
Zhu Boundary Value Problems         (2024) 2024:85 
https://doi.org/10.1186/s13661-024-01894-8

R E S E A R C H Open Access

Existence of positive periodic solutions for
Liénard equation with a singularity of
repulsive type
Yu Zhu1*

*Correspondence:
404665116@qq.com
1Ma’anshan University Maanshan
243000, P.R. China

Abstract
In this paper, the existence of positive periodic solutions is studied for Liénard
equation with a singularity of repulsive type,

x′′(t) + f (x(t))x′(t) + ϕ(t)xμ(t) –
1

xγ (t)
= e(t),

where f : (0, +∞) → R is continuous, which may have a singularity at the origin, the
sign of ϕ(t), e(t) is allowed to change, and μ, γ are positive constants. By using a
continuation theorem, as well as the techniques of a priori estimates, we show that
this equation has a positive T -periodic solution when μ ∈ [0, +∞).
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1 Introduction
Since singular equations have a wide range of application in physics, engineering, mechan-
ics, and other subjects (see [1–7]), the periodic problem for a certain second order differ-
ential equation has attracted much attention from many researchers. In the past years,
lots of papers (see [8–14]) were concerned with the problem of periodic solutions to the
second order singular equation without the first derivative term,

x′′ + ϕ(t)x –
b(t)
xμ

= h(t), (1.1)

where f : [0,∞) →R is continuous, ϕ, b, h ∈ L1[0, T], and μ > 0 is a constant. Among these
papers, we notice that the coefficient function ϕ(t) is required to be

ϕ(t) ≥ 0 for a.e. t ∈ [0, T]. (1.2)

This is because (1.2), together with other conditions, can ensure that the function G(t, s) ≥
0 for (t, s) ∈ [0, T] × [0, T], where the G(t, s) is the Green function associated with the
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boundary value problem for Hill’s equation

x′′(t) + ϕ(t)x(t) = h(t), x(0) = x(T), x′(0) = x′(T).

The condition G(t, s) ≥ 0 for (t, s) ∈ [0, T] × [0, T] is crucial for obtaining the positive pe-
riodic solutions to (1.1) by means of some fixed point theorems on cones. Beginning with
the paper of Habets–Sanchez [15], many works (see [16–21]) discussed the existence of a
periodic solution for Liénard equations with singularities,

x′′(t) + f (x(t))x′(t) + ϕ(t)x(t) –
1

xγ (t)
= e(t), (1.3)

where ϕ(t) and e(t) are T-periodic with ϕ, e ∈ L1[0, T], while γ is a constant with γ > 0.
However, in those papers, the conditions of ϕ(t) ≥ 0 for a.e. t ∈ [0, T], the strong singu-
larity γ ∈ [1, +∞), and f (x) being continuous on [0, +∞) are needed. To the best of our
knowledge, there are fewer papers dealing with the equation where the function f (x) pos-
sesses a singularity at x = 0. We find that Hakl, Torres, and Zamora in [22] considered the
periodic problem for the singular equation of repulsive type,

x′′(t) + f (x(t))x′(t) + ϕ(t)xμ(t) + g(x(t)) = 0, (1.4)

where μ ∈ (0, 1] is a constant, ϕ is a T-periodic function with ϕ ∈ L1([0, T], R), and the sign
of ϕ(t) can change, while f ∈ C((0, +∞), R) may be singular at x = 0 and g ∈ C((0, +∞), R)
has a repulsive singularity at x = 0, i.e., limx→0+ g(x) = –∞. By using Schauder’s fixed
point theorem, some results on the existence of positive T-periodic solutions were ob-
tained. However, the strong singularity condition

∫ 1
0 g(s)ds = –∞ is also required. In a

recent paper [23], the authors consider the periodic problem to (1.4) for the special case
g(x) = 1

xγ , where γ ∈ (0, +∞). But, in [23], the function ϕ(t) is required to satisfy ϕ(t) ≥ 0
a.e. t ∈ [0, T] for the case μ > 1 (see Theorem 3.1, [23]). Motivated by this, in the present
paper, we continue to study the periodic problem for the singular equation,

x′′(t) + f (x(t))x′(t) + ϕ(t)xμ(t) –
1

xγ
= e(t), (1.5)

where f , ϕ are as same as those in (1.4); μ > 0 and γ > 0 are constants, e is a T-periodic
function with e ∈ L1([0, T], R), and

