = Ay, Az = As,
Byo =By + Cy, By =B+ (, By =By + Gy,

Bys = Bs, Ca0 = Do, Cu =D1.
Multiplying (19) by €*7, then (19) becomes

B43)\3 + B42)\.2 + B41)\ + B40 + ()\4 +A43)\3 +A42)\,2 +A41)\. +A40)6AT

+ (C41)\ + C40)3_AT =0. (20)
Let A = iw (w > 0) be the root of (20), then

(a)4 —A42a)2 + A40 + C4,0) COSTw + (A43w3 —A41a) + C416()) sintw = B42a)2 - B40,

(w4 —A42a)2 + A4,0 - C40) sintw — (A436L)3 —A41w - C41a)) COSTw = 3430)3 - B41a),
from which it follows that

G707+ g50° + G303 + o

sin(tw) =
w® + h6a)6 + ]’14(,()4 + hga)2 + l’l() ’
6 4 2
g6a) +g46() +g2a) +g()
cos(tw) = S 3 y > ,
w +h5w +h4a) +h20) +l’lo
where

80 = (Ca0 — A40)Bao, &1 = (Aq + Ca1)Byo — (Ago + Cao),

&2 = AgoBaz + A4z By + By Cax — AaaBag — BaaCao,

83 = A40Ba3 + AgaBur + By3Cao — Aa1Bao — AasBao — BaaCa,

g4 =Aq By + A4zBy — AgaBay — Ba3Cay — By,

g5 = Aa3Baz — AgnBas — By, 86 = Bap — Ag3Bas, g7 = Bas,
ho =A%, - Cipy  hp=Af - Cy —2A40Am,

hy =A%, +2A40 - 2AnAs, e =Al; —2Amn.
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Then we can obtain

10

@' + 7™ + eae™ + 4z + e4a® + es30® + esy0? + @’ + €40 = 0, (21)

where

eso =2 -g2, ear = 2hohy — 28082 — g1

ear = h3 — g5 + 2hohs — 2183 — 2g0gs»

eas = 2hohs + 2hyhs — &5 — 26086 — 26185 — 28284
eas = hj + 2ho + 2hahe — g5 — 28187 — 29286 — 28385,
eqs = 2hy + 2hahs — g2 — 28385 — 28186,

2 2 2
€46 = h6 -84t 2h4 - 2g5g7, €47 = 2h6 -4
Let w?® = v, then (21) becomes
W+ e47v7 + 6461/6 + 3451/5 + 3441/4 + e431/3 + 3421/2 +eqV+ey=0. (22)

If the coefficients of system (4) are given, the roots of (22) can be obtained by the Matlab
software package. Therefore, we make the following assumption in order to get the main
results in this paper.

Suppose that (Hy): (22) has at least one positive root.

If the condition (Hy4;) holds, without loss of generality, we assume that (22) has eight
positive roots which are denoted by vy, vy, ..., vg, respectively. Then (21) has eight positive
roots wi = \/Vi, k =1,2,...,8. For every wy, the corresponding critical value of the time
delay is

1 6w} + Zaw} + HOF + Qo 2jm

r,ij)z—arccos 5 A 7 > +—, k=1,2,3,...,8=0,1,2,....
Wi wy + hewp + hywy + hpwy + o @i

Let
To = min{r,io)}, k=1,2,...,8,wp = Wklrery-

Thus, when t = 79, (20) has a pair of purely imaginary roots iw.
Differentiating both sides of (20) with respect to 7, we get

- Z

dx - _ (4)\3 + 3A43)\.2 + 2A42)\. +A41)€)"T + C41€7)”T + 3343)\.2 + 2B42)» + B41 T
- )\[()&4 +A43)\.3 +A42)\.2 +A41)\ +A40)€)‘T - (C41)L + C40)€_)“T] )\4‘

Then we have

’

R [d)u :|1 Py1Qa1 + Py Quo
el——| =
dr =19 Qu + Qi

where

Py = (A41 + C41 - 3A43(1)(2)) COS Towgy — (2A426!)() - 4(1)(3)) sin Towo — 3843(0% + By,
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P42 = (A41 — C4,1 — 3A43w§) sin Towo + (21442&)0 — 4(()(3)) COS Towo + 2342&)0,
4 2 2 5 3 :
Qu = (Aszwg — Anwy — Cuwg) cos Towo — (w5 — Aaawy + Asowo + Caowo) sin Towy,

Q42 = (A436()g —A416()(2) + C41a)%) sin Towo + (a)g —A42(1)8 +A40a)0 - C40a)0) COS Tpwo.

