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Abstract
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1 Introduction and preliminaries
In this paper we study the existence of solutions for the following multi-term fractional

differential inclusions:

‘D*u(t) € F(t,u(®),u (£),u” (), DM u(t),..., D% u(t))

+G(t,u(t), u'(t),u"(t), " DT u(t), ..., DIu(t)) (1.1)
supplemented with boundary conditions
u(0) =0, 4 (0) = —u(l) — (1), u’(0) = —u"(1) - “D’u(l), 1.2)

where °D%, ‘D% denote the Caputo fractional derivatives, 2 <o <3, 1<¢q; <2,1i =
1,2,....k,te]:=[0,1],1<p<2,k>1,and F,G:] X R**3 5 P(R) are multifunctions.
Many of published papers about fractional differential equations and inclusions apply
the fixed point theory for proving the existence results. For instance, one can find a lot of
papers in this field (see [1-25] and the references therein).
Leta>0,n—-1<a<n n=[a]+1,and u € C([a, b],R). The Caputo derivative of frac-
tional of order « for the function u is defined by *D¥u(t) = ﬁ fot (t - 1)1y (1) dr

(see for more details [11, 23, 25-27]). Also, the Riemann-Liouville fractional order inte-

gral of the function u is defined by I*u(¢) = ﬁ fot i tf’r(;),a dt (t > 0) whenever the integral

exists [11, 23, 25-27]. In [28], it has been proved that the general solution of the fractional
differential equation °D*u(t) = 0 is given by u(t) = ¢y + c1t + 2> + -+ + ¢,_1t" "%, where

Coy...,Cy-1 are real constants and # = [«] + 1. Also, for each T > 0 and u € C([0, T]) we
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have
I%°Du(t) = u(t) + co + c1t + C2t2 + - + cpr "7,

where ¢y, ...,c,_; are real constants and » = [«] + 1 [28].

Now, we review some definitions and notations as regards multifunctions [29, 30].

For a normed space (X, ]| - |), let Py(X) = {Y € P(X) : Yisclosed}, P,(X) = {Y €
P(X) : Y is bounded}, Pep(X) = {Y € P(X) : Y is compact}, and Pep v (X) = {Y € P(X) :
Y is compact and convex}, Py v(X) = {Y € P(X) : Y is bounded, closed, and convex}.
A multi-valued map G : X — P(X) is convex (closed) valued if G(x) is convex (closed)
for all x € X. The map G is bounded on bounded sets if G(B) = | J, 5 G(x) is bounded
in X for all B € Py(X) (i.e., sup,g{sup{lyl : ¥y € G(x)}} < 00). G is called upper semi-
continuous (u.s.c.) on X if for each xy € X, the set G(x,) is a nonempty closed subset
of X, and if for each open set N of X containing G(xo), there exists an open neighbor-
hood Ny of xy such that G(Np) € N. G is said to be completely continuous if G(B) is
relatively compact for every B € Py (X). If the multi-valued map G is completely contin-
uous with nonempty compact values, then G is u.s.c. if and only if G has a closed graph,
i.e, Uy —> U, Yu = Yo Y € G(u,) imply v, € G(u,). G has a fixed point if there is x € X
such that x € G(x). The fixed point set of the multi-valued operator G will be denoted by
Fix G. A multi-valued map G :J — Pq(R) is said to be measurable if for every y € R, the
function ¢ +— d(y, G(¢)) = inf{|y — z| : z € G(¢£)} is measurable.