∫ T
0 e(s)ds = 0. By means of a continuation theorem of

coincidence degree principle developed by Manásevich and Mawhin, as well as the tech-
niques of a priori estimates, some new results on the existence of positive periodic so-
lutions are obtained. The interesting point in this paper is that the function f (x) has a
singularity at x = 0, the sign of ϕ(t) is allowed to change, and μ,γ ∈ (0, +∞). Compared
with [22], we allow the singular term 1

xγ to have a weak singularity, i.e., γ ∈ (0, 1). Also, for
the case of μ > 1, the sign of ϕ(t) is allowed to change, which is essentially different from
the condition ϕ(t) ≥ 0 for a.e. t ∈ [0, T] in [23].

2 Essential definitions and lemmas
Throughout this paper, let CT = {x ∈ C(R, R) : x(t + T) = x(t),∀t ∈ R} with the norm |x|∞ =
maxt∈[0,T] |x(t)|. Clearly, CT is a Banach space. For any T-periodic function x(t), we denote
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x̄ = 1
T

∫ T
0 x(s)ds, x+(t) = max{x(t), 0}, and x– = – min{x(t), 0}. Thus, x(t) = x+(t) – x–(t) for all

t ∈ R, and x = x+ –x–. Furthermore, for each u ∈ CT , let ‖u‖p = (
∫ T

0 |u(s)|pds)
1
p , p ∈ [1, +∞).

Lemma 2.1 ([24]) Assume that there exit positive constants M0 and M1, with 0 < M0 < M1,
such that the following conditions hold:

(1) for each λ ∈ (0, 1], each possible positive T-periodic solution u to the equation

x′′(t) + λf (x(t))x′(t) + λϕ(t)xμ(t) –
λ

xγ (t)
= 0

satisfies the inequality M0 < u(t) < M1 for all t ∈ [0, T];
(2) each possible solution c ∈ (0, +∞) to the equation

1
cγ

– ϕcμ = 0

satisfies the inequality M0 < c < M1;
(3) the inequality

( 1
Mγ

0
– ϕMμ

0

)( α

Mγ
1

– ϕMμ
1

)
< 0

holds.
Then equation has at least one positive T-periodic solution u(t) such that M0 < u(t) < M1

for all t ∈ [0, T].

Lemma 2.2 ([22]) Let u(t) : [0,ω] → R be an arbitrary absolutely continuous function with
u(0) = u(ω). Then the inequality

(
max

t∈[0,ω]
u(t) – min

t∈[0,ω]
u(t)

)2 ≤ ω

4

∫ ω

4
|u′(s)|2ds

holds.

Remark 2.3 If ϕ > 0, then there are constants C1 and C2 with 0 < C1 < C2 such that

1
xγ

– ϕxμ > 0 ∀x ∈ (0, C1) (2.1)

and

1
xγ

– ϕxμ < 0 ∀x ∈ (C2, +∞). (2.2)

Now, we embed equation (1.5) into the following equation family with a parameter λ ∈
(0, 1]:

x′′(t) + λf (x(t))x′(t) + λϕ(t)xμ(t) – λ
1

xγ (t)
= λe(t). (2.3)

Let

D =
{

x ∈ C1
T : x′′(t) + λf (x(t))x′(t) + λϕ(t)xμ(t) – λ

1
xγ (t)

= λe(t),λ ∈ (0, 1]
}

, (2.4)
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and

F(x) =
∫ x

1
f (s)ds, G(x) =

∫ x

1
sγ f (s)ds, x ∈ (0, +∞). (2.5)

Lemma 2.4 Assume ϕ > 0 and e = 0, then there are two constants τ1, τ2 ∈ [0, T] for each
u ∈ D, such that

u(τ1) ≤ max
{

1,
( 2

ϕ

) 1
μ
}

:= A0 (2.6)

and

u(τ2) ≥ min
{

1,
( 1

ϕ+

) 1
γ
}

:= A1. (2.7)