Obviously, if the condition (Haz): Pa1 Qa1 + PazQaz # 0 holds, then Re[j—i]‘1 #0. Thus,

=10

according to the Hopf bifurcation theorem in [23], we have the following results.

Theorem 3 Suppose that the conditions (Hy1)-(Hgp) hold. The positive equilibrium
E*(x},%5,95,y3) of system (4) is asymptotically stable for v, € [0, 1) and system (4) un-
dergoes a Hopf bifurcation at E*(x{,x3,y},y3) when t = 1.

Case 5. 75 > 0 and 7; € (0, 719). We consider (7) with 7; in its stable interval and 1, is
considered as a parameter.
Let A = iw), () > 0) be the root of (7). Then we get

:Asl sin o), + Asp €08 Taw)y = Asg,

A51 COoS tga)é - A52 sin ‘L’z(,()/Z = A54,
where

As) = Ciw)y — Do sin 1)y + Dyw)y c0s Ty ),
Asy =Coy—Cy (a)/z)2 + Do cos ywy + Dywy sin 7o),
Ass = (Ba(})” = Bo) cos i) + ((a))” = Biwp) sinrye) — (a))* + As (})* - Ao,

Ass = (Bo = Ba(wp)") sin i) + ((@p)” = Bievp) cos 11y + As (@))” — Ay,
It follows that

e50(5) + e51(@)) cos 1) + €52 (@)) sin 1) = 0, (23)
where

eso(@p) = (@3)" + (43 + B — 240) ())°

+ (A2 + B2 - C2 +240 - 2A1A3 — 2B, B3) (})"

+ (A2 + B} - C? = D} = 2A0A; — 2BoB; + 2Co Gy ()

+A} + By - C5 - Dy,
e51()) = 2(A3B5 — By)(})° + 2(A3B, + By — AsB — A1B3)(})"*

+2(A1B; — AgBy — AyBy — CiD; + sz)o)(w;)2 +2(AgBo — CoDy),
es2(h) = —2Bs(}) +2(A3B5 — A3B, + By) (o))’

+2(A3By + A1 By — AgBs — AyBy + CyDy) ()’

+ Z(AoBl —AlBo + Cqu — C()Dl)a);<
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Suppose that we have (Hs;): (23) has at least finite positive roots. We denote the positive
roots of (23) as w},, ws,, ..., wy,. Then, for every fixed wj; (i = 1,2,..., k), the corresponding

critical value of time delay is

o1 As51Asq + A5y Ass 2
Ty, = —ACCOS) ————————| 4+ =,
2i Az + Agy wy=wy,; Wy;

withi=1,2,...,k;=0,1,2,....
Let 3, = min{tz(?)'ﬁ =1,2,...,k}. When 1, = 13, (7) has a pair of purely imaginary roots

+iw} for 1 € (0, 11p). Differentiating (7) with respect to 7,, one can obtain

’

A 77 o) + pi(M)e T + py(M)e2 + ps(R)e M)
do,| QM) + gy (A)e"172)

with
po(r) =423 + 34307 + 24,5 + Ay,
pl()") = —‘L'lBg)»S + (333 — TlBQ))\,Z + (232 — 'L’IBI))» + Bl — 'L’lBo,

PZ()\) = 2C2)\- + Cl; P3()\) = Dlr
ql()») = Cz)»g + Cl)»z + Co)\,, QQ()\,) = l)l)\,2 + Do)\.

