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Abstract
We consider two algorithms for the resolution of the time-dependent Stokes
problem with nonstandard boundary conditions by the domain-decomposition
spectral-element method. The first algorithm (Elimination method) is based on the
Uzawa method by decoupling the linear system, while the second algorithm (Global
inversion) is based on the overall resolution of the system by the GMRES method.
A detailed implementation is proposed and some numerical tests are carried out in
two and three dimensions and where the domain is multiply connected.
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1 Introduction
This paper deals with the resolution and the implementation of the spectral-element
domain-decomposition method for the resolution of the following nonstationary Stokes
problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂v
∂t

(x, t) – ν�v(x, t) + ∇p(x, t) = f(x, t) in � × [0, T],

div v(x, t) = 0 in � × [0, T],
v(x, t) . n(x) = 0 on ∂� × [0, T],
γ (curl v)(x, t) = 0 on ∂� × [0, T],
v(x, 0) = v0 in �.

(1)

The domain � of Rd, d = 2, d = 3, is bounded and simply connected. ∂� is its connected
Lipschitz continuous boundary and T is a positive real. f , ν > 0 are the data function and
the viscosity. The unknowns v, p are the velocity of the fluid and its pressure. Let γ be the
tangential boundary operator defined as:

• When d = 2: if v = (vx, vy), curl v = ∂xvy – ∂yvx, thus γ (curl v) is the trace on ∂� of the
scalar function curl v.

• When d = 3: if v = (vx, vy, vz), curl v = (∂yvz – ∂zvy, ∂zvx – ∂xvy, ∂xvy – ∂yvx), thus
γ (curl v) = curl v × n on the boundary ∂�, × represents the cross product.
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Let the new unknown � = curl v be called the vorticity. By the property

–�v = curl(curl v) – ∇(div v),

we prove that the system (1) is equivalent to:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v
∂t

(x, t) + ν curl� (x, t) + ∇p(x, t) = f(x, t) in � × [0, T],

div v(x, t) = 0 in � × [0, T],
� (x, t) = curl v(x, t) in � × [0, T],
v(x, t) . n(x) = 0 on ∂� × [0, T],
γ (� )(x, t) = 0 on ∂� × [0, T],
v(x, 0) = v0 in �.

(2)

In the case when the domain � is multiply connected the conditions

curl v = 0 div v = 0 in �, and v · n = 0 on ∂�

are not enough to prove the uniqueness of the velocity, see [1–3]. An explicit example was
given in ([4], Chap. 3). Let �i, 1 ≤ i ≤ I be open connected curves or surfaces called “cuts”
that satisfy:

• �i, 1 ≤ i ≤ I is included in � and ∂�i is included in ∂�;
• �i

⋂
�j = ∅, 1 ≤ i �= j ≤ I ;

• �� = �/
(

I⋃

1

�i
)

is a simply connected domain.

The further conditions that we needed for the uniqueness of the velocity are, for 1 ≤ i ≤ I

v · n = 0 on �i. (3)

The initial treatment of Stokes problems, incorporating velocity and pressure formu-
lations along with pressure-based boundary conditions, was presented in [5]. However,
subsequent studies by [6, 7] and [8] demonstrated a novel approach to formulating the
Stokes problem, incorporating vorticity alongside velocity and pressure as unknowns.

In [9], the authors introduced an extensive numerical investigation into the spectral-
element discretization of this new formulation. They utilized the Generalized Minimal
Residual method (GMRES) for implementation, given the nonsymmetric nature of the
matrix involved, see [10].

In this paper, we introduce two novel algorithms designed to enhance the performance
of previous approaches to solving the Stokes problem in both two and three dimensions
within bounded domains, with a focus on optimizing execution time. Initially, we adapted
our approach to incorporate the Elimination method like the Uzawa algorithm, as out-
lined in [1] and [11], by removing discrete vorticity. However, the resulting matrix ex-
hibited severe ill-conditioning, necessitating a high number of iterations for convergence.
However, the Global inversion method consists of solving the linear system using the GM-
RES method, so it does not need to be assembled. We also use local preconditioners: each
block in the global matrix in the linear system is preconditioned by the matrix resulting
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from its incomplete LU factorization. Notably, as is standard in spectral methods, the ten-
sorization properties of the polynomial spaces ensure that each product of these blocks,
corresponding to the subdomain �k , with a vector, is performed with cNd+1 operations,
significantly reducing the cost of inversion. Consequently, we achieved notably improved
accuracy with a reduced number of iterations. Experimental results unequivocally demon-
strate the efficacy of these enhancements.