Proof Let u ∈ D, then

u′′(t) + λf (u(t))u′(t) + λϕ(t)uμ(t) –
λ

uγ (t)
= λe(t). (2.8)

Dividing both sides of (2.8) by uμ(t) and integrating over the interval [0, T], we obtain

∫ T

0

u′′(t)
uμ(t)

dt + λTϕ = λ

∫ T

0

1
uμ+γ (t)

dt + λ

∫ T

0

e(t)
uμ(t)

dt.

Since the inequality
∫ T

0
u′′(t)
uμ(t) dt ≥ 0 holds, it is easy to see that

λTϕ ≤ λT
1

uμ+γ (ξ )
+ λT

e+

uμ(τ1)
,

i.e.,

0 < ϕ ≤ 1
uμ+γ (ξ )

+
1

uμ(τ1)
. (2.9)

From this, we can verify (2.6). In fact, if (2.6) does not hold, then

u(t) > max
{

1,
( 2

ϕ

) 1
μ+γ

}
, ∀t ∈ [0, T], (2.10)

which together with (2.9) gives

0 < ϕ ≤ 1
uμ(τ1)

+
ϕ

2
,

i.e.,

u(τ1) <
( 2

ϕ

) 1
μ . (2.11)
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On the other hand, (2.10) implies that u(τ1) > 1. It follows from (2.11) that ( 2
ϕ

)
1
μ > 1, i.e.,

2
ϕ

> 1. By using (2.11) again, we get

u(τ1) <
( 2

ϕ

) 1
μ+γ , (2.12)

which contradicts with (2.10), verifying (2.6).
Integrating both sides of (2.8) over the interval [0, T], we obtain

∫ T

0
ϕ(t)uμ(t)dt –

∫ T

0

1
uγ (t)

dt =
∫ T

0
e(t)dt.

Since
∫ T

0 e(t)dt = Tē = 0, it follows that
∫ T

0 ϕ(t)uμ(t)dt =
∫ T

0
1

uγ (t) dt. If

u(t) < 1 ∀t ∈ [0, T], (2.13)

then
∫ T

0

1
uγ (t)

dt ≤
∫ T

0
ϕ+(t)uμ(t)dt ≤ Tϕ+.

By using the mean value theorem for integrals, we get that there is a point ξ ∈ [0, T] such
that

T
uγ (ξ )

≤ Tϕ+,

i.e.,

u(ξ ) ≥
( 1

ϕ+

) 1
γ . (2.14)

Thus (2.7) immediately follows from (2.13) and (2.14). �

Lemma 2.5 Assume ϕ > 0 and e = 0 for a.e. t ∈ [0, T] and suppose that the following as-
sumptions:

B0 = inf
[A1,+∞)

H(x) > –∞ (2.15)

and

lim
s→0+

(
F(s) +

T
sγ

)
< B0 – Te+ (2.16)

hold, where H(x) = F(x) – Tϕ–xμ. Then there is a constant γ0 > 0 such that

min
t∈[0,T]

u(t) ≥ γ0, uniformly for u ∈ D. (2.17)

Proof Let u ∈ D, then u satisfies

u′′(t) + λf (u(t))u′(t) + λϕ(t)uμ(t) – λ
1

uγ (t)
= λe(t). (2.18)
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Since u ∈ D, it is easy to see that there are two points t1, t2 ∈ R such that u(t1) =
maxt∈[0,T] u(t), u(t2) = mint∈[0,T] u(t), and 0 < t1 – t2 ≤ T . By integrating (2.18) over the
interval [t2, t1], we get

F(u(t1)) = F(u(t2) +
∫ t1

t2

1
uγ (t)

dt –
∫ t1

t2

ϕ(t)uμ(t)dt +
∫ t1

t2

e(t)dt

≤ F(u(t2)) +
T

uγ (t2)
+ Tϕ–uμ(t1) + Te+,

and then

F(u(t2)) +
T

uγ (t2)
≥ F(u(t1)) – Tϕ–uμ(t1) – Te+

≥ inf
[A1,+∞)

H(x) – Te+

= B0 – Te+.