Hence,
Re[d—)\]_l _ _P51Q5 — P5yQsp
dT2 T=15, le + QEZ ’
where

Ps; = (2Cy0} — Dy sin Ty} sin tjyw3 + (Cy + Dy cos Tws ) cos Thyw3
+(nBs (w;‘)3 + (2B, — 1 By)w}) sin Ty}
+((nB, - 333)(a);‘)2 + By — 11By) cos 1w} — 3A3 (w;‘)z +A;,

Ps; = (2G5 — Dy sinyws) cos 5ws — (Cy + Dy cos Tws) sin 13,0}
+(mBs (a);‘)3 + (2B, — 11 B1)w}) cos T}
- ((r132 - 333)(60;‘)2 +B; - nBo) sinw; — 4(w;‘)3 + 24,035,

Qs = (G (a);‘)3 - Cowy — Dy (w§)2 sin ryw; — Dow} cos T1w} ) sin Tjw;
+(G (a);)2 +Dy (a);‘)2 cos 1w} — Dows sin 13 ) cos Ty w3,

Qs2 = (Ca(@3)’ = Cows; — Dy (w)” sin yw} — Dow} cos 11w} cos T3 w}

-(G (a);‘)z +Dy (a);‘)2 cos 11w} — Dow} sin i} ) sin 7wy,
Obviously, if the condition (Hs;): P51 Qs1 # P52 Qs holds, then Re[j—g]i% # 0. Namely,

if the condition (Hs;) holds, the transversality condition is satisfied. Thus, according to
the Hopf bifurcation theorem in [23], we have the following results.
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Theorem 4 If the conditions (Hs;)-(Hsy) hold and 1, € (0, 1), then the positive equilib-
rium E*(x}, x5, y5,y5) of system (4) is asymptotically stable for v, € [0, 13,) and system (4)

undergoes a Hopf bifurcation at E*(x},x3,¥},y3) when t, = 3.

3 Stability of bifurcating periodic solutions

In this section, we shall derive the explicit formulas determining the direction and stability
of the bifurcating periodic solutions with respect to 7, for 7; € (0, 119). Throughout this
section, we assume that 7y, < ), where 71, € (0, 719).

Let 1o = p + 139, w1 (2) = x1(2) — %7, uz(t) = x2(8) — &3, us(¢) = y1(2) - y1, ua(t) = y2(2) - 5,
and rescale the time delay t — (¢/7;), then system (4) can be rewritten as

u(t) = Lyuy + F(u, uy), (24)

where

Ly = (130 + 1) (A/¢(0) +B'¢ (—%) * C'¢(—1)>

20
and
F(u,¢) = (t50 + 1) (0, F3, F3,0),
with

$(0) = (¢1(6), $2(6), ¢3(6), $4(0))" € C(I-1,0], R*),

an an 0 0 0 0 0 O
A = az a4 0 azg , B = 0 b22 0 0 ’
0 0 as3 0 0 0 0 0
0 0 as3  Aqa 0 0 0 0
0O 0 0 O
P O
0 C32 0 C34 ’
0O 0 0 O

Fy = as5$3(0) + a26$(0)$4(0) + a2762(0) 2 <_%>

20
+a2805(0)94(0) + azoh3(0) + - -+,

Fs = azady (-1) + azs o (=1)pa(~1) + azedy (~1)pa(-1) + az;¢5 (=1) + - - - .

Therefore, according to the Riesz representation theorem, there exists a 4 x 4 matrix

function n(8, i) : [-1,0] — R* whose elements are of bounded variation such that

0
Lo [ 06, 100), € C(1-1,0L ).



Liu Advances in Difference Equations (2015) 2015:208 Page 14 of 26

In fact, we choose

(th+m)A +B +C"), 6

(to + W)B + ), 0

77(9, M) = % ,

(t5o + C, 0
0

0,
For ¢ € C([-1,0],R*), we define

d9(6) 1<8<0
A = do ’ — ’
e {f_ol dn(6, w)e®), 6=0,

and

0, -1<6<0,

R(u)¢p = {F(M,¢), 0o

Then system (24) can be transformed into the following operator equation:
u(t) = A()us + R()uy, (25)
where u; = u(t +0) = (1 (t + 0), ux(t + 0), uz(t + 0),us(t + 0)) for 6 € [-1,0].
For ¢ € C}([0,1], (R*)*), where (R*)* is the 4-dimensional space of row vectors, we define

the adjoint operator A* of A:

—dﬁis), 0<s<1,
S dnT(s,009(-s), s=0,

A'(p) = {
and a bilinear inner product:

0 4
(0900 =5090)- [ [ 56 -0rn0p(6)d. (26)

where n(0) = n(6,0).