The structure of the paper is outlined as follows: Sect. 2 presents an exposition of the
discrete problems in time and in space. Section 3 elaborates on the implementation of
the spectral-element discretization for our specific problem. Section 4 is dedicated to a
comprehensive description and comparison of the numerical results.

2 The discrete problems
We introduce the space:

K(�) = {v ∈ H0(div,�), v · n = 0on�i, 1 ≤ i ≤ I}

as the space of velocity. Then, the variational formulation is: If f ∈ L2(0, T ; L2(�)d), find
(� , v, p) ∈ L2(0, T ; H0(curl,�)) × L2(0, T ;K(�)) × L2(0, T ; L2

0(�)) such that

⎧
⎪⎨

⎪⎩

∀w ∈K(�), (∂v
∂t , w) + a(� , v; w) + b(w, p) = (f , w),

∀q ∈ L2
0(�), b(v, q) = 0,

∀ϑ ∈ H0(curl,�), c(� , v;ϑ) = 0.
(4)

The bilinear forms a(., .; .), b(, ., ) and c(., .; .) are defined as follows:

a(� , v; w) = ν

∫

�

curl(� )(x, t).w(x)dx, b(v, q) = –
∫

�

div v(x, t)q(x)dx

and c(� , v;ϑ) =
∫

�

� (x, t).ϑ(x)dx –
∫

�

v(x, t). curlϑ(x)dx.

For f ∈ L2(0, T ; L2(�)d) and v0 ∈ K(�), problem (4) has a unique solution (� , v, p) that
belongs to L2(0, T ; H0(curl,�)) × L2(0, T ;K(�)) × L2(0, T ; L2

0(�)), [12–14] such that:

‖ � ‖2

L∞(0,t;L2(�)
d(d–1)

2 )
+ ‖ v ‖2

L∞(0,t;L2(�)d)
+ ‖ p ‖2

L2(0,t;L2
0(�))

≤ c
(

‖ v0 ‖2
L2(�)d + ‖ f ‖2

L2(0,t;L2(�)d)

)
.

For the discretization in time of problem (4) we use the implicit Euler method. We par-
tition the interval [0, T] in the subintervals [tm–1, tm], for 1 ≤ m ≤ M, M > 0 integer such
that 0 = t0 < t1 < · · · < tM = T . Let τm = tm – tm–1, τ = (τ1, τ2, . . . , τm) and |τ | = max

1≤m≤M
τm.

If the data functions (f , v0) ∈ L2(0, t; L2(�)d) ×K(�), the time-discrete problem is:
Find (� m)0≤m≤M ∈ (H0(curl,�))M+1, (vm)0≤m≤M ∈ (K(�))M+1and(pm)1≤m≤M ∈ (L2

0(�))m

such that:

v0 = v0 in � (5)
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and for all 1 ≤ m ≤ M, fm = f(., tm),

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∀w ∈K(�), (vm, w) + τma(� m, vm; w) + τmb(w, pm)

= (vm–1, w) + τm(fm, w),
∀q ∈ L2

0(�), b(vm, q) = 0,
∀ϑ ∈ H0(curl,�), c(� m, vm;ϑ) = 0.

(6)

We define

A(� m, vm; w) = (vm, w) + τja(� m, vm; w) and L(w) = (vm–1, w) + τm(fm, w).

The problem (5) and (6) has a unique solution, see arguments in [1].
In what follows, we subdivide the domain � without overlapping into a finite number

of rectangles �k for dimension 2 or a rectangular parallelepiped for dimension 3:

� =
k=K⋃

k=1

�k , suchthat �k ∩ �l = ∅ for 1 ≤ k �= l ≤ K .

We observe that the subdomain set �k satisfies the condition that the intersection of
any two subdomains �̄k and �̄l , where 1 ≤ k �= l ≤ K , is either a vertex, an edge (in the
case of d = 2), or a face (in the case of d = 3), which we identify as the cuts �i defined in
Sect. 2.

The discretization is performed using the spectral-element method inspired by Nèdelec
cubic three-dimensional meshes ([15, Sect. 2]). We define Ppq(�) (or Ppqr(�)) as the
polynomial space of degree p in the x-direction and q in the y-direction (and r in the z-
direction). These spaces are simply denoted as Pn(�) when p = q = r = n.

