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1 Introduction

Fractional calculus and the theory of inequalities have became the cornerstone of the lit-
erature in recent years. Fractional calculus is the answer to the question of whether frac-
tional derivatives and fractional integrals can be taken. Therefore, it has offered solutions
to many problems in many disciplines. The most famous of the fractional approaches that
are developing day by day are the Riemann—Liouville, Caputo, and Conformable fractional
approaches. It is well known that the theory of inequalities is one of the most important
topics of recent research. In particular, its use in analysis, applied mathematics, and pure
mathematics is very wide. One of the most studied of these inequalities is the Hermite—
Hadamard inequality. The trapezoidal inequality, which is the right side of this inequality,
and the Midpoint inequality, which is the left side, have pioneered many scientific studies.

Over the last century, several articles have been focused on acquiring trapezoid-type
and midpoint-type inequalities that demonstrate the bounds via the right-hand side and
left-hand side of the Hermite—Hadamard inequality, respectively. For example, Dragomir
first acquired trapezoidal inequalities in [6], while Kirmaci first derived midpoint-type
inequalities in [17]. Sarikaya et al. and Igbal et al. presented some fractional trapezoid and
midpoint-type inequalities for convex functions in [21] and [10], respectively.

New investigations have been focused on developing a class of fractional integral op-
erators and their applicability in several scientific disciplines. With the help of only the
derivative’s fundamental limit formulation, a newly well-behaved straightforward frac-
tional derivative known as the conformable derivative is derived in [15]. Some significant
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requirements that cannot be fulfilled by the Riemann-Liouville fractional operator and
Caputo fractional operator definitions are fulfilled with the aid of the conformable deriva-
tive. Furthermore, in [1] the researchers showed that the conformable approach in [15]
cannot yield good results when compared to the Caputo definition via specific mappings.
This imperfection in the conformable description is avoided by some refinements of the
conformable approach [9, 22].

Differentiable functions are an indispensable part of the scientific literature. In addi-
tion, many mathematicians have studied twice-differentiable functions and have guided
the studies on this subject. In [3] and [4], there are inequalities established via twice-
differentiable convex functions associated with Hadamard’s inequality. Some general-
ized fractional integral inequalities of midpoint and trapezoid-type based on twice-
differentiable convex mappings are established in [18]. In [19], the authors acquired some
new inequalities of the Simpson and the Hermite—Hadamard type for mappings whose
moduli of derivatives are convex. By using generalized fractional integrals in [5], the au-
thors presented some midpoint- and trapezoid-type inequalities via mappings whose sec-
ond derivatives in modulus are convex.

The purpose of this investigation is to derive some new trapezoid-type and midpoint-
type inequalities with the help of the twice-differentiable mappings including conformable
fractional integrals. We also show that the newly established outcomes are the generaliza-
tion of the existing trapezoid-type and midpoint-type inequalities. The ideas and strate-
gies via our outcomes concerning the right-hand side and the left-hand side of Hermite—
Hadamard inequality based on conformable fractional integrals may open up new avenues
for further research in this area.

This paper contains four sections along with the introduction. In the second section,
some basic information that we will use in our outcomes is mentioned. Also, the defini-
tions of the Riemann-Liouville integral and conformable fractional integral are recalled.
The third section consists of two subsections. In the first subsection, trapezoid-type in-
equalities based on conformable fractional integrals are created for twice-differentiable
functions, while in the other, midpoint-type inequalities based on conformable fractional
integrals are established for twice-differentiable functions. In the last section, the conclu-
sions obtained from the research are presented. In addition, ideas for future research are

given.