Let (@) = (1, 42,93, 94
value +iw; 75, and g*(s) = D(1, 45,43, 4})e

)Tei®2%0% be the eigenvectors of A(0) corresponding to the eigen-
3705 be the eigenvectors of A*(0) corresponding

to the eigenvalue —iw} 7. It is not difficult to verify that

ok

g lwy —dil g C3242 + C3444
2= ——) 3=
2k Lo T.
ar (iw3 — ags)e’2%20
. % N —iwiT;
(w3 — an)(iwy — azy — bape™27*) —apay
44 = )
a12a34
. % * iwa‘rg‘o
. lwy +dn « azdy + C34€
q; =~ ) qs = R
an lwy + Ay
. ik
7= (iwy + an)(az + bype'™2™) — anan
5=

R c k%
6121([(1); + ngelefZO)
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Figure 1 The track of the states x1, x2, y1, and y for 7y = 1.3500 < 1.3785 = T4¢.
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Figure 2 The phase plot of the states x3, y1, and y; for 77 = 1.3500 < 1.3785 = 74¢.

From (26), we choose

= —% — % — % —% _—iwiT * —x _—iwiT
D =1+ q2@5 + 4335 + qay + G2 (T1sb20a @572 ™ + T5ocsaqie2™0)

* —x _—iwit¥ 171
+ T30Caqagze 207,

such that (¢*,q) =1, (4%,9) = 0.

In the remainder of this section, we obtain the coefficients that can determine direction
of the Hopf bifurcation and stability of the bifurcating periodic solutions by using the
algorithms given in [23] and using the computation process which is similar to that in [14]:

_ 2 T1
&0 = 275,D [‘I; <0125 (4(2)(0)) +a269(0)g™ (0) + a274” (0)g® <_r_**)>
20

+ 38 (asa(g® (D) + ﬂssq(z)(—l)q(4)(—1))],
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Figure 3 The track of the states x1, x2, y1, and y for 7y = 1.3865 > 1.3785 = 14¢.
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Figure 4 The phase plot of the states x3, y1, and y; for 71 = 1.3865 > 1.3785 = 14¢.

gu= rz*ob[az (2azsq<2>(0)q<2>(0) + a26 (g% (0)7™(0) + 3 (0)4'(0))
_ T1x _ T1x —x -
+ a7 <q<2>(0)q<2> (—%) +7%(0)g? (—i))) + 3 (2a34q® (-1)g? (-1)
To0 o0
-M%M%AWWAH¢W4M%4m}
S, _ _ Tk
802 = 275,D |:% <ﬂ25 (q(z)(o)) + 42642 (0)7™(0) + a2,4* (0)g® (—TL*))
20

+3(a34(7” (1)) + 4354 (<17 (- 1>>}

gn =2t5D |:q2(a25(2Wn (0) + W52 (0)7%(0))
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Figure 5 The bifurcation diagram with respect to 7.
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Figure 6 The track of the states x1, x2, y1, and y, for T, = 7.7750 < 8.7835 = 1.