Building upon these definitions, and for an integer N ≥ 2, we introduce the local discrete
spaces:

D
k
N =

⎧
⎪⎪⎨

⎪⎪⎩

PN ,N–1(�k) × PN–1,N (�k) if d = 2,

PN ,N–1,N–1(�k) × PN–1,N ,N–1(�k) × PN–1,N–1,N (�k)

if d = 3,

C
k
N =

⎧
⎨

⎩

PN (�k) if d = 2,

PN–1,N ,N (�k) × PN ,N–1,N (�k) × PN ,N ,N–1(�k) if d = 3,

M
k
N = PN–1(�k).

Then, the space of the discrete velocity in H0(div,�) is

DN = {vN ∈K(�); vN |�k ∈ D
k
N }.

The space that approximates the vorticity in H0(curl,�) is defined as

CN = {ϕN ∈ H0(curl,�);ϕN |�k ∈C
k
N }.
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Finally, the space in which we approximate the pressure is defined by

MN = {pN ∈ L2
0(�); pN |�k ∈M

k
N }.

The functions within DN exhibit a continuous normal trace across the interface �̄k ∩ �̄l .
On the other hand, functions in CN demonstrate a continuous trace along the interface
�̄k ∩ �̄l in two dimensions (d = 2) and a continuous tangent trace in three dimensions
(d = 3). This selection ensures that our proposed discretization is entirely conforming.

Considering ξ0 = –1 and ξN = 1, we focus on the N – 1 Gauss–Lobatto nodes ξi, where
1 ≤ i ≤ N – 1, and the N + 1 corresponding weights ρi on the interval [–1, 1]. These nodes
ξi (for 1 ≤ i ≤ N – 1) are the roots of the derivative L′

N of the N th-degree Legendre poly-
nomial LN .

Let Pn(–1, 1) denote the space of polynomials restricted to [–1, 1] with degrees up to n.
Therefore, the Gauss–Lobatto quadrature formula is:

∀ϕN ∈ P2N–1(–1, 1),
∫ 1

–1
ϕN (ζ ) dζ =

N∑

i=0

ϕN (ξi)ρi. (7)

Additionally, we recall the following property (see [16]):

∀ϕN ∈ PN (–1, 1), ‖ ϕN ‖2
L2(–1,1)≤

N∑

i=0

ϕ2
N (ξi)ρi ≤ 3 ‖ ϕN ‖2

L2(–1,1) . (8)

Let Fk be the affine bijection from (–1, 1)d onto �k . Using formula (8), we introduce the
local discrete scalar product defined as follows: For continuous functions ϕ and ψ defined
on �̄k :

(ϕ,ψ)k
N =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

meas(�k )
4

N∑

i=0

N∑

j=0

(ϕ ◦ Fk)(ξi, ξj)(ψ ◦ Fk)(ξi, ξj)ρiρj if d = 2,

meas(�k )
8

N∑

i=0

N∑

j=0

N∑

k=0

(ϕ ◦ Fk)(ξi, ξj, ξk)(ψ ◦ Fk)(ξi, ξj, ξk)ρiρjρk if d = 3.

The global scalar product is defined for continuous functions ϕ and ψ on �̄ as follows:

(ϕ,ψ)N =
K∑

k=1

(ϕ,ψ)k
N .

If the data function remains continuous over � × [0, T], we derive the discrete problem
from equations (10) and (11) using a combination of Galerkin’s method and numerical
integration techniques.
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For v0
N = IN (v0), and if vm–1

N is known, find (� m
N , vm

N , pm
N ) in CN ×DN ×MN such that for

1 ≤ m ≤ M:

∀wN ∈ DN , (vm
N , wN )N + τmν (curl� m

N , wN )N – τj(div wN , pm
N )N

= (vm–1
N , wN )N + τm(fm, wN )N ,

∀qN ∈MN , (div vm
N , qN )N = 0,

∀ϑN ∈CN , (� m
N ,ϑN )N – (vm

N , curlϑN )N = 0,

(9)

where IN is the Lagrange interpolating operator with values in PN (�). We define the dis-
crete bilinear forms AN (·, ·; ·), bN (·, ·), and cN (·, ·; ·) as

AN (� m
N , vm

N ; wN ) = (vm
N , wN )N + τmν (curl� m

N , wN )N , bN (wN , pm
N ) = –(div wN , pm

N )N

and cN (� m
N , vm

N ;ϑN ) = (� m
N ,ϑN )N – (vm

N , curlϑN )N .