2 Preliminaries
This section considers the basics for building our outcomes. Here, definitions of Riemann—
Liouville integrals and conformable integrals, which are well known in the literature, are
given. From fractional calculus theory, mathematical preliminaries will be presented as
follows:

For 0 < x,y < oo and %,y € R, the well-known gamma function, beta function, and incom-

plete beta function are defined as

[(x):= / wledpu,
0

1
Blx,y) = f w1 - L dp
0
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and
By, 1) = f N -y dp,
0

respectively.
In [16], Kilbas et al. described fractional integrals, also called Riemann—Liouville inte-
grals as follows:

Deﬁnltlon 1 ([16]) For .# € Li[0,8], the Riemann-Liouville integrals ]f“? (x) and
F (x) of order B > 0 are, respectively, given by

B ﬁl
JE, F(x) = F(ﬁ)/(x WP Fwydu, x>0 (2.1)

and

1w [ P, <o (2.2
T(8)

where I" denotes the Gamma function. In the case 8 = 1, the Riemann-Liouville integrals

reduce to the classical integrals.

In [13], Jarad et al. introduced the following fractional conformable integral operators.
They also provided certain characteristics and relationships between these operators and
several other fractional operators in the literature. The fractional conformable integral
operators are defined as follows:

Definition 2 ([13]) For % € L![0,48], the fractional conformable integral operator
BT F(x) and ﬁja Z (x) of order B € C,Re(B) >0 and « € (0, 1] are, respectively, given

by
b e gy L "((x—o)“—(u—a)“>’3_1 F (1)
‘7"+’/(x)'r(ﬁ)f[, " o) du, p>o (2.3)
and
G-x)* -G -\ Fw
B ao“
JsF ﬂ)/( " ) (a—u)l—ad“’ w<8. (2.4)

Note that the fractional integral in (2.3) coincides with the Riemann-Liouville fractional
integral in (2.1) when o = 1. Moreover, the fractional integral in (2.4) coincides with the
Riemann-Liouville fractional integral in (2.2) when « = 1. For some recent results con-
nected with fractional integral inequalities, see [2, 7, 8, 11, 12, 14, 23] and the references
cited therein.

3 Principal outcomes

The resulting new Hermite—Hadamard-type inequalities are presented in this section.
Conformable fractional integrals are used for doubly differentiable functions when ob-
taining these inequalities. These inequalities are examined under two separate sub-
headings. In the first subheading, midpoint-type inequalities, which are the left side of
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Hermite—Hadamard inequalities, and trapezoid-type inequalities, which are the right side

of Hermite—Hadamard inequalities, will be discussed in the other.

3.1 Inequalities of midpoint type involving conformable fractional integrals
In this subsection, midpoint-type inequalities are created for twice-differentiable func-
tions with the help of conformable fractional integrals. To obtain these inequalities, let us

first set up the following identity.

Lemma 1 Let .7 : [0,3] — R be a twice-differentiable mapping on (0, 8) such that F"
Ly[o,8]. Then, the following equality holds:

2% PTB+ D[y o (T+8\ g u o(0+0 fo+8
S () e (550)]- () e
_(8—(7)2aﬁ 1 ri 1-(1-s) B o 11 1+u
T (- (5 Ja)o (e 20 e
el 1-(1-92\* ol 1-p
S ([l (5) Jo)z (e 15 )
Proof With the help of integrating by parts, we obtain
a - L/ 71 1-(1-s)" ﬁd eI TR ST AY
L[ () Ja) 7 (5t 55 o
2 ri 1-(1-s) (Llom | 1+n !
([l (5 )} o7 (e 5))
2 ri 1-(1-p) 1- “ 1+u
v [ () (e
2 ri —(1-s) o+8
(- () ]2 (5
C [ (Y ) (1 )
S—o|8-0|aPf o 2 2

1 _ _ e Bl —
+ 28 (1 1-w ) (l—u)"‘_lﬁz(—l ot 1+M8>du}.
d—0 Jo o 2 2

If we use the change of variables x = %o 1“‘ 8, then we have

2 Iri 1-(1-s)\* (0 +8
e - () Jo) 7 () >
2 219 o+8
(52) w7 (530)

2 aﬂ+2F(l3+1) ) (E—Ta)oz_(a_x)a B-1 Z (x)
+(8—0) r'(B) (72+5< o ) (S_x)l—a'gz(x)dx