Consider the Pompeiu-Hausdorft metric H,; : P(X) x P(X) — R U {oo} given by

H,(A, B) = max [ supd(a, B),supd(A, b) } ,
acA beB

where d(A, b) = inf,c4 d(a; b) and d(a, B) = infpcg d(a; b). A multi-valued operator N : X —
Pa(X) is called contraction if there exists y € (0,1) such that H;(N(x), N(y)) < yd(x,y) for

each x,y € X.
We say that F : ] x R¥*3 — P(R) is a Carathéodory multifunction if £ — F(t,uy, ..., uy.3)
is measurable for all u; € R and (uy, ..., ugy3) > F(L, Uy, ..., Uiy3) is upper semi-continuous

for almost all £ € J [29, 31]. Also, a Carathéodory multifunction F : J x R**® — P(R) is
called L'-Carathéodory if for each p > 0 there exists ¢, € L'(J,R*) such that

||F(t,1/l1,...,uk+3)|| = Su}){"g' :S GF(t, M1’~~-7uk+3)} < d)p(t)
te

for all |u1],..., |urs3| < p and for almost all £ € J [29, 31].
Define the set of selections of F and G at u € C(/,R) by

Sey = {v eL'(J,R):v(t) € F(t, u(t),u' (t),u’(t),*DBul(t),..., CDqku(t))}
and
SGu = {Vl e L'J,R): v (¢) € G(t, u(t), ' (t),u”(t), DM u(t),..., CDqku(t))}

for almost all ¢ € J. If F is an arbitrary multifunction, then it has been proved that Sg(u) # ¢
forall # € C(J, X) if dim X < oo [32].
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The graph of a function F is the set Gr(F) = {(x,y) € X x Y : y € F(x)} [29]. The graph
Gr(F) of F: X — Py(Y) is said to be a closed subset of X x Y, if for every sequence
{untnen C X and {y,}neny C Y, when n — 00, u, — ug, ¥, = ¥, and y, € F(u,), then
Yo € F(uo) [29].

We will use the following lemmas and theorem in our main result.

Lemma 1.1 ([29], Proposition 1.2) IfF: X — Pu(Y) is u.s.c., then Gr(F) is a closed subset
of X x Y. Conversely, if F is completely continuous and has a closed graph, then it is upper
semi-continuous.

Lemma 1.2 ([32]) Let X be a separable Banach space. Let F : [0,1] x X3 — Pep,ev(X) be
an L'-Carathéodory function. Then the operator

®o SF : C(]:X) - Pcp,cv(c(]rX))v X = (® o SF)(x) = ®(SF,x)
is a closed graph operator.

Theorem 1.3 ([33], Krasnoselskii’s fixed point theorem) Let X be a Banach space, Y €
PoaevX) and A,B: Y — Pep oy (X) two multi-valued operators. If the following conditions
are satisfied:
(i) Ay+ByC Y forallyeY;
(ii) A is a contraction;
(iii) B is u.s.c. and compact,
then there exists y € Y such that y € Ay + By.

2 Main results
Now, we are ready to prove our main result. Let X = {u: u,u/,u”,°D%u € C(J,R),i =
.,k}. Then (X, | - ||) endowed with the norm

llell = sup|u(t)| + sup|u/(£)| + sup|u”(¢)| + sup|*DFu(t)| (i=1,...,k)
te] te] te] te]

is a Banach space [34].
We need the following auxiliary lemma. See also [35, 36].

Lemma 2.1 Let y € C(J,R) and u € C*([0,1],R) is a solution to the fractional boundary

value problem
‘Du(t) = y(2), (2.1)
u(0) =0, ' (0) = —u(1) - u'(1), u”(0) = —u"(1) - “D?u(l), '
then
u(t)=/t (t_—s)a_ly(s)ds‘ffl( oy __/ TaeD S)a 5
o Ta) 3Jo T
1 (1 _S)ot—S (1 S)at -p-1
2 2
+ (t— t )A/O my(s) ds + (t t )A/(; F(T—p) (S) dS, (2.2)
and vice versa, where A = [(3-p) Z0.

4T (3-p)+2
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Proof 1t is well known that the solution of equation *D*u(¢) = y(¢) can be written as
t t— a-1
u ):/ ﬁy(s)ds+co + ot + et (2.3)
o T

where ¢y, c1, ¢ € R. Then we get

t t— a-2
u'(t) = / ﬁy(s) ds + ¢ + 2¢ot,
0

IN'a-1)
. ~ t (t _ S)a—3
u'(t) = ; my(s) ds + 2¢y

and

. [t -5 24>7P
Dpu(t) —/0 T—la)y(S)dS+C2l—‘(T—p) (1 <p§2).