We assume that the data f belongs to L2(0, T ; L2(�)d) and v0 belongs to K(�), problem
(9) has a unique solution; (� m

N , vm
N , pm

N ) belongs to CN ×DN ×MN . The proof of the exis-
tence and uniqueness of the solution is elaborated in [[13], Sect. 4, Theorem 4.1] and [[1],
Chapter I, Lemma 4.1].

3 The proposed algorithms
As outlined in the introduction, we introduce two resolution algorithms aimed at improv-
ing the performance of previous approaches for solving the Stokes problem in 2D and 3D
bounded domains [9], with a focus on optimizing execution time.

Next, we begin by presenting the linear system. Subsequently, we describe two algo-
rithms: the Elimination algorithm and the Global inversion method.

3.1 The linear system
In order to define the matrix system of the discrete problem, we have to choose a basis of
the discrete spaces CN , DN , and MN .

Let li, 0 ≤ i ≤ N , denote the Lagrange polynomials in PN (–1, 1) associated with the
nodes ξi of degree less or equal to N such that:

li ∈ PN ([–1, 1]), li(ξj) = δij, 0 ≤ i, j ≤ N ,

where δij is the Kronecker symbol. The polynomial li is defined as

li(x) =
–1

N(N + 1)

(1 – x2)L′
N (x)

(x – ξi)
, ∀x ∈ [–1, 1].

Let i∗ be an integer fixed between 0 and N equal to the integer part of N
2 . We define I∗ as

the set {0, . . . , N} \ {i∗}, and let:

l∗i (x) = li(x)
ξi – ξi∗

x – ξi∗
, i ∈ I∗.

Now, we describe the unknown vectors in the dimension 2 for simplicity. The vector vor-
ticity W m at the time tm is constructed from:
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• the value of � m
N at the nodes Fk(ξi, ξj), 1 ≤ i, j ≤ N – 1 inside each subdomain �k ;

• the value of � m
N at the nodes Fk(ξi,±1) or Fk(±1, ξj), 1 ≤ i, j ≤ N – 1, shared by two

subdomains on each edge of the subdomain �k that is not contained in ∂�.
We multiply the vector W m by the matching matrix Q� leading to a vector Ŵ m = Q� W

made of K blocks W m
k . The coefficients � m

ij are the expansion of the discrete vorticity � m
N

on the subdomain �k . Then, we have

� m
N (x, y) =

N∑

i=0

N∑

j=0

� m
ij (lilj ◦ F–1

k )(x, y).

The values of � m
N are equal to 0 on the boundary ∂�.

Likewise, we consider Um the vector that corresponds to the velocity vm
N = (vm

Nx, vm
Ny) at

the time tm it is build from:
• the values of vm

Nx at the nodes Fk(ξi, ξj), 1 ≤ i ≤ N – 1, /; j ∈ I∗, and of vm
Ny at the nodes

Fk(ξi, ξj), i ∈ I∗; 1 ≤ j ≤ N – 1;
• the value of vm

Nx at the nodes Fk(ξi,±1), 1 ≤ i ≤ N –1, in the edges of �k that are parallel
to the x-axis and the value of vm

Ny at the nodes Fk(±1, ξj), 1 ≤ j ≤ N – 1, in the edges of �k

that are parallel to the y-axis;
• the values of vm

Nx at the nodes of each edge that are parallel to the y-axis and shared
by two subdomains and the values of vm

Ny at the nodes of each edge that are parallel to the
x-axis and shared by two subdomains;

• in order to verify the condition (3) we delete J values on the nodes of each �j.
Then, we multiply the vector Um by the matching matrix Qu leading to a vector Ûm =

QuUm made of K blocks Um
k . The components vm

ij of Um
k are the expansion of the discrete

velocity vm
N at the nodes of the subdomain �k . Hence, we write

vm
Nx(x, y) =

N–1∑

i=1

∑

j∈I∗
vm

xij (lil∗j ◦ F–1
k )(x, y)

and

vm
Ny(x, y) =

∑

i∈I∗

N–1∑

j=1

vm
yij (l∗i lj ◦ F–1

k )(x, y).