(2.19)

Assumption (2.16) ensures that there is a constant γ0 > 0 such that

F(s) +
T
sγ

< B0 – Te+, for s ∈ (0,γ0). (2.20)

Combining (2.19) with (2.20), we get that

min
t∈[0,T]

u(t) = u(t2) ≥ γ0. (2.21)
�

Lemma 2.6 Assume ϕ > 0 and e = 0 for a.e. t ∈ [0, T] and suppose that the following as-
sumptions:

B0 = inf
[A1,+∞)

H(x) > –∞, (2.22)

lim
s→0+

(
F(s) +

T
sγ

)
< B0 – Te+, (2.23)

and

lim
s→+∞(F(s) – Tϕ+sμ) = +∞ (2.24)

hold. Then, there exists a constant γ1 > 0 such that

max
t∈[0,T]

u(t) ≤ γ1, uniformly for u ∈ D. (2.25)

Proof Since u ∈ D, the function u satisfies (2.18). Then there are two points t1, t2 ∈ R such
that u(t1) = maxt∈[0,T] u(t), u(t2) = mint∈[0,T] u(t), and 0 < t2 – t1 < T . By integrating over the
interval [t1, t2], we get

F(u(t1)) = F(u(t2) –
∫ t2

t1

1
uγ (t)

dt +
∫ t2

t1

ϕ(t)uμ(t)dt –
∫ t2

t1

e(t)dt

≤ F(u(t2)) + Tϕ+uμ(t1) + Te–,
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thus, by the assumptions of (2.6), (2.22), and (2.24), according to the proof of Lemma 2.4,
we obtain

γ0 ≤ u(t2) = min
t∈[0,T]

u(t) ≤ A0. (2.26)

So, we have

F(u(t1)) – Tϕ+uμ(t1) ≤ F(u(t2)) + Te–

≤ max
x∈[γ0,A0]

F(x) + Te–.
(2.27)

Assumption (2.24) now ensures that there is a constant γ1 > γ0 > 0 such that

F(s) – Tϕ+sμ > max
x∈[γ0,A0]

F(x) + Te– for all s ∈ (γ1, +∞). (2.28)

Therefore, (2.27) and (2.28) imply

max
t∈[0,T]

u(t) = u(t1) ≤ γ1, uniformly for u ∈ D. (2.29)
�

Lemma 2.7 Assume ϕ > 0 and e = 0 for a.e. t ∈ [0, T] and suppose that the following as-
sumptions:

C0 = sup
[A1,+∞)

H1(x) < +∞ (2.30)

and

lim
s→0+

(F(s) –
T
sγ

) > C0 + Te+ (2.31)

hold, where H1(x) = F(x) + Tϕ–xμ. Then there is a constant γ2 > 0 such that

min
t∈[0,T]

u(t) ≥ γ2, uniformly for u ∈ D. (2.32)

Proof Since u ∈ D, it is easy to see that there exist two points t1, t2 ∈ R such that u(t1) =
maxt∈[0,T] u(t), u(t2) = mint∈[0,T] u(t), and 0 < t2 – t1 < T . By integrating over the interval
[t1, t2], we get

F(u(t2)) = F(u(t1) +
∫ t2

t1

1
uγ (t)

dt –
∫ t2

t1

ϕ(t)uμ(t)dt +
∫ t2

t1

e(t)dt

≤ F(u(t1)) +
T

uγ (t2)
+ Tϕ–uμ(t1) + Te+,

and then

F(u(t2)) –
T

uγ (t2)
≤ F(u(t1)) + Tϕ–uμ(t1) + Te+

≤ sup
[A1,+∞)

H1(x) + Te+

= C0 + Te+.

(2.33)
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Assumption (2.31) ensures that there is a constant γ2 > 0 such that

F(s) –
T
sγ

> C0 + Te+, for s ∈ (0,γ2).

