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1 Introduction

The magnetomicropolar boundary layer equations were derived from the 2D incompress-
ible magnetomicropolar equations on the half-space when we consider the asymptotic
behavior of solutions as the parameters tend to zero, see [13]. In this paper, we shall con-
sider the existence and uniqueness of solutions for the following 2D magnetomicropolar
boundary layer equations on the upper half-plane R? = {(x,y) : x € R,y € R,}, which read

as

8;141 + ulaxul + ugayl/tl - 2K8yw1 — ,U,aiul — l’)l 8xb1 — bgaybl =0,
atbl + I/llaxbl + leaybl - Uaibl - bgaylxll =0, (11)
QW1 + U 0w + Updywy + 2k Dyt — yayzwl =0,

8xu1 + Byu2 =0, 8xb1 + 8yb2 =0,

where the unknown functions (1, u3), (b1, b2), and w; stand for the velocity field, the mag-
neto field and the microrotational velocity, respectively. The positive constants u, «, v, y
are associated with the properties of the materials.  is the Newtonian kinematic viscosity
coefficient,  is the microrotation viscosity coefficient, v is the resistivity coefficient, and

y is the spin viscosity coefficient.
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The problem (1.1) is subject to the initial data and the boundary conditions

uy (t,%,9) =0 = uo(x, ), b1(t,%,9)|e=0 = bo(x, ),

w1t %,9) =0 = wo(x, ),

(1.2)
u1(t, % )|y=0 = 2(t, % y)|y=0 = b1(£,%,)|y-0
= ba(t,%,9)ly=0 = w1(t, %,9)y=0 = 0.
The far field is represented by (i, b, w)
lim (ulrblrwl) = (ﬁ)érﬁ}) (13)

y—>0o0

To start with, let us briefly review some known results of the problem (1.1). In particular,
when the magneto field (b1, b,) and the microrotational velocity w; do not exist, the prob-
lem (1.1) reduces to the classical Prandtl equations that were first introduced formally by
Prandtl [24] in 1904. This system is the foundation of the boundary layer theory. It says
that the flow about a solid body can be divided into two regions: a very thin layer in the
neighborhood of the body (the boundary layer) where viscous friction plays an essential
part, and the remaining region outside this layer where friction may be neglected (the
outer flow). Formally, the asymptotic limit of the Navier—Stokes equations can be denoted
by the Prandtl equations within the boundary layer and by the Euler equations away from
boundary layer. About sixty years later, Oleinik [22] established the first systematic work
in strictly mathematics, in which she pointed out that the local-in-time well posedness
of solutions to the 2D Prandtl system can be proved by using the Crocco transformation
under the monotonicity condition on the tangential velocity field in the normal variable to
the boundary. This result together with a detailed description of the boundary layer theory
was showed in the classical book by Oleinik—Samokhin [23]. Recently, the well-posedness
result was reproved by using an energy method in the framework of Sobolev spaces in [1]
and [21] independently by observing the cancelation mechanism in the convection terms.
By imposing an additional favorable condition on the pressure, a global-in-time weak so-
lution was obtained in [31].

There have been some results in the analytic framework with analytic radius 7(¢) for the
2D and 3D boundary layer equations. First, Kukavica et al. [11] investigated the local well
posedness of solutions to the 2D Prandtl and hydrostatic Euler equations by the energy
method. Kukavica and Vicol [12] considered the local well posedness of solutions to the
2D Prandtl boundary layer equations with general initial data by using analytic energy es-
timates. Later, Ignatova and Vicol [10] studied the almost global existence and uniqueness
of the solution for the 2D Prandtl equations in an exponential weighted space by applying
analytic energy estimates. Xie and Yang [29] studied the global existence of solutions to the
2D MHD boundary layer equations in the mixed Prandtl and Hartmann regime when the
initial datum is a small perturbation of the Hartmann profile, and the solutions in the ana-
lytic norm exponentially decay in time. Recently, Liu and Zhang [19] established the global
existence and the asymptotic decay estimate of solutions to the 2D MHD boundary layer
equations with small initial data. Inspired by [10], Xie and Yang [30] investigated the lifes-
pan of the solution to the 2D MHD boundary layer system by using the cancelation mech-
anism and obtained that the lifespan of the solution has a lower bound. Dong and Qin [5]
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obtained the global well posedness of solutions to the 2D Prandtl-Hartmann equations in
the analytic framework by the standard energy method. Motivated by [12], Lin and Zhang
[13] studied the local existence of solutions for the 2D incompressible magnetomicropo-
lar boundary layer equations when the initial data are analytic in the x variable by using
the energy method. Lin and Zhang [14] proved the lifespan of solutions to the 3D Prandtl
system with the initial data that lie within ¢ of a stable shear flow in Chemin-Lerner-type
spaces by using anisotropic Littlewood—Paley energy estimates. There are also some re-
sults for the boundary layer equations by using the methods that are different from the
energy method. For interested readers, we refer to [2—4, 7, 16, 20, 32] and the references
therein for the recent progress.