By using the boundary value conditions, we obtain ¢y = 0 and

1 - a9
““EA T ‘_/‘ Ta-1n"9%
1(1—3)“3 ( _)ot—pl
+AA m (S)d +A/O T_Ig) (S)ds
and
1 _ J)@-3 1 _ -p-1
¢ =—-A i %y(s) ds — A/O %y(s) ds.

Substituting the values of ¢y, ¢;, and ¢; in (2.3) we get (2.2).

Conversely, applying the operator °D* on (2.2) and taking into account (2.1), it follows
that °D*u(t) = y(t). From (2.2) it is easily to verify that the boundary conditions #(0) = 0
u'(0) = —u(l)—u/(1), u”(0) = —u”" (1) — *DPu(1) are satisfied. This establishes the equivalence
between (2.1) and (2.2). The proof is completed. a

Definition 2.2 A function z € C2([0,1],R) is called a solution for the problem (1.1)-(1.2)
if it satisfies the boundary value conditions #(0) = 0, /(0) = —u(1) — #/(1), and «”(0) =
—u"(1) — D”u(1), there exist functions v,v; € L'(J,R) such that v(¢) € F(¢t, u(t), ' (t), u’ (t),
DNy(t),..., DIk u(t)), vi(t) € G(t, u(t), u'(¢), u” (t), DT u(t),. .., DI u(t)) for almostall £ € J

and
~ t (t—S)a -1 (1 )a 1
o= [ “/ T "W
1 o o
-3 %V(S)ds+ t—t / (1_512;V(s)ds
1 oa—p—
+(t—t2)A ; %v(s)ds

t (t _S)a—l t 1 (1 _ S)a—l
+ | 71"(0{) vi(s)ds — 5/0 7”“) vi(s)ds
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_ § (li( s)"‘l)2 vi(s) ds+ t— t f (l—s)“ C vi(s)ds
0 —
1 (1 _ )a—p—l
+ (t — tz)A/O 1_1(;7_1))1/1(8) ds. (2.4)

Remark 2.3 For the sake of brevity, we set

N 4 1 A A 25)
= + + + ’ .
' 3M@+1)  3T(a) 4T(@-1) 4l(a—p+1)
N 4 1 A A 2.6)
= + + + ) .
73l  3T(@+l) T(e-1) T(e-p+1)
1+2A 2A -
= + , .
3 MNa-1) T(e-p+1)
and, foreachi=1,...,k,
l. 1 2A 2A
AL - . . _ (2.8)

MNa-g;+1) TB-g)'(ae-1) TB-g)'(a-p+1)

Also in the following we use the notation ||x||o = sup{|x(¢)|: £ € J}.

Theorem 2.4 Suppose that:
(Hi) F:J] x R¥ — P, (R) is a multifunction and G : ] x RK3 — P, (R) is a
Carathéodory multifunction;
(Hp) there exist continuous functions p,m : ] — (0,00) such that t — F(t,w;, wq, 3,21,
..,2xk) is measurable and
||F(t1 W1, Wa, W3,21, ... 1Zk) ” S m(t)r “ G(t: W1, W, W3,21,... »Zk) ” S P(t),

(Hs) there exists a continuous function h: ] — (0,00) such that
Hy(F(t, wy, wa, w3, 21, ..., 2x), F (6, W, Wh, s, 205, 2)))
3 k
< h(t)[Dwi —wil+Y |z —Z§I]
i=1 i=1
Sorall t € J and for each wy, wa, W3, 21,. .., 2k, Wi, W, W3, 215, 2 € R.
If
= ||h||OO(A1 + A2 + A3 + Aﬁl) <1

fori=1,2,...,k,wherethe A; (j=1,...,4) are defined in (2.5)-(2.8), then the inclusion prob-
lem (1.1)-(1.2) has at least one solution.