So, it is easy to see from (2.33) that

u(t2) = min
t∈[0,T]

u(t) ≥ γ2. (2.34)
�

Lemma 2.8 Assume ϕ > 0 and e = 0 for a.e. t ∈ [0, T] and suppose that the following as-
sumptions:

C0 = sup
[A1,+∞)

H1(x) < +∞, H1(x) = F(x) + Tϕ–xμ, (2.35)

as well as

lim
s→0+

(F(s) –
T
sγ

) > C0 + Te+ (2.36)

and

lim
s→+∞(F(s) + Tϕ–sμ +

T
sγ

) = –∞, (2.37)

hold. Then, there exists a constant γ3 > 0 such that

max
t∈[0,T]

u(t) ≤ γ3, uniformly for u ∈ D. (2.38)

Proof Let u ∈ D, then u satisfies (2.18). Let t1 and t2 be defined as in the proof of
Lemma 2.6, that is, u(t1) = maxt∈[0,T] u(t), u(t2) = mint∈[0,T] u(t), and 0 < t2 – t1 < T . By
integrating over the interval [t1, t2], we get

F(u(t1)) = F(u(t2) –
∫ t2

t1

1
uγ (t)

dt +
∫ t2

t1

ϕ(t)uμ(t)dt –
∫ t2

t1

e(t)dt

≥ F(u(t2)) –
T

uγ (t1)
– Tϕ–uμ(t1) – Te+.

(2.39)

Thus, by the assumptions of (2.6), (2.35), and (2.36), and according to the proof of
Lemma 2.6, we have

γ2 ≤ u(t2) = min
t∈[0,T]

u(t) ≤ A0, (2.40)

which together with (2.39) yields

F(u(t1)) + Tϕ–uμ(t1) +
T

uγ (t1)
= F(u(t2) – Te+

≥ min
x∈[γ2,A0]

F(x) – Te+.
(2.41)
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On the other hand, assumption (2.37) gives that there exits a constant γ3 > 0 such that

F(s) + Tϕ–sμ +
T
sγ

< min
x∈[γ2,A0]

F(x) – Te+, s ∈ (γ3, +∞). (2.42)

Combining (2.41) with (2.42), we get that

u(t1) = max
t∈[0,T]

u(t) ≤ γ3. (2.43)
�

3 Main results
Theorem 3.1 Assume ϕ > 0 and e = 0 for a.e. t ∈ [0, T] and suppose that the assumptions
of (2.15) and (2.16) in Lemma 2.4, as well as the assumption (2.24) in Lemma 2.5, hold.
Then for each μ ∈ [0, +∞), equation (1.5) has at least one positive T-periodic solution.

Proof Due to assumptions of Lemma 2.4, we see that there are two constants γ0 > 0, γ1 > 0
such that min u(t) ≥ γ0, max u(t) ≤ γ1.

Now, we will show that there exists a positive constant M > 0 such that maxt∈[0,T] |u′(t)| ≤
M, uniformly for u ∈ D. If u(t1) = maxt∈[0,T], t1 ∈ [0, T], then u′(t1) = 0. Letting t ∈ [0, T],
we integrate (2.8) over the interval [t1, t] and get

∫ t

t1

u′′(t)dt + λ

∫ t

t1

f (u(t))u′(t)dt + λ

∫ t

t1

ϕ(t)uμ(t)dt – λ

∫ t

t1

1
uγ (t)

dt = λ

∫ t

t1

e(t)dt, (3.1)

which yields

u′(t) = λ

∫ t

t1

(–f (u(t))u′(t) – ϕ(t)uμ(t) +
1

uγ (t)
+ e(t))dt, (3.2)

and then we obtain

|u′(t)| ≤ λ|F(u(t)) – F(u(t1))| + λ

∫ t1+T

t1

| 1
uγ (t)

|dt + λ

∫ t1+T

t1

|e(t)|dt

+ λ

∫ t1+T

t1

|ϕ(t)uμ(t)|dt

≤ 2 max
γ0≤u≤γ1

|F(u(t))| +
T
γ

γ
0

+ Te+ + T |ϕ|γ μ
1

:= M, for all t ∈ [0, T].