For the MHD boundary layer equations, there have been some results in the Sobolev
framework for the 2D MHD boundary layer equations. Liu, Xie, and Yang [17] investi-
gated the local existence and uniqueness of solutions in a weighted Sobolev space for the
2D nonlinear MHD boundary layer equations by using the energy method. As a continu-
ation of [17], the same authors [18] proved the validity of the Prandtl boundary layer ex-
pansion and gave a L* estimate on the error by multiscale analysis. Liu et al. [15] proved
the local well posedness of solutions to the 2D MHD boundary layer equations in Sobolev
spaces. Finally, they obtained the linear instability of the 2D MHD boundary layer when
the tangential magneto field is degenerate at one point. So far, besides the well posedness
of solutions in Sobolev framework and analytic framework, there also have some results on
the vanishing limits [26—28] for the incompressible MHD systems. Huang, Liu, and Yang
[9] attained the local well posedness of solutions to the 2D compressible MHD boundary
layer in weighted Sobolev spaces by applying the classical iteration scheme. Gao, Huang,
and Yao [6] investigated the local well posedness of solutions for 2D incompressible MHD
boundary layer equations in weighted conormal Sobolev spaces.

Motivated by [10, 30], we investigate the well posedness of solutions to the 2D magne-
tomicropolar boundary layer equations (1.1)—(1.3) in an analytic framework by the stan-
dard energy method. Similar to the classical Prandtl equations, the difficulty of solving the
problem (1.1)—(1.3) in the Sobolev framework is the loss of the x-derivative in the term
vdyu. To overcome this, we show the Gaussian weighted Poincaré inequality (see Lemma
2.3). In other words, the Poincaré inequality does not hold in unbounded domains. In ad-
dition, we also construct a set of functions (see (2.16)) to eliminate a technical difficulty.
Compared to the existence and uniqueness of solutions to the classical Prandtl equations
in weighted Sobolev spaces where the monotonicity condition of the tangential velocity
plays a key role or the 2D MHD boundary layer equations where the initial tangential mag-
netic field has a lower bound plays an important role, these conditions are not needed for
the well posedness of solutions to the 2D magnetomicropolar boundary layer equations
(1.1)—(1.3) in the analytic framework. Compared to the result in [30], some new estimates
of the microrotational velocity w are needed for the well-posedness of solutions for the
2D magnetomicropolar boundary layer equations in this paper.

Finally, the rest of the paper is organized as follows. In Sect. 2 we show the main result in
this paper and give some lemmas that will be used frequently. In Sect. 3 we prove the exis-
tence and uniqueness of solutions for problem (1.1)—(1.3) by using the classical bootstrap
argument.

Hereafter, let letter C be a general positive constant, which may vary from line to line at
each step.
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2 Main result and preliminary estimates

Without loss of generality, taking b = w = 1 and x = = v = 1. First, a shear flow
(#°(t,9),0,1,0,1) is a trivial solution to problem (1.1)—(1.3) with #°(¢, y) being the solution
of the heat equations

du'—uw =0, (t,y)eR, xRy,
Wlyo=0, and limy,,cu'=1, teR,, (2.1)

Wleo=1(y), yER,.
As in [30], we assume the shear flow #°(t, y) has the following properties:

(o
(t)i/z’

C
(t>3/4’

oo
Jojae ] - < =12 /‘ayus]dy<(7, Jeuoue] < (2.2)
0

where C is a positive constant, 6,, = exp (%) and notation (¢) = (1 + £).
Motivated by [10, 30], we use the following Gaussian weighted function 6, to introduce
the function space of the solutions,

az? y
= - i = T 1 471 )
B4 exp( 1 ) with z o] a€[1/4,1/2]

which combined with

M, = (m+ 1)’
m!

define the Sobolev weighted seminorms by

X =X (> T) = 100 Nl 22) T" Moms
Dy = Dp(f, ) = 116020y f | 22y " Mim, (2.3)
You = You(f, 7) = 10202 Nl 2 p2) T M.

Then, the following space of analytic functions in the tangential variable x and weighted
Sobolev in the normal variable y is defined by

Xew = {f(th;y) € L* (Ri;@a dxdy) : ”f”Xf,a < OO},
with 7 > 0 and the norms

W lxe e = Dm0 X (5 T)s
”f”Dz,a = Zmzo Dm(f’r)r (2.4)
”f”Yr,u = Zmzl YWI(f’T)'

We can now state our main result as follows.