1 _
+ e (Wff’<0>q<4><0> +s w3203 (0) + WP (0)4(0)

+

1 _ Tix 1 _ Tix
3 W2(3>(0)q(2)(0)) + a7 (Wl(f)(o)q(z) (—L) + =Wy (007 (‘%)

k
T20 2 T20

T1x Tk \ - 2
+ Wy (—t%)q@)(m + Wi (—T%)q@)(m) +ax((47(0)7¥ )

20 20
+24(0)g"™ (0)7”(0)) + 3420 (¢ (0)) "7 (0))

+ @@ W (-1)g?(-1) + Wig (-1)g?(-1))
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with

Wi () =

Wu(0) =

1 _
+dass (Wff>(—1>q<4>(—1) + Ev@ﬁ?(—l)cf‘”(—l) + Wi (-1)g? (1)

1 _
+ 5 Wag (-1 (-1)

) +dse ((9(2)(—1))26_1(4)

+2¢2(-1)q" (-1)g* (-1) + 3az; (q<2)(—1))221(2>(—1))},

ig209(

% ok
Wy Ty

%%
3w; 75

_ignq(0) SO0 @ewéfﬁ‘ﬁ

k %k
W, Ty

+E2,

0) . ig92q(0) . .
)ela);F 500 + g02q( )e—zwa‘r;OQ +E1621w§‘t;09’
Wy Ta0
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Figure 9 The phase plot of the states x3, y1, and y; for T, = 12.8050 > 8.7835 = 7.
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Figure 10 The bifurcation diagram with respect to 7.

where E; and E; can be computed as the following equations, respectively:

2iw§r1*

216(); —an —ajy
—d) le; —dyy — byye”
0 —ngefiw;t;()
0 0
an ap 0 0
ayn an+by 0 axu -
0 €32 as3  C3a ’
0 0 as3 44

0 0 0
0 —dyy E;z)
2iw} —ass —0346”'“’3’2*0 E=2 E;g) ’
—d43 2iws — aga 0
0
EY
DI
0
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Figure 11 The track of the states x1, x2, y1, and y; for T = 1.3820 < 1.4126 = 1.
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Figure 12 The phase plot of the states x;, y1, and y, for 7 = 1.3820 < 1.4126 = 1.

with

2 i3t
E” = a35(¢™(0)" + 42647 (0)¥ (0) + 2204 (0 (—T—,;“),
20

2
EY = a34(q® (-1)” + assq® (-1)g™ (-1),

E5 = 2a554(0) + a2 (4”(0)7¥ (0) + 3 (0)¢(0))

_ T1x - T1x
+ay (q<2)(0)q(2) (—L) +7?(0)g® (—i»
T20 T20

EY = 24314 (-1)3? (1) + a5 (¢ (-1)7¥ (-1) + g2 (1) (-1)).
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Figure 13 The track of the states x1, x2, y1, and y; for T = 1.4375 > 1.4126 = 1.
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Figure 14 The phase plot of the states x;, y1, and y, for T = 1.4375 > 1.4126 = 1.

Therefore, we can calculate the following values:

i 2 Re{C;(0
Ci(0) = —*<g11g20—2|g11|2—@> +&, M2=—{71()},

205 T3, 3 2 Re{M(1,)} o
fr=2Re[C1(0)], T, =~ CUON * It (r30)},
W5 Ty

Based on the discussion above, we can obtain the following results.

Theorem 5 For system (4), if o > 0 (1 < 0), then the Hopf bifurcation is supercritical
(subcritical); if B2 < 0 (B2 > 0), then the bifurcating periodic solutions are stable (unstable);
if Ty > 0 (T, < 0), then the period of the bifurcating periodic solutions increases (decreases).
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Figure 16 The track of the states x4, X2, y1, y2 for T2 = 8.7325 < 73 = 10.3472 and 71, = 1.05 € (0, T10).

4 Numerical example

In this section, we give a numerical example to support the theoretical results in Section 2

and Section 3. We consider the following system:

DO _ 6y (£) — 31 (£) — 21 (8),

0@ _ 35 (£) — 0.25x5(£) — 15605 (t — 71) —

an@®) _ 2.05x%(t-1)y2(t-12)
- 1+4.5x9 (t-17)

D) _ 0.75y,(£) - 0.1259,(2),

3.25x3 ()2 (2)
1+4.5x(¢)

075)’1 (t) - 0125_)/1 (t),

(28)
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Figure 17 The phase plot of the states x2, y1, and y2 x1, X2, y1, y2 for 7, =8.7325 < 75 = 10.3472 and
T1.=1.05€ (0, 110).
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Figure 18 The track of the states x1, x2, y1, y2 for 72 = 12.3642 > 75 = 10.3472 and 77, = 1.05 € (0, T10).

which has a unique positive equilibrium E*(0.15695067,0.10463378,0.20218508,
1.21311045).