Proof We define the subset Y of X by Y = {u € X : ||u|| < M}, where

= (IPlloo + 1mlloc) (A1 + Az + Ag + AY)  (i=1,...,k).
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It is clear that Y is closed, bounded, and convex subset of Banach space X. We define the
multi-valued operators A,B: Y — P(X) such that for some v € Sg,,

t o— 1 o—
Au) = {ueX:u(t):/ %v(s)ds—%/; %V(s)ds

(1- 2 L1-9?
——/ o - 1) v(s)ds+ (£ —£*)A ; mv(s)ds
+(t—t2)A ; %v(s)ds},

and for some v; € S,

t oa— 1 oa—
B(u):{ueX:u(t):/ wvl(s)ds-éf %vl(s)ds
0 0

I'(x) I"(er)
_E/IMV (s)ds+(t—t2)A/1MV(s)dS
3J)y Tw-1) " o Tl@-2)"

t t /(1 S)a_Pl (s)ds}.

In this way, the fractional differential inclusion (1.1)-(1.2) is equivalent to the inclusion
problem u € Au + Bu. We show that the multi-valued operators A and B satisfy the con-
ditions of Theorem 1.3 on Y.

First, we show that the operators A and B define the multi-valued operators A,B: Y —
Pep,ev(X). First we prove that A is compact-valued on Y. Note that the operator A is equiv-

alent to the composition £ o Sp, where L is the continuous linear operator on L!(J, R) into

X, defined by
t a-1 _
LON) = /0 (tr(s)) v(s) ds - /0 (IF (02) v(s) ds
L s [ B
) (1 — )l
+(t—t )A A F(T_p)v(s)ds.

Suppose that u € Y is arbitrary and let {v,,} be a sequence in Sg,. Then, by definition of
Sk, we have v,(¢) € F(¢, u(t), u'(t), u”(t), " D0u(t),..., DI u(t)) for almost all ¢ € J. Since
F(t,u(t), ' (t),u”(t), DM u(t),...,°D*u(t)) is compact for all ¢ € ], there is a convergent
subsequence of {v,(t)} (we denote it by {v,(f)} again) that converges in measure to some
v(t) € Sk, for almost all £ € J. On the other hand, £ is continuous, so L(v,,)(¢) — L(v)(¢)
pointwise on J.

In order to show that the convergence is uniform, we have to show that {£(v,)} is an

equi-continuous sequence. Let £, ¢, € J with ; < ;. Then we have

|La)(t2) = L)1)

< ﬁ ‘/Otl [(tz - S)a_1 —(t—9)"" ]Vn(S) ds + m/ (2 —5)*" lvn(s) ds
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|t2 tl|/(1_s)a 1|Vn S)‘ds+ 1| /(1 §) 2|Vn(5|ds

Al - 1) - (& - )] .
2 F(loe 2) /(l—s) 3|V,,(s)|ds
Alllta —t1) - (& = )] )
AT ol
il {lt‘;—tf‘l+ |tz — &1 +|tz—t1|+A|[(tz—t1)—(t§—t%)]|
— U T(e+1)  3T(@+1)  30(x) (o —1)
N Al[(tz—tl)—(tﬁ—t%)ll}
MNa-p+1) ’

Continuing this process, we have

[ -8 Al -t A|t2—t1|}

(€ 00) ~ (€] < o By SO, o

and
|wmmm(ﬂwmw_‘ m/ [(t2 =5 (65" Jwals) ds
m (t2 — S)a -3 (S) ds
¢2x—2 _ ti)(—2|

= ||m||oom,

and, finally, for every i=1,...,k,

|("DH LW (82)) = (D LY, (1))

Il {'tgqi_t?qq V28I g 28 g }
<Ml |
IMa-gq;+1) TB-g)T(@-1) T@B-g)(a-p+1)

We see that the right-hand sides of the above inequalities tend to zero as t, — ¢;. Thus,
the sequence {£(v,)} is equi-continuous and by using the Arzela-Ascoli theorem, we see
that there is a uniformly convergent subsequence. So, there is a subsequence of {v,} (we
denote it again by {v,}) such that L(v,) - L(v). Note that L(v) € L(Sr,,). Hence, A(x) =
L(SE,,) is compact for all u € Y. So A(u) is compact.