(3.3)

So, we have

max
t∈[0,T]

|u′(t)| ≤ M, uniformly for u ∈ D. (3.4)

Let m1 = min{γ0, D1} and m2 = {γ1, D2} be two constants, where D1 and D2 are the con-
stants determined in Remark 2.3. Then we get that every possible positive T-periodic
solution x(t) to equation (1.5) satisfies

m1 < x(t) < m2, |x′(t)| < M, for all t ∈ [0, T]. (3.5)
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Furthermore, we have

(
ϕmμ

1 –
1

mγ
1

)(
ϕmμ

2 –
1

mγ
2

)
< 0, (3.6)

by using Lemma 2.1, thus equation (1.5) has at least one positive T-periodic solution.
On the other hand, by Lemmas 2.6 and 2.7, we get the same conclusion as in Theo-

rem 3.1, which can be proved similarly. Thus, the proofs are omitted. �

Theorem 3.2 Assume ϕ > 0 and e = 0 for a.e. t ∈ [0, T] and suppose that the assumptions
of (2.30) and (2.31) in Lemma 2.6, as well as the assumption (2.37) in Lemma 2.7, hold.
Then for each μ ∈ [0, +∞), equation (1.5) has at least one positive T-periodic solution.

4 Example
In this section, we present two examples to demonstrate the main results.

Example 4.1 Considering the following equation:

x′′(t) +
[ 3

x4 +
(25π

6
+ 5

)
x

3
2
]
x′(t) + (1 + 2 cos t)x

3
2 (t) –

1
x2(t)

= sin t. (4.1)

Corresponding to equation (1.5), in (4.1), e(t) = sin(t), ϕ(t) = 1 + 2 cos t, T = 2π . Obviously,
ϕ = 1 > 0, and e = 0 for all t ∈ [0, T] with ϕ+ = 5

6 + 1
π

and ϕ– = 1
π

– 1
6 . Since F(x) = – 1

x3 +
( 5π

3 + 2)x 5
2 , we can easily verify that equation (4.1) satisfies

B0 = inf
[A1,+∞)

(
F(x) – Tϕ–x

3
2
)

> –∞, (4.2)

lim
x→0+

(F(x) +
2π

x2 ) = –∞, (4.3)

and

lim
x→+∞

(
F(x) – Tϕ+x

3
2
)

= +∞. (4.4)

Obviously, (4.2), (4.3), and (4.4) imply that assumptions (2.15), (2.16), and (2.24) hold.
Thus, by using Theorem 3.1, equation (4.1) has at least one positive 2π-periodic solution.

Example 4.2 Now consider

x′′(t) –
[ 3

x4 +
(

5 –
5π

6

)
x

3
2
]
x′(t) + (1 + 2 cos t)x

3
2 (t) –

1
x2(t)

= sin t. (4.5)

Corresponding to equation (1.5), here, e(t) = sin t, ϕ(t) = 1 + 2 cos t, T = 2π . Clearly, ϕ =
1 > 0, and e = 0 for all t ∈ [0, T] with ϕ+ = 5

6 + 1
π

and ϕ– = 1
π

– 1
6 . Since F(x) = 1

x3 – (2 – π
3 )x 5

2 ,
we can easily verify that (4.1) satisfies

C0 = sup
[A1,+∞)

(
F(x) + Tϕ–x

3
2
)

< +∞, (4.6)

lim
x→0+

(
F(x) –

2π

x2

)
= +∞, (4.7)
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and

lim
x→+∞

(
F(x) + 2πϕ–x

3
2 +

2π

x2

)
= –∞. (4.8)

Obviously, (4.6), (4.7), (4.8) imply that assumptions (2.30), (2.31), and (2.37) hold. Thus,
by using Theorem 3.2, equation (4.5) has at least one positive 2π-periodic solution.

Remark 4.3 In (4.5), since μ = 3
2 > 1 and ϕ(t) = 1 + 2 cos t is a sign-changing function, the

result of Example 4.2 can be obtained neither by using the main results of [23], nor by using
the theorems of [23]. In this sense, the theorems of the present paper are new results on
the existence of positive periodic solutions for singular Liénard equations.
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