Theorem 2.1 Let the initial data (u1(0), b1(0), w1(0)) satisfy

(MI(O) - us(o): bl (O) -Lw (0) - 1) € Xro,ou (25)
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with%fafl

5 and assume that there exists an analyticity radius Ty such that

8C, 3
72 <7l (2.6)

Then, there exists a unique solution (u,v, b, g, w) to the magnetomicropolar boundary layer
problem (1.1)—(1.3) such that

(w1 =, b1 =1, wy — 1) € Xe g, (2.7)

with analyticity radius v larger than 7 in the time interval [0,T], where T =

3
min{(é 1'07)% —1,T1} and C,, Ty be given by (3.59) and (3.60), respectively.

The following two main estimates on the functions in the norms defined in the previous
section will be used frequently, whose proofs are given in [8, 10, 30].

Lemma 2.2 (Agmon inequality [10]) Let f € H'(R?), then

”f”LOOLZ = C”f”LZ(R2 ”f”Hl le

Lemma 2.3 ([8, 10]) Let f be a function such that f1,-o = 0 (or 3,f1,-0 = 0) and fy-o = 0.
Then, for m > 0 and t > 0, it holds that

05 10 3'”f|| < 160,3f 117

L2’
60y ) i s (2.8)
m20 o T o g2, M = ” T lfllp.
fora €[1/4,1/2] and B € (0,1/2).
Lemma 2.4 ([30]) Let f be a function such that f|,-o = 0. Then, it holds that
1
12050 < CIIGJIILZ o)1 aJ||L2(R2 D418 iy 09

1155 = COS 1, 1600 1 160 a,fn SRRV

Next, we are going to establish the uniform estimates of solutions for problem (1.1)-
(1.3). For our purpose, we first rewrite the solutions to problem (1.1)—(1.3) as a perturba-
tion (u,v,b,g, w) of the (¢°,0,1,0, 1) by standing for

I/l1=I:l+I/ts, b1=B+1, W1=ﬁ/+1,
(2.10)
Uy = 17, b2 :g.
Then, equations (1.1)—(1.3) can be converted to
Oyt + (u® + 1)yt + V0, (i1 + u®) — 20, W — 0201 — (b + 1)d.b - §d,b = 0,
7 a7 = F a2f (] ~ ~ _
;b + (4 + )0, + V0,b — ayb — (b +1)0,is — g0, (it + u®) = 0, (2.11)

QW + (u® + 7) 3w + 9, + 20, (it + ) — 37w = 0,

8xﬁ + 8y17 = 0, axé + ayg =

Page 5 of 20
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The initial and boundary data of (i, ¥, b, g, W) are given by

u(t, %, 9)|i-0 = ito(x,y) — u°(0,),

b(t, %) =0 = bo%,9) =1, W(t,%,9)|i=0 = Wo(%,) — 1,

’:t|y:0 = ijly:O = 01 l;ly:O :§|y:0 = 01 I7V|y:0 = 0’
with the corresponding far-field condition

lim (i, b, W) = 0.

y—>o0

As in [30], integrating equation (2.11), over [0, y] yields that

Y . - Y .
at/ bd5/+f/(1+b)—(u5+£¢)g=8y2/ bdy,
0 0

where we have used the boundary conditions b|,-¢ = v|,-9 = gl,-0 = 0.

Define
y 7 o~
v - [ bay
0
which yields

Oy + V(1 +b) — (u +i)g =02

Page 6 of 20

(2.12)

(2.13)

(2.14)

(2.15)

We now introduce the new unknown functions to eliminate the difficult term ¥9,u° in

the system as follows:
u=i-du'y, b=b ~ w=1w,

where #° is a solution to the heat equation, that is,
o’ = 37u’ =0, B0’ -0 u’ =0.

Then, (u, b, w) satisfies the following equations

Ot + (U + i) Oyt + VOyu — 20,w — a;u —(b+1)a,b—gdyb

2 =02 _
- 29, u'b + vojuy =0,

ab + (uf + i0)dcb + VO,b — ajb —(b+1)0,u — goyu —gayzusw =0,

dew + (uf + i)y w + Voyw + 20, (u + u*) + 20,u°b + 2afu51p - Byzw =0.