Now, we show that A(u) is convex for all u € X. Let z;,z, € A(u). We select f1,f> € Sk,

such that
(t- t 1A-s)21
l(t)—/ F( ) ds — gw/o Wﬁ(s)ds
t 1 (1-s5)272 9 1(q-g23
-3/, mﬁ(s)ds+(t—t)A ; mfi(s)ds‘
(t-2)A i 1f(s)ds, i=1,2

o I(a-
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for almostall £ € J. Let 0 < A <1. Then we have

t (t _S)a—l
NG

1 _ o)1
_2/0 (r(S) [1(5)+ (L= 1)5(s)] ds

[Azl +(1- A)zz](t) = [Aﬁ(s) +(1- A)ﬁ(s)] ds

_ Qa2
__/ a S) S+ 0= 150 ds

(1 —s)*3

+(t-%)A [Afl(s)+ (1-1)f(s)]ds
o I'la—-

P f (Gt S)H 1 [Mils) + (1 - )fs(s)] ds
Since F has convex values, Sg,, is convex and Afi(s) + (1 — A)f2(s) € Sg,,. Thus
Az1+ (1= A)zo € A(u).
Consequently, A is convex-valued. Similarly, B is compact and convex-valued.

Here, we show that A(u) + B(u) C Y for all u € Y. Suppose that u € Y and z; € A(u),
zp € B(u) are arbitrary elements. Choose v; € Sg,, and v, € S, such that

~ t (t _ S)oz—l t 1 (1 _S)oz—l
z1(¢) —[) Fa) vi(s)ds — 5/0 ) vi(s) ds
t 1 (1 _ )a-z 1 (1 _ )a—B
- §/o as ) ds + (- t2)A/ Y () ds

0 F(C{—Z)
t—t /(1 S)a—pl 1(s) ds

and

t (t _ S)a—l t 1 (1 _ S)a—l
z5(t) = A Wm(s) ds — 5/0 @) vo(s)ds

1 a-2 1 -3
- %/ (rl‘(;s) D vo(s)ds + (t— t2)A &vz(s) ds
0 _

0 F(o{—2)
t t /(l_s)u_plm(s)ds

F(a-p)

for almost all ¢ € J. Hence, we get

’zl (GEF t)’ =T )/ (t—s)“’l(‘vl(s)| + |V2(s)|)ds

o
+3F(a)/0(1_s) 1(|V1(S)|+|V2(S)|)ds

0o
+m/(1—s) 2([n)] + [vals)|) ds

Al o
e 2)/(1—s) 3(|n(s)] + |va(s)]) ds
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2
+A't al / (1= ()] + [vals)]) ds

4 1 A A
3M(a+1)  30()  4l(@—1)  4l(a—-p+1) }

< (lIplloo + ||m”oo){

Hence, sup,; z1(£) + z2(£)| < ([plloo + [l 00) A1. Also we have

1 A A }

|20) + 2,0)] < (Ipll + ”m"""){gr(a) T3+ T@-1 Ta-p+1)

which implies that sup,; |z (£) + z3,()] < (|plloo + [7]l00) A2 and

12/(6) + 2(0)| < (||p||oo+||m||oo){1+2A 28 }

Ta-1) T-p+1)

from which sup,; |z) () + 2, (£)| < (|plloc + [7]loc) As. Finally, for all i = 1,..., k, we have

|“Dfizy (£) + “Diizy ()|

1 2A 2A }

< (Iploe + ||m||°°){ Ma-qi+1) TR-g)l(@-1) TG-g)a-p+D)]

and so sup,.; |°D%izi(t) + ‘Dlizy(t)] < (lplleo + mlloo) AL, i =1,2,...,k. Hence, it follows
that

lz1 + z2|| < (||p||oo + ||m||oo)(A1 + A+ Az + Ai) =M, i=12,...,k

Now, we show that the operator B is compact on Y. To do this, it is enough to prove that
B(Y) is uniformly bounded and equi-continuous in X. Let z € B(Y) be arbitrary. For some
u € Y, choose v; € S, such that