The value of vm
N · n is equal to 0 on the boundary ∂�.

Finally, let the K blocks vector Pm at the time tm where the coefficient of each of them
is made from the value of the pseudopressure p̃m

N at the nodes Fk(ξi, ξj), fori ∈ I∗, j ∈ I∗:

p̃m
N (x, y) =

∑

i∈I∗ ,j∈I∗
pm

ij (l∗i l∗j ◦ F–1
k )(x, y).

The function p̃m
N does not belong to L2

0(�); however, the real pressure pN can be obtained
from the formula:

pm
N (x, y) = p̃m

N (x, y) –
1
2d (p̃m

N , 1)N .
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We represent the discrete problem (9) as a matrix system using the bases of the vorticity,
velocity, and pressure spaces. These unknowns are organized into vectors labeled W , U ,
and P, with dimensions d(d–1)

2 Nd–2
k (Nk – 1)2, dNd–1

k (Nk – 1), and Nd
k – 1, respectively. Since

the viscosity ν does not influence the resolution of the Stokes problem in the same way it
does with the Navier–Stokes problem, we set ν = 1.

If U0 = (U0
1 , U0

2 ), the components of the vectors U0
1 and U0

2 are, respectively, v0
Nx(ξi, ξj)

and v0
Ny(ξi, ξj), where v0

N = (v0
Nx, v0

Ny). Then, for any m, 1 ≤ m ≤ M, since the vectors W m–1,
Um–1, Pm–1 are known we solve the following linear system that represents the discrete
problem (9):

⎧
⎪⎨

⎪⎩

(QT
� CQ� )W m – (QT

� AT Qu)Um = 0
(QT

u AQ� )W m + Um – (QT
u B)Pm = QT

u Fm

(BT Qu)Um = 0,
(10)

where XT denotes the transposed matrix of the matrix X. The expression of matrices A =(
A1 0
0 A2

)

, B = (B1, B2), and C are developed in ([9], Sect. 6).

Finally, for any m, 1 ≤ m ≤ M, we denote Fm =

⎛

⎜
⎝

Fm
1

Fm
2

0

⎞

⎟
⎠. The components of the second

members Fm
1 and Fm

2 are, respectively, (vm–1
Nx , lrl∗s )N +τm(f m

1 , lrl∗s )N , 1 ≤ r ≤ N –1; s ∈ I∗, and
(vm–1

Ny , l∗r ls)N + τm(f m
2 , l∗r ls)N , 1 ≤ s ≤ N – 1; r ∈ I∗, where the data function fm = (f m

1 , f m
2 ).

3.2 Elimination algorithm
The Elimination algorithm is similar to the Uzawa algorithm, which is suitable for solving
the standard Stokes problem (see [1, 11]) with only the velocity and pressure as unknowns.
However, our problem involves three unknowns: velocity, pressure, and vorticity. To apply
this algorithm, we eliminate the third unknown, namely vorticity. Below, we describe the
steps of the resolution process.

We substitute the vorticity into the second equation of system (10), yielding:
⎧
⎪⎨

⎪⎩

W m = [Q–1
� (C–1AT )Qu] Um

[QT
u (AC–1AT )Qu + I] Um – (QT

u B)Pm = QT
u Fm

(BT Qu)Um = 0.
(11)

We consider the matrix Ã = [QT
u (AC–1AT )Qu + I], where I is the identity matrix. We

decouple the two unknowns, Um and Pm. The matrix C is invertible since its diagonal
coefficients are nonzero (see [9], Sect. 6). The second equation of system (11) is written
as:

Um = Ã–1QT
u

(
Fm + B Pm

)
. (12)

By inserting (12) into the third equation of the system (11) we obtain:
[
BT (QuÃ–1QT

u )B
]
Pm = BT (QuÃ–1QT

u )Fm. (13)

To find the discrete pressure Pm, the linear system (13) is solved using the conjugate gra-
dient method since the matrix

[
BT (QuÃ–1QT

u )B
]

is symmetric and positive-definite. The
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same method is applied to system (12) to find the discrete velocity Um. The value of the
vorticity W m is then determined using the first equation of system (11).

Elimination algorithm
• Let Pm

0 be arbitrary.
• Initialization step:

ÃUm
0 = QT

u

(
Fm + B Pm

0

)

(CQ� ) W m
0 = (AT Qu)Um

0 .