The boundary conditions of (i, b, w) are given by

(M, b: W) |y=0 = O;
(I/l, b, W) |y=oo = 0'

(2.16)

(2.17)

(2.18)
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Next, we will prove the existence of solution (u, b, w) to equations (2.17) and (2.18) with
the corresponding initial data

u(0,,9) = (0, %,) — 3,1°(0,) [3 b(0,x,5) d7,

By (2.19)
b(0,x,%) = b(0,x,%), w(0,x,7) = w(0,x,7).
We note that
w029, , =l + 5050, 220
for o € [1/4,1/2].
Recalling the definition of (i, b, w) by
ult,x,y) = i(t,x,y) - dyu(t,y) [ b(t, x,5) d3, (.2

b(t,x,5) = b(t,x,5),  Wtx7) = w(t,x ),

we find that the existence of solution (i, b, W) to problem (2.11)—(2.13) followed by the
solution (u, b, w) to problem (2.17) and (2.18) is obtained, and satisfies the following esti-
mates

||5l(t,x,y)||xz,,a = ”M(t’x’y)”)(zf,a + ||b(t¢x’y)||X21,ar

i " (2.22)
”b(t’x!y)”)(zr,u = ”b(trxﬁy)”)(zf_a: ”W(t:xry)”)(zmy = ||W(t7x1y)”X2La'

Hence, we only need to prove the existence of solution (i, b, w) to problem (2.17)—(2.19)
in the analytic space as shown in the following three subsections.

3 Uniform estimate

3.1 A priori estimate on the velocity field

In this subsection, we will prove the estimate of solution to problem (2.17)—(2.19) on the
velocity field u.

Lemma 3.1 It holds that for any t € [0, T']

16003yl o,

o C
IIMIwa +) T ———||M||Xw——||b||xw
Z; 16t oy, 2000

C
=t@Olully., + o (O (lullxe + 18lx., ) + OV (1l D, + 151D, ))
7(t)2

16003y W1125 g2 T M

MwMuMmQﬂwmfZZ

=0 (1697 W”LZ(R%)

Proof For m > 0, applying the operator 3} on (2.17); and multiplying the resulting equa-
tion by 020”u, we derive that

./]RZ O (0t + (' + i2) Optt + VOyu — 20,w — Byzu —(b+1)3b

— goyb 20 u’b + V0] u' )00} udxdy = 0. (3.1)

Page 7 of 20
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We now deal with each term in (3.1) as follows. For the first term, integrating it by parts

with respect to time ¢, we have
1
/ 3" 9,ub2 " udxdy = = f 8,(8;”14)293 dx dy
R2 2 Jr2

_ 1d m, \2,2 m, \2 d
- __/z(ax u) Qadxdy—‘/R%(Bx u) OQEQdedy

2dt
R e e
Therefore, we obtain
Je2 89?‘8tu9§3;”udxdy 1d ] o ||9aZ3mM||L2 5 (32)
100y ull oz, 24t 2E T 40 1007 ul 2y

For the fifth term, integrating it by parts over R?, we obtain
_/RZ ayzafuafa;”udxdy: ||9a8;”8yu||i2(R%) + /]1&2 3,01, (62) 3 udx dy
m 2 1 m, \202(n2
= ||9a3x ay””ﬂ(R%) ) 2 (8x ”) 9, (Ga)dxdy
m 2 Q m, |2
= H‘gaax ayu”ﬁ(uﬁ) ) ”gaax ””LZ(RE)

a? .
- fattulig

where we have used the fact that 3}(6;) = {567 + 7—;2203 and the boundary condition
87l = 0.
Thus,

— Jp2 0707 u0;0} udx dy

1607wl 2 g2,

2 [|6,20"ull?,,
L7(®) (3.3)

||9 8 a u“Lz R2) o ”9 8muH
- 22 —7”7'
— a0y L2(R?) ( ) ||9a3x u"LZ(R%)

 6ed Ul 22y 200)

Next, we establish the estimates of the remainder terms in (3.1),

m

= / O (i + w*)0,1) 020 u dx dy = Z (m) / 3" uh 0" u dx dy
R2 - l R2
+ i=0 +

[m/2]
< 3 ()0l oo gl e
i=0

3 (Yl el i 64

i=[m/2]+1

Page 8 of 20
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For 0 <i < [m/2], by using (2.9); and Lemma 2.2 (Agmon inequality in x), we deduce
| oy ||L2L°Q = [Ja7" (u + oy w)”LZL}S’C <| 89:”4””L%L;’° +| ayusaflii‘p”L,%Lgo
< C|6,0m ’u||L2 o lu||L2 )t Clt) 3 602 7b] ooy (35)

and

|6 8”1u||LDOL2 <C| b 8”lu||L2 w2y 1O 8”2u||L2 Ry’ (3.6)
For [m/2] < i < m, by using (2.9),, we arrive at
Jor i o
=< C6ad ‘ulle . X ’”ull ”“LZ(RZ | 6070 ulle r2)
+C(t *4||9 G 119||L2 R2) 6o 02 ”119||L2 Ry (3.7)