(t)—/ “‘ () ds /(lr() ni(s) ds

_ a2 _ -3
= %vl(s)ds+(t—t2)A 0 %W(S)ds
1 _ Ja-—p-1
F(E-£)A fo 7(1r (:)_;) w(s)ds, te]. 2.9)
Hence,

0] < Wl 555 57 ae e
AN =Pl 137 +1) T 3M()  4T(@-1)  4T(@—p+1) |’
£0] <1 5+ 50 - ]
21 = 1Pl SF(ot)+3F(oz+1)+F(oz—1)+F(0!—P+1) ’

1+2A 2A }

|Z//(t)| < ||p||oo{ T(a-1) + MNoe-p+1) ’

2A 2A }

c i 1
|“Diz(t)] < ||P||oo{ Fla-gi+1) T@-g)l@-1) TG-g)la-p+1)

fori= . k.Hence, ||z]| < ||plloc(A1 + Az + Az + AL),i=1,...,k.
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Now, we show that B maps Y to equi-continuous subsets of X. Let t;,t, € ] with #; < £,
u €Y, and z € B(u). Choose v; € Sg,, such that z(¢) is given by (2.9). Then we have

’ (&) - 2(8) | ™ {|fa |+ |ta — 1] . |ta -t . Alllty — ) = (£ = )]
D=2 =Pl 5D " 3@ Dt 3T @) Ta-1)
All(tz —tr) = (&5 = )] }
+ ’
MNa-p+1)

T—gl 2Alt -4 2A|t2—t1|}

5~
|2 (t2) - z(t1)|<llp||oo{ M@  Ta-1) Ta-p+)]f

16572~ ]

//t t - 18572 -7

6 -2/ @)] = Il

and
°Diz(ty) - “D7iz(ty)|
I {'tg_qi'tf_q’h 20180 B 2N - }
o0

Ma-g;+1) TB-g)(a-1) TB-g)l(a-p+1)

for each i = 1,...,k. It is seen that the right-hand sides of the above inequalities tend to
zero as tp — t1. Hence, by using the Arzeld-Ascoli theorem, B is compact.

Next, we prove that B has a closed graph. Let u, € Y and z, € B(u,) for all n such that
u, — ug and z,, — zo. We show that zo € B(ug). Associated with z,, € B(u,,) for each n € N,
there exists v, € Sg,,,,, such that

‘ (lf—S)O‘_1 (1 S)a 1
= oy
g /0 F(a) [ (s)ds
! o2 a-3
_g/o %Vn(s)dS"'(t—tz)A ; %vn(s)ds
(1 S)u—p 1
(e-2) f Ty s

for all £ € J. It suffices to show that there exists vy € Sg,,, such that, for each ¢ € J,

(t )a -1 t 1 (1 _S)a—l
zo(t) = / F(a vo(s )ds—gfo Ta)vo(s)ds

P-g 2 L1-s)23
-5 ), Tasgrods (-8 [T

1 _ Ja-p-1
+(t- ﬂ)A/O %vo(s) ds.

Consider the continuous linear operator © : L'(/,R) — X by

t (t _S)a—l t 1 (1 _ S)a—l
O(V)(t) = /0 WV(S) ds — g ‘/0 WV(S) ds
t 1 (1 _ S)a—Z 5 1 (1 _ S)oz—3
-3 i mv(s)ds+ (t—t )A ; mv(s)ds

1 _ Ja—p-1
+ (t - tZ)A A %V(S) ds.
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Notice that
|24 (&) = 20(®) || = H/ = s)vt l(vn(s) vo(s)) ds — _/0 (1F(2: 1(Vn(s) )
1 a2
B % _/o % (va(s) = vo(s)) ds
1 (1_ )(x—3
+(t- t2)A/O ﬁ(vn(s) —vo(s)) ds

— 0 asn— oo.