([T () e ()
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2 \*1 _[o+8
-(——) =2
(7))
) 2+apB S
+<E) r(ﬂu)%ﬁﬁ("; >

Then, similar to the foregoing process, we can easily obtain

Lrrira 1-(1-9~\* a(lvpn  1-p
A2=[) (/“ [J—<T> i|ds>¢/ <TU+TS>d'u (3.3)
2 Ir1 1-(1-s)\*
[T ()
pe o+8 2 213Z o+
<7(53°)- (%) w2 (57)

af+2
+ (—2 ) T8+ 1)%;19‘(" +5>.
S—o 2

If (3.2) and (3.3) are added together and then multiplied by W , the proof of Lemma 1

is completed. O

Theorem 1 Note that .7 : [0,8] — R is a twice-differentiable function on (o,8) so that
F" € Ly[o,8]. Note also that |.7"| is convex on [o,8]. Then, the following inequality holds:

22T (B+1)[ g, o+8\ 4, (048 fo+8
S L () v (55) -2 ()

— o )ob
<(8 o)*a

Ti(e, B)(| 7" (0)| + | 77(3))).

- 8
Here,
1] p1 (1 _<a\B
Tl(a,ﬂ)=/o / [%—(%) ]ds du (3.4)
"
1
ziﬁ 1—u—l<8<,3+1,l>—%’(ﬂ+l,£,1—(l—u)"))‘du,
o 0 o o o

where B and 2 denote the beta function and incomplete beta function, respectively.

Proof Let us start by taking the absolute values of both sides of (3.1), we have
298 10PT(B + 1) b7 7 o+38 BT o+8 7 o+38 (3.5)
(6 —o)p 8- 2 ot 2 2 '
§-o)af[ (Y [T1 (1-(1-9)° 1- 1
= - () Jer (e 5
8 o [Ju La? a 2 2
Hrrr o (1-a-9) 1 1-
L () el (e ) )
o [Ju La? o 2 2
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It is known that |.#"| is convex on [0, 8]. Then, we have
25T (B+ 1) [y, o+8\ 4. o+6 o+6

G -0) [7“4 2 ) i ( 2 >}J< 2 )‘
G-0)f[ (Y[ T1 (1-(1-9")"
Sl A[w-(—a ) ]«
/ /[ ( “1‘5)“> ]d‘(“%gﬂ( )|+ 1;“|y”<a)|)du]

m

(6-o0)%’ 1 1-(1-9"\* - -
:%(/0 L[QT‘(TS) ]ds)du)ﬂ/ (0)| +]Z"6)))-

Hence, the proof of Theorem 1 is completed. d

Remark 1 If we set & = 1 in Theorem 1, then we have [5, Corollary 4.6].

Remark 2 Consider « = 1 and B =1 in Theorem 1. Then, Theorem 1 equals [20, Theo-
rem 3].

Theorem 2 Let .7 : [0,8] — R be a twice-differentiable function on (o, 8) such that F" €
Li([0,8]) and | F"|1 is convex on [o,8] with q > 1. Then, the following inequalities hold:

29 1T (B +1)[ 4 « g 048\ 4, (048 (o +6
Toran Lo (50) s (5)] -2 (55
(6~ 0)a’ ﬁ”(o)ww@“(&w)”q

< T(Tf(p))%[(l I

+ <3Iﬁ’/(0)|q + |ﬁ"<a)|q)“q]
4

—o)2af
<(8 o)*a

< S )P [|770)] + |77

where X +1 =1 and
pa
1 1 1 1—(1=29) B
o= [ - () Je
o |/, Lo a
Proof Let us start by using the Hélder inequality in (3.5). Then, we have
29T (B+ )[4, o+8\ 4 . o+8 [o+8
Tama [ () ()] ()
—0)%ab 1l —(1—s2\F1 ? 5
o (AR s NEED)
8 o [Ju La? o
1 _ q i
([l (5o ) )
o 2 2