From now on, we apply X, Y;, D; to stand for the seminorms of function u, X, Y;, D; to
stand for the seminorms of function b, X;, ¥;, and D; denote the seminorms of function w.
Therefore,

[R1|T" M,y
||9a3;nu||L2(R§)

UM o pb izt oy oyl
ZZ( ) oD+ (O X0 ) VY

m=>0 =0

m=>0

1 1 11 1.1 _1
) Z ( ) XE XA Dh D ++(0) XL, )Y) (3.8)

m>0i=[m/2]+1

Similarly, we also have

R = / a;”(aayu)ejayudxdy:Z(W,’) / 051, u020" u dx dy
R2 l R2

i=0

[m/2]
= 0 (e PO T P T ey
i=0
D S (4 [ T e e e 39)
i=[m/2]+1

For 0 <i < [m/2], by using (2.9); and Lemma 2.2 (Agmon inequality in x), we derive

—i~ l m-i
£ V“L,%Lgo— (6)7] 60,0 V||L2

< (030607 1)

< 0% (100wl ez, + 19007 | o))

Page 9 of 20
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< 4 (Jod ™ e gy + 0177 ] ey
< 0% (100wl gz + 1277 Bl 1) (3.10)
and
6,050 uanLz < |6.0:0 u||L2 2y 09D u||L2 Ry (3.11)
For [m/2] < i < m, by using (2.9), and Lemma 2.3, we discover
o) gepge = (008 ([0 ] e + 0210 3150)
(O} (007" ] 002
+ o ‘+119||L2(]RZ |- l+2b||L2(R2) (3.12)

Hence,

|Ry| "M

PN T
00 22
[m/2] L1
V1Y, 0¥, . )DID?
m—i+1 t ( ) m—1+1) i His1

m=>0 i=0

3 1 1 1ol 1
+ Z Z ( ) VY i Vi + (0T Y rf:—nz)Di)' (3.13)

m>0i=[m/2]+1

For the following term, we apply the Holder inequality, leading to

R32 /2 07" 9, w02 9 wdxdy < 6,070, W 1o o, 6207 1] -

i

Therefore,
Z |R3|t" M
000 ul 22y
(16, 0,"0 W||L2 R?) " My
5 - + 0u 07 W/ 5,00 T M,,. (3.14)
B2 gl e
Also, b = b such that
2 (m
R, 2 /2 81" (b + 1)3:b)620 " udxdy =y ( i ) /2 97 b b0 0! u dox dy
R2 Py R2

< 5 () g 1 g ]
i=0

S SO ([ e T 615

i=[m/2]+1

Page 10 of 20
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For 0 <i < [m/2], by using (2.9); and Lemma 2.2 (Agmon inequality in x), we conclude

(078 s = 1000 s 0]

@) (3.16)
and

60021 ey = 10008 s 10028

L2( ]R2 (3.17)

For [m/2] <i < m, by using (2.9),, we arrive at

[o7-8] 5 < 0] g a0

12(R2)

x |00 0,07" ’19||L2 w2y 001 b||L2(R2 (3.18)
Therefore,

>t C (25 ()Rk Bk i
o 100 ull 22y — 7 (5)h j ) meimeitie i

m>0 i=0
bl oplost s

"’Z Z ( ) m-iXm—is1 Pm—iDiv1 Yie1 |- (3.19)

m>0i=[m/2]+1

As a consequence, we obtain

[m/2]
|Rs|T" M, C m 1= ~1.1
Z 116007 1| = 1 Z Z i () Yy-i1D; D;
m=o 17e0y ¥liR®y) ()2

m=>0 i=0

l 1 _1 -
X3 (T)ethiu) 620
m>0i=[m/2]+1

Similar to [30], we have

fR 2 8y2u58;”b9§8”’udxdy‘ < Cley 00 o 100278

(3.21)
Wthh lmphes
|Rs|T" M,y .
- < (C{t Qaamb mag , .
,;) ||9aa;nb”L2(R%) - ( ) r;)” x ”LZ(]R%)T m ( )

where we used the fact that [0} u* lzge < C{ y-1
Analogously, we have

R, = ' f ajusa;"(aw)ejafudxdy‘
RZ
[m/2]

= 3 (7)ol Bl hatv g el s
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O S G L T T O T SR
i=[m/2]+1

For 0 <i < [m/2], by using (2.9); and Lemma 2.2 (Agmon inequality in x), leads to