1 _ oa-p-1
F(e-£)A /o %(W) ~vo(s)) ds

By using Lemma 1.2, ® o S¢; is a closed graph operator. Since z,(t) € ©(Sg,,) for all n, and
U, — Uy, there is vy € Sg,, such that

t (t _ S)a—l t 1 (1 _ S)a—l
zo(t) = /0 Wvo(s)d - 5/0 F@) vo(s) ds

——/ (1 S)aZ ds+ t-t /(1 S)aS s)ds

1 _ -p-1
+ (t—tz)A/O %V@(s)ds.

Hence, zp € B(uy). So, it follows that B has a closed graph and this implies that the operator
B is upper semi-continuous.

Finally, we show that A is a contraction multifunction. Let u,w € X and z; € A(w) is
given. Then we can select v; € Sg,,, such that

t (t _ S)a—l t 1 (1 _ s)oz—l
z1(t) = /0 WVI(S) ds — §/0 M@ vi(s)ds

t l(l_s)a—z 5 l(l_s)a—S
_gfo mvl(s)ds+(t—t)A | mh(s)ds

1 a—-p-1
(1-s)*?
+(t-2)A ————(s)ds
( ) o Tle-p) !
for all £ € J. Since

Hy(F(¢,u(®),u/' (t),u” (£), DM u(t), ..., DI u(t))

- F(t, w(t), W' (t), W' (t), DBw(t),..., D% w(t)))

k
<h(t) |:’u(t) - w(t)‘ + ‘u’(t) - w’(t)’ + ’u”(t) - w”(t)‘ + Z|Cinu(t) - CDq"w(t)|:|
i=1

for almost all £ € /, there exists y € F(¢, u(t), u'(t), u” (£), "D u(t), ..., *Du(z)) such that

lvi(2) - y| < m(o) [Iu(t) —w(t)| + |/ (&) =W ()] + |u" (&) - W' (@)

k
+ ) |°Dule) - Cquw(t)‘:|
i=1
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for almost all ¢ € /. Consider the multifunction U : ] — P(R) by
Uut) = {s eR: |V1(t) —s| < m(t)g(¢) for almost all ¢ e]},

where

gt) = |:|u(t) —w@)| + |w/ (&) =W (O] + | () - W' (©)]

k
+ Y |°Dule) - “D%w(t) ]}.

i=1

Since v; and ¢ = mg are measurable, U(-) N F(-,u(-),u/'(-),u"(-), " DBu(-),...,* D u(-)) is a

measurable multifunction. Thus, we can choose
vo(t) € F(t, u(t),u' (t),u”(t), DTul(t),..., ‘Dq"u(t))

such that

[1(8) = va(t)| < m(2) [Iu(t) —w(O)| + |/ () - W @)| + | () - w'(2)|

k
+ > |°Dule) - CDql'w(t)|i|
i=1

and

t o— 1 oa—
o= [ ¢ 1v2(s)ds—£/ A-97 ods
0

o Do) 3 ')
t (152 (1-9)*3
—g/(; F(a—l) (s)ds+ t—t / Ta-2) ——————1y(s)ds
1 _ Ja—p-1
+(t-£2)A \ 7(11_‘(:)_;) va(s)ds

for all £ € J. Now, we have
1 t
|21(8) - z2(8)| < ) )b (t — )" vils) = va(s)| ds

|t| f 1 -s)* 1|v1(s ) s)‘ds

|£]
" m / (=52 |n1(s) = va(s) | ds

Alt-£| [ .
+ F(Ol—2) ./0 1-9) 3‘1/1(5)—1/2(5)’615
2l
?(z —tp)| 0 (l_s)a_p_lh’l(s)—V2(S)|ds

4 1 A A
< Il + + + llu —wll.