We have 1 > 0, 7, = 0. By some complex computations, we obtain w;o = 2.5011, 739 =
1.3785. Further, we have f{(v]) = 0.0914 > 0. Thus, the conditions (Hjy;) and (Hjz) hold.
According to Theorem 1, the positive equilibrium E* of system (28) is asymptotically sta-
ble when 1; < 739. This property can be illustrated by Figures 1 and 2. However, once 1;
passes through the critical value ty9, the positive equilibrium E* of system (28) will lose its
stability and a Hopf bifurcation occurs and a family of periodic solutions bifurcate from
the positive equilibrium E* of system (28), which can be shown as in Figures 3 and 4. This
property can also be seen from the bifurcation diagram with respect to t; in Figure 5. Sim-
ilarly, we have wyo = 0.7361, 159 = 8.7835 for 71 = 0, 73 > 0. The corresponding waveforms,
phase plots and bifurcation diagram are shown in Figures 6-10.
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Figure 19 The phase plot of the states x2, y1, and y2 x1, X2, y1, y2 for 7, = 12.3642 > 75 = 10.3472 and
T1.=1.05€ (0, T1o).
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We have 17 = 75 = 7 > 0. We can obtain wy = 2.9285 and then we get 7y = 1.4126.
From Theorem 3, we can conclude that when t increases from zero to 7; the positive
equilibrium E* of system (28) is asymptotically stable, then it will lose its stability and
a Hopf bifurcation occurs once t > 79. As can be seen from Figures 11 and 12, when
7 =1.3820 € (0,1.4126), the positive equilibrium E* of system (28) is asymptotically sta-
ble. However, if we let T = 1.4375 > 7y = 1.4126, the positive equilibrium E* of system (28)
loses its stability and a Hopf bifurcation occurs, which can be shown as in Figures 13, 14
and 15.
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We have 1, > 0 and 7; = 1.05 € (0, 119). We can obtain wj = 0.3795, t; = 10.3472. By
Theorem 4, the positive equilibrium E* of system (28) is asymptotically stable when t; €
[0,75,) and the positive equilibrium E* of system (28) becomes unstable when 7, > 73,
and a family of periodic solutions bifurcate from the positive equilibrium E*, which can
be illustrated by Figures 16-20.

Finally, by complex computations, we obtain C;(0) = —14.2305 — 23.6892i, A'(75;) =
12.3301 — 19.7682i. Further, we can obtain u; = 1.1541 > 0, B, = -28.4610 < 0, T =
11.8428 > 0. According to Theorem 5, we know that the Hopf bifurcation of system (28)
with respect to T, with 11 =1.05 € (0, 7y9) is supercritical, the bifurcating periodic solutions
are stable and increase.

5 Conclusion

In this paper, by incorporating the feedback delay of the mature prey and the time delay
due to the gestation of the mature predator into the system considered in the literature
[9], we get a delayed predator-prey system with stage structure for both the predator and
the prey, which is an extension of the literature [9]. Compared with the literature [9], we
mainly consider the effects of the two delays on the predator-prey system.

By regarding the possible combination of the two delays as the bifurcation parameter,
and analyzing the characteristic equation of the linearized system at the positive equilib-
rium, the sufficient conditions for the local stability of the positive equilibrium and the
existence of a Hopf bifurcation are established. It has been shown that when the value
of the delay is below the corresponding critical value, the system is asymptotically sta-
ble. However, once the value of the delay is greater than the corresponding critical value,
there will be a Hopf bifurcation at the positive equilibrium of the system and a family of
periodic solutions occur. For the further investigation, formulas are derived to determine
direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions by
using the normal form theory and center manifold theorem. From the numerical simula-
tions, one can conclude that the species in system (4) could coexist in an oscillatory mode
with some available delays of the mature prey and the mature predator under some certain
conditions. This is valuable from the point of view of ecology.
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