[0 7 2050 = (05 (007t 2y + 9778 2 a2) (3.24)
and
[6adjec |5 < Ct) 4.
By using (2.9), and Lemma 2.3, we obtain
[ 55 = ClY2 00} b”L2(R2 [6a a”lblle - (3.25)
For [m/2] <i < m, by using (2.9), and Lemma 2.3, we find
977 yepze = ClO)E (|08 ’”uHLz(Rz J6uar 2l -
+ ||8m l+1b||L2(]R2 ||8m l+2bHL2 RZ ) (3.26)
and
[0 | 21 = CUO2 1083 2 (3.27)
Accordingly,

Z |R7|T" M,
m> |

0 |0a8;nlxl”L2(R%)

[m/2] 1
(Z Z < ) 4(Ym i+1 t Ym z+1)X

l+l
m=>0 i=0

7; ; _; _1 -
D3 S ( RTENEINE U 9wt 329

m=>0i=[m/2]+1

Collecting the previous estimates (3.8), (3.13), (3.14), (3.19), (3.22), and (3.28) and sum-
ming up m > 0 gives

e, 020, O R (X L ¥
—|lullx, , _— _—

T + T M —_————
dt o A " l6a0 ul 2y A 1160 9" 21| 2.2y

L2(R2)

C
- ﬁ”””xw - a”bﬂxw

C
<) ully,,, + o (O (el xey + 181x,0) + & * (Il b,y + 1B, ))
T

160051125 g2 T M

) (3.29)
4 00 w2,

X (1l + 11l v,) + 1Wllx, =
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where we have used the fact that for any positive sequences {4;};-0 and {b;} >0,

Z Xm: ajbmj < Z a Z b;.

m=>0 j>0 j=0 j=0

Choosing suitable o < % in (3.29) gives

2
d 1600 3yl "
”u”XT.Ot + 2 ""m]\/[mm—(Jr _— ”u”Xr,a _ C ”b”Xf,a
dt m=>0 1160 M”LZ(RE) 2(t) (£)

. c
< t@O)llully,, + o (0 (Itlx + 16lxc ) + () (1tllDee + 181ID,,,))
T(t)2
||9aayayw||§2(m)rmz\/1m
1628wl 252,

1
X (14l e + 1Bl ) + Wl = = D (3.30)

4

m=>0

The proof is then complete. d

3.2 A priori estimate on the magnetic field
In this subsection, we will derive the estimate of solution to problem (2.17)—(2.19) on the

magneto field b.

Lemma 3.2 [t holds that for any t € [0, T']

2
d 1007 9b1% 2, @
bl + D T My = b,
at m=0 11609 b”LZ(Rg) 2(t)

C
<t@®lbly,, + o (& (lullx,, + 16lx..) + O (I4llp, + 151ID,.))
T 2

X (1l e, + 16lve) + IWlix, -

Proof For m > 0, applying the operator 9" on (2.17), and multiplying the resulting equa-
tion by 6207"b, we derive that

/]RZ ik (atb + (us + it) 0xb + V0,b — Byzb —(b+1)ou

—goyu —gaquW)Bfa;”b dxdy =0. (3.31)

Similar to the estimates of (3.1), we now deal with each term in (3.31) as follows. For the

first term, we have

2 3M0,b020"bdxdy 1 4 160207 b1I2, 1.2
S 00 = S 0u0 D] gz, + o (3:32)
162075 2z2) 2dt D740 16207l 22
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For the third term,

~ Jg2 37070629 bdx dy
16097l 122

||9 00 blle £2)
T 16 bl 122

2 116207512, 5,

7, (3.33)
< ) 102021l 2 g2)

o
- ﬁ”gaa:lb”wﬂ&z)

where we have used the fact that 85(83) = {"7)93 + "‘7) z*6? and boundary condition
87l = 0

Indeed, similar to Sect. 3.1, the nonlinear terms of (3.31) can be estimated as below

Z |Rg|T" M,
= 10a07Dll 222

[m/2]
m % % -1/4% 53 3
Z Z m m—i +(t) Xm—i) Yi+1Yi+2

m=>0 i=0

f(t)z

1 1 1 1 1
Y3 ( ) Xt xb o phopb et 1) ) (339)

m>0i=[m/2]+1

Z [Ro|T" M,
2 110a07Bl 22

[m/2] m 1 - -1_1
(Z Z ( ) 4Ym i+1 + <t>1 m—i+1)Di2DL%+1

m>0 i=0

r(t)z

2 (m 11 1 U R
+ Z Z ( i>(<t>4 Y i Ymin t (Y0 ,2_,-+2)Di): (3.35)

m>0i=[m/2]+1

Z [RiolT" M,y
e 16077l 122,

(M5 5 by
ZZ( ) m— miYiHYHZ

m>0 i=0

+zz()

m=>0i=[m/2]+1

Z [R11|""M,,
fer 10 07"l 122,

N\»—A

§ -m»—-
I e

1 _1
—i+1D;;1—iD;;1—i+l YM) ’ (3.36)