A(e+1) 3T(w) 4l'(e-1) 4T'(x-p+1)
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Similarly,

4 1 A A
FAOEFAGIES IIhlloo{ }Ilu—wll,

3T(@)  3M(a+1) T@-1)  Ta-p+1)
142A 2A
Ta-1) F(a—p+1)}””_W”’

12/ (t) - 2, ()| < ||h||oo{

|°Dizy(t) - “DYizy (¢)|
2A 2A
+ +
MNa-gi+1) T@-g)l'(a@-1) TEB-g)'(@-p+1)

< ||h||oo{
Hence,
sup|zi(t) = 22(8)| < 1hlloc A llue = wli,

te]

sup|z;(t) = z,(t)| < 1nlloc Azl — w,
te]

sup|z} (£) — 25 ()| < Il Asllue — wll,
te]

sup|°Dizy (£) — “D¥izy(8)] < | hlloo Al llu — wl|
te]

foreachl <i<k.So

lzr = zoll < llAlloo(A1+ A+ As+ AY)lu—-wl, i=12,... k.

}IIM—WII'
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This implies that H;(A(u), A(w)) < L|lu — w||. Thus A and B satisfy all the conditions
of Theorem 1.3 and so the inclusion u € A(u) + B(u#) has a solution in Y. Therefore the

inclusion problem (1.1)-(1.2) has a solution in Y and the proof is completed.
Finally, we give an example to illustrate the validity of our main result.

Example 2.5 Consider the following fractional differential inclusion:

D3 ® [ tlu(t)? £2 sin(i/(¢))] 0.01t|u” (t)|
“OE 1% 000+ 1w@P) T 200(sin@ @) +1) T | @) +1

t| cos(eD3 u(?))| +t2|singt||CD%’u(t)|2}
100(1 + | cos(cD3 u(f))])  100£(|<D? u(t)|? + 1)

[ e |u(z)| |cosme||u'(¢)|e” e!|u(8))?
(

T+e)(A+ (u@)))  A+eHA+ @) A+ @ @OR)+e)

e sin(CD% u(t))| e3t |CD% u(t)? :|
+ ?

' 1+ |sin(D3 u(®))))et(L + et) (2 +€3)(1 + [<D3 u(t)]?)

with the following boundary conditions:

u(0) =0, 1 (0) = —u(l) — /1), u’(0)=-u"(1) - CD%u(l),

O

(2.10)

(2.11)

where ¢ € [0,1]. In the above inclusion problem, we have « =5/2, p =3/2, k=2, and ¢q; =

q> = 3/2. Also, we have A = 0.1597.
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Now, we define F: [0,1] x R x R x R x R x R — P(R) by

tlx)? t|2siny| 0.01t|z]|
, + - +
100(1 + |x[3) ~ 200(|siny| +1)  |z] +1
t| cosv| £*| sin Zt|w?
+ + ,
100(1 + |cosv|) 100£(w? +1)

F(t,%,9,z,v,w) = |:0

and G:[0,1] x Rx R x R x R x R — P(R) by

e”!x| |cosmt||yle™t e 72
G t) ’ ) tl ) = 0’
(60,22 W) [ Are)T+lx)  Are)L+l)  A+2)1+e)
e~ |sinv| e 3 w|3
(1+|sinv))et(1 +et) (e +e3) (1 +|w3) |

Then there exist continuous functions m, p : [0,1] — (0, 00) given by

e—t

t
m(t) =5+ pt)=

1+et

On the other hand, we can easily check that, for every x;,y;,z;, vi, w; € R (i = 1,2),

Hd(F(t’xlryly 2LV Wl) - F(ter’erZZ! V2, W2))
<

h(t)(lxr = %2 | + |y1 = 32| + |21 — 22| + [v1 = va | + [w1 — wa),

where % : [0,1] — (0, 00) is defined by k(¢) = ﬁ. It can easily be found that A; = 0.7369,

Ay = 14434, A3 = 1.8102, A} = 1.7687, and A} = 1.7687. Since ||k = 155, we have
L= |lhlloo(A1 + Ay + As + AL + A%) = 0.01 x 7.5279 = 0.075279 < 1. Consequently all as-
sumptions and conditions of Theorem 2.4 are satisfied. Hence, Theorem 2.4 implies that
the fractional differential inclusion problem (2.10)-(2.11) has a solution.
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