• Iterations: q ≥ 0
From Um

q and Pm
q :

Gm
q = (BQu)Um

q

ÃV m
q = (QT

u BT )Gm
q

ρq = ‖Gm
q ‖2

(QT
u BT Gm

q ,V m
q )

Pm
q+1 = Pm

q – ρqGm
q

Um
q+1 = Um

q + ρqV m
q

(CQ� )W m
q+1 = (AT Qu) Um

q+1.

While implementing the Elimination algorithm, we aimed to improve the convergence
time. Unfortunately, convergence was achieved only after many iterations (hundreds of
iterations for an error of order 10–7, as shown in Table 1 and Fig. 2. This is primarily due
to the matrix Ã being very poorly conditioned. Therefore, we propose solving the problem
using a Global inversion approach.

3.3 Resolution by a global inversion
In the Global resolution, we propose to maintain the vorticity in the system (11) and invert
the Global matrix:

⎛

⎜
⎝

QT
� CQ� QT

� (–AT )Qu 0
QT

u (–A)Q� I QT
u B

0 BT Qu 0

⎞

⎟
⎠

⎛

⎜
⎝

W m

Um

Pm

⎞

⎟
⎠ =

⎛

⎜
⎝

0
Fm

0

⎞

⎟
⎠ . (14)

The choice of system (14), which relies on multiplication by Q-type matrices, ensures that
the matrices A, B, and C are fully block-diagonal, with each block corresponding to one
subdomain ωk . In the following, system (14) is solved using the GMRES method, so it does
not need to be assembled. We also use local preconditioners: each block in the Global ma-
trix in (14) is preconditioned by the matrix resulting from its incomplete LU factorization.
Notably, as is standard in spectral methods, the tensorization properties of the polynomial
spaces ensure that each product of these blocks, corresponding to the subdomain �k , with
a vector, is performed with cNd+1 operations, significantly reducing the cost of inversion.

Convergence is achieved in fewer than 20 iterations for a relative error of approximately
10–19 (see Table 2 and Fig. 1). This excellent result was unattainable with the Elimination
algorithm, as shown in Table 1.
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Figure 1 Time error curves from the solution defined in (15)

4 Numerical results
4.1 Two-dimensional experiments
In this section, first, we focus on the time convergence. We consider the square � =
] – 1, 1[2. We look at a given solution obtained thanks to the formulas v = curlψ and
� = curl v.

The functions ψ and p are defined by

ψ(x, y) = t sin(πx) sin(πy), p(x, y) = e–txy. (15)

The velocity is a Gaussian that is null for t = 0. We consider the spectral discrete parameter
N = 40, T = 1 and the time steps τ ∈ {10–1, 10–2, 10–3, 10–4, 10–5, 10–6}. Figure 1 presents
the curves of time convergence for the three terms log‖� – � m

N ‖H(curl,�) (in red), log‖v –
vm

N ‖H(div,�) (in blue), and log‖p – pm
N‖L2(�) (in green) as a function of log(τ ). We note that

the time-convergence order is almost equal to 1.
Hereinafter, we consider τ = 10–6 and T = 1,
As a first step, we proceed with a Bercovier–Engelman analytical solution (see [17])

within the square � =] – 1, 1[2. This test is about the solution (� m, vm, pm) at the time
tm of the Stokes problem. This solution is equal to:

� m(x, y) = 6
(
(1 – x2)(1 – 4x2)(1 – y2)3 + (1 – y2)(1 – 4y2)(1 – x2)3),

vm
x (x, y) = –6(1 – y2)2y(1 – x2)3,

vm
y (x, y) = 6(1 – x2)2x(1 – y2)3,

pm(x, y) = xy.

(16)

Figure 2 presents the error curves on the solution (� m, vm, pm) for N varying from 5 to 20
issued from the solution defined in (16). Figures 2a and b correspond, respectively, to the
resolution by the Elimination method and the resolution by the Global inversion method.
It is clearly shown that the error is better with the Global inversion resolution. Table 1 and
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Figure 2 Error curves for the solution defined in (16)

Table 1 Correlation between the number of iterations and the error for the Elimination method

N 5 7 12 20

Iterations 87 138 270 402
Average error for Elimination method 1.0147 0.1592 0.0003 10–7

Table 2 Correlation between the number of iterations and the error for the Global inversion method

N 5 7 12 20

Iterations 7 15 21 28
Average error for Global inversion method 5.0377 0.0122 10–18 10–23

Table 2 present the number of iterations necessary for convergence and the corresponding
average error for the three unknowns (vorticity, velocity, and pressure). Comparing the
two results, it is clear that the Global inversion method not only achieves better accuracy
but also converges within fewer iterations.