[m/2]
"\ iy phpk
22|, )@ inDi D, (3.37)

m=>0 i=0

+Z Z ( ) }Ln%m_jszi)

m>0i=[m/2]+1

N ‘l:(t)2
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and

[Ria|T"M,

m

mzzo 160907 B1l 2 (g2,
[m/2] 1
< S (B (Tt pniixl

-hh—

:

kA
<
Il
<

Y
)2 \si=0 ic0

+Z Z ( ) % r%l—i+1_r%—i+2_i>' (3.38)

m=>0i=[m/2]+1

Combining the above estimates (3.31)—(3.38) and summing over m > 0 yields

a(l _2a) m ”9 Zamb“LZ ]RZ
7‘5 —
4‘(t) ||9a8x b”LZ(R%)

d
Ewmm+;j

1640, h|| 2R2) a
W3 M, B &y
16,070l 22y 200)

. c .
<tOIblly,e + — (O (I#llxeg + 1Blx.a) + (O (Itllp,q + 16]D,4))

()2

X (1l ey + 16lve) + IWlixe, - (3.39)

Analogously, by choosing a < i’ we conclude

4 1007012000
—IIb +y ""M,———— - —|b
210 lxe > 16a07 bl g, 200 1511

m=>0

C
<t@®)|blly,, + ()l«ﬂAMUWWmﬂ+”MHw)+(VMWMMLQ+”MDW))

T(£)2
X (1l vy + 1B1y,) + Wi, - (3.40)
The proof is hence complete. O

3.3 A priori estimate on the microrotational velocity

In this subsection, we will establish the estimate of solution to problem (2.17)-(2.19) on

the microrotational velocity w.

Lemma 3.3 It holds that for any t € [0, T']
1020312, o)
100" Wl 122y

d m
Wl + 37" My

m=>0

C
(wgm”mmmwﬂwmg+u“mwmfwmmg)
T

=t@Iwly,, +

-1/2
X (Illyeg + 18Ny, + 1Wly,,) + letllx,, + &7 (Iullx,, + Iwlx,,, )

16003yl o 7" Mo

4@0 160774l 22
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Proof For m > 0, applying the operator 9" on (2.17); and multiplying the resulting equa-
tion by 6207w, we derive that

/ ik (8tw + (us + 12) W + VO, W + 20, (u + us)
R}
+20,u°b + 2331451,0 - afw)éfa;”wdx dy=0. (3.41)

Similar to the estimates of (3.1), we now deal with each term in (3.41) as follows. For the
first term, we have

Sz 10, w0, 0w dx dy ) 11”0 ] a 1023wl (3.42)
- o + . .
100 97 Wil 12+ 24t TIPED T 408 100wl 2 g
For the last term,
~ Jg2 3797 wo 7 wdx dy
160937 Wll 12+
(|60 020y w2 . 2 ||6z0) wl? +
= —LZR -« ”90‘8;”W||L2(]R+) _ —LZ(R’ (3.43)
0o 07 Wil 2@ey  2(2) 2(t) 116007 Wl 12r+

2 el
where we have used the fact that Byz 02) = (‘"7)93 + %2293 and boundary condition 3" w/|,_o =
0.

Similar to Sects. 3.1 and 3.2 we have

Z [Ri2|T" My,
2o 100 Wl 2 g2y

(/2] 11 _ 11
%<ZZ( ) XDy (0 Ko i) Vi Vi

m=>0 i=0

1 1 1 1
1 1 1 1 -1/4
+ Z Z ( ) ;jl }:l—i+lD}il—l‘D;‘;l—i+1 +< > X}’fl 1Xr31 1+1) i+1>’ (344)

m>0i=[m/2]+1

Z |R13|thm

S 10a 0wl 22,

[m/2] 1
") (O Vi + (6)F Ty i) D2 D2
Z Z m—i+1 T <t> m—z+1) i i+l

m=>0 i=0

‘l:(t)2

m
m 11 1 1ol 1
+ Z Z ( ; ) (1Y i Yoriia + (O3 Y iy rﬁnz)Di)f (3.45)

m>0i=[m/2]+1

also,
[Ria|T" M,
0,07 Wl 22,
1 10u07 0112, 0 7" M
<- + 3 (1620w 2 g2y T Mo (3.46)
4 = ”9&8;"M”L2(R3) mZzO x L?2(R%)
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and

(3.47)

/ dyu’ ' wo 23! wdx dy
R}

<C™”? ||9a8;nw||22(m<%)’

imply

Ry5|t"M, -
BT Y K, (3.48)

m=>0 ||9a8;nw”L2(R3) m=>0

where we have used the fact that [|3,u°[| 3 < C(ty™12,

Finally, we deal with the remainder term in (3.41) as follows

IRus| < 2[00 o 6607 | 12e2)

go‘aaan”LZ(R%)
< 207020V | 22y | 0 W 22

<2()71? Heaaa:anLZ(R%)

gaa;nW”LZ(]R%)’

implies

Rig|T"M, -
YT Y K, (3.49)

m
2 107 Wl e

where we have used the fact that || 8y2us||Lyoo <Cc{.