From here, we consider only the resolution with the Global inversion method.
We now present four numerical experiments, in dimension d = 2 and in the case where

the data f and the boundary condition on velocity are defined as:

f = (1, 1) and v · n = 0. (17)

We consider four situations about the domain �. First, we consider the square ] – 1, 1[2

without domain decomposition and ] – 1, 1[2 with domain decomposition, see Fig. 3. Sec-
ondly, we consider the not convex L-shaped domain � =] – 1, 1[2/]0, 1[2 that we decom-
pose into three subdomains, see Fig. 4:

�1 =] – 1, 0[×] – 1, 0[, �2 =] – 1, 0[×]0, 1[, �3 =]0, 1[×] – 1, 0[.

Finally, we consider the multiply connected domain ] – 2, 2[2/] – 1, 1[2 divided into four
equal squares and four equal rectangles, as illustrated in Fig. 4 and with the cut �1 =
]1, 2[×{1}. Figure 5 presents, respectively, from left to right and from top to bottom the
discrete vorticity, the two components of the vector velocity (vm

x , vm
y ) and the pressure for

the data defined in (17) on a spectral mesh grid of the square ] – 1, 1[2 without domain
decomposition, obtained with N = 40.
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Figure 3 The square with and and without domain decomposition

Figure 4 The not convex and multiply connected domains

Figure 6 presents, respectively, from left to right and from top to bottom the discrete
vorticity, the two components of the vector velocity (vm

x , vm
y ), and the pressure for the data

defined in (17) on a spectral mesh grid of the square ] – 1, 1[2 with domain decomposition,
obtained with N = 40. Figure 7 presents, respectively, from left to right and from top to
bottom the discrete vorticity, the two components of the vector velocity (vm

x , vm
y ), and the

pressure for the data defined in (17) on a spectral mesh grid of the nonconvex L-shaped
domain � =] – 1, 1[2/]0, 1[2, obtained with N = 40.

Figure 8 presents, respectively, from left to right and from top to bottom the discrete
vorticity, the two components of the vector velocity (vm

x , vm
y ), and the pressure for the data

defined in (17) on a spectral mesh grid of the decomposition of the multiply connected
square ring domain, obtained with N = 40.

4.2 Three-dimensional experiments
Here, the domain is � =] – 1, 1[3 with τ = 10–6 and T = 1.

We consider a given analytic solution constructed thanks to the formulas vm = curlχm

and � m = curl vm, we construct the analytic solution where χm = (χm
x ,χm

y ,χm
z ), the stream
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Figure 5 The discrete solution on the square ] – 1, 1[2 issued from (17)

Figure 6 The discrete solution on the decomposed square ] – 1, 1[2 issued from (17)

vector, and pm are defined by

χm
x (x, y, z) = (1 – y2)3(1 – z2)3, χm

y (x, y, z) = (1 – x2)3(1 – z2)3,
χm

z (x, y, z) = (1 – x2)3(1 – y2)3, pm(x, y, z) = xyz.
(18)
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Figure 7 The discrete solution on the L-shaped domain � =] – 1, 1[2/]0, 1[2 issued from (17)

Figure 8 The discrete solution on the square ring domain ] – 2, 2[2/] – 1, 1[2 issued from (17)

Figure 9 presents the error curves for � m, vm, and pm, with N varying from 5 to 18.
Given that the regularity of the solutions in (18) is C∞, the slopes of the error curves are
very similar to those in Fig. 2b.

We note that for three-dimensional calculations, the matrices are not sparse and have a
large order, necessitating a relatively small maximum value for N = 18.
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Figure 9 Error curves for the solution defined from (18)

5 Conclusion and future work
In this work, we highlight the efficiency of the Global inversion method compared to the
Elimination method for solving the discrete problem arising from the spectral-element
discretization of the time-dependent vorticity, velocity, and pressure formulation of the
Stokes problem. The Global inversion method achieved good convergence. We present
several numerical tests on a spectral mesh applied to nonconvex and multiply connected
domains.

For future work, we aim to discretize the time-dependent nonlinear Navier–Stokes
problem using the spectral-element method.
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