Combining the estimates (3.41)—(3.49) and summing over m > 0 yields

2 2
@t + 30 CO 20 g I gty |y WO
. Xr,oz

dt = A " 10u W 2 g2 mzo " 16a 07 W 22

C
<t@®lwlly,, + o (@& (lullx,, + 16lx..) + & (Illp, . + WD, ))
T 2

71/2(|

X (1l + 161y, + Wiy, ) + Nutllx,, + (2) |ullxo + 1Wllx)

1 1660y !l 2, T Mim

4 00l )

Analogously, by choosing o < %, we derive

2
100 W12

d
—Wllxey + ) T My ==
dt : mg’) " 16097 Wl 22

. c
<t@®lwlly,, + o (& (lulx,, + 16lx..) + & (I1llp,, + WD, ))
T 2

-1/2
X (lutllypg + 1Bl vy + 1Wllvey) + Mtllxe, + (072 (sllxe o + 1wl )

1 ||9a8;"8yu||i2(R%)rmMm

e

(3.50)

The proof is now complete. d
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Up to now, we have completed all the estimates of solution (u,b,w) to problem
(2.17)-(2.19).

Combining the estimates (3.30), (3.40), and (3.50), we conclude
10:77,1%, 5,

16,0, 0 u|| 22 3
DD 3§ g, D706
4 162975 ] 22

d 3 m
O N S s

m=>0
|9 3d w||L2 %)

T Z ‘ 16007 Wil 2z

(&)™) (u, b, w)

~ bW,

0" |wbwlp,,)

X

+ 1
BERRICR

< (8)]|(w, b, w)
(3.51)

X || (H, b’ W) || Yia + C” (L{, b’ W) Xt '

Using Lemma 2.3, we discover

i «1-p) (3.52)

Ullp, o t
., 0

1S

160y 812,
e,

16000y ull 122y 2(t)

m=>0
«zp «1-p) (3.53)

161, + @ 1517

16u0,3b1%, o)
— 162075 12 s2)

N

(t)7

and

B a(l1-8) (3.54)

Wlp, o + @ Wlixeqr

m 1
1603y 112, L
2(t

=0 1600} W”LZ(R%)

for B €(0,1/3).
Substituting (3.52)—(3.54) into (3.51), leads to

Dr

1
1-3 3a?
+( B) ||(u,b Wy a;)l”(u,b,w)
? 2

Xt 4

d
pr || (u,b,w)

<

C
(¢ (bl ¢ 0w Io,,) )l
(3.55)

+C| (u,b, w)||XW

We will choose a suitable function 7 (£) such that the following ordinary differential equa-

tion holds
3 3C i 1/4
(t(t)) ( " wowy,, + O @ow], )=o0. (3.56)
Hence, from (3.55) this implies
d a(1-38) 1 32
E ” (ur b; W) Xrw + 4 ” (I/l, b ) Xe o t) % ” (I/l, b; W) Dro
(3.57)

<Clubml,,,.
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Using the classical bootstrap argument [25], we first assume that there exists a 7, > 0

such that
o(l- 3/3) 3aip
|G bw)|y,, + /O( |G|y, + 80) %”(”’b Wp, )
< 2| (o, o, (3.58)
for t € [0, T.].
From (3.56), this implies
t(£)? - 7(0)2
3C (!
=2 [ (@ fawbw, + 0" [ wbw], ) ds
N 4 gae(l- 3,3)
T [ Gass ™ s D wbwl,,
+i1<>“3°”ﬁ||<ubw>ll,3 )ds
302 8(t)
4 8
> —3C|| (uo,bo,wo)ero‘a (a(l ~35) + Sa%ﬂ ) (£)3*
= —Cy(8)*3, (3.59)

3
2

where Cy = 12C|| (1o, by, WO)”XTOa( ) and T = mln{( )% —1, T} with T; to

(1~ 3/3)
be determined later.

Therefore, taking positive T7 = 7= < T, for Vt € [0, T1], from (3.57) gives

4C —
‘(«(1-3p) 3028
sl [ (G2 lwsmly,, » 2R bl )
t
< [ b, ds+ | bo
0 »
3
=3 |20, o, wo) ”Xro,a' (3.60)

The proof of Theorem 2.1 is thus finished.
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