»
dau.
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ay B 5
[Ta-(=) Jef )
w LY o

1
1 1- 1 q
f”( RPN —M8> du)q]‘
2 2

1
(f
1
(
Since |.#"|1 is convex on [0, 8], we obtain
298-10PT (B + 1) b7 I o+4 b1 g o+46 7 o+6
St L (55) e (50)] - (55)
G-0cPaf (Y1 (1-A-9\', [, \?
[ (2 o)
1 i
><|:(/0( ) |32”(a|) u)
! 1 " ol i
([ Stieer)a)]
G- [ (Y [T1 (1-(1-5\’T [P \7
(] L[a—ﬂ-(—a ) o an)

: [(l%(a)'q : 3@/’(3)!‘1); + (3@”(0”‘1 + |3ﬂ<5)|q>‘§]
4 4 .

Let us consider @ = |.F"(0)|4, 01 = 3|-F"(8)|1, wy = 3|.%"(0)|%, and g5 = |.Z#"(8)|7 and
applying the inequality:

n n n
Z(WHQk)SE ZWZ+ZQi, 0<s<l. (3.6)
k=1 k=1 k=1
This finishes the proof of Theorem 2. 0

Corollary 1 Ifwe assign o = 1 in Theorem 2, then we derive

2IT(B+1)[ 4 o+ p o+6 o+
oo 1 (550) o (550)] -2 (%)

< (5 (48 ) [( |‘1+3|3J"( )|q)”q+ <3|y“(o)|q+ |5f”(s)|’1>”‘f}

4
(8 a)

(@) [| 7 ()] +]| 7

]

where L +1 =1 and
' q

ﬂ+1_1p

B+1

1
o= [ '1—u+"

Remark 3 If we choose @ =1 and 8 = 1 in Theorem 2, then Theorem 2 reduces to [5,
Corollary 4.8].
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Theorem 3 Suppose that ¥ : [0,8] — R is a twice-differentiable function on (o,8) such
that " € Li([0,8]). If | F"|1 is convex on [o,8] with q > 1, then the following inequality

holds:

22T (B+ 1) [y, o+8\ 4 . o+8 (o+8
S A (550) st (750)]- 2 (5)

O g A (DT e

- 8

. Tl(a; ,B) ;’ TZ(“: :3) |ﬁ”(5)|q>%

TI(OI, ,3) - Tz(Ol, ,3) }5’7”(8)|q> ;il
5 .

n (Tl(axﬁ) + TZ(O[),B)

5 7" ()| +

Here, Y1(a, B) is defined as in (3.4) and

1 1 _(1_a\B
Tz(arﬂ)=/(; M/ [%—(y) i|ds‘dlt
1
=iﬂ M’l—u—l(B(ﬂH,l)—93<ﬂ+1,1,1—(1—u)°‘)>‘du,
ol Jo o o o

where B and % denote the beta function and incomplete beta function, respectively.

Proof Let us start by applying the power-mean inequality in (3.5). Then, we have
2P 1aPT(B+1)[ 4 « 8 7o o+8 PEY
soopr (70 ) (73] (5 )‘
_\2,B 1] p1 1 _aen\B 1-1
= ([ - () Jogan)
8 o |Ju Laf o
1 1 _ _ o B
x(/ /[i—( (1-5) ) i|ds ﬁ’”(l Ma+1+ﬂ8)
0 w Olﬁ 2
1 1 _ Qa8
(LU T (57 Tl
0 I aﬁ
1 1 _ a8 _
(L - () Jellm (e 55%)
0 w LY 2
Since |.#"|1 is convex on [0, 8], we obtain
29T B+ 1) [y, o+8\ 4, (048 fo+8
S () e (50)] -2 ()

G-o)af ([ [T (1-(1-9") -7
S VAR Gara BEED

NG
dpc)

]
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|y//( )|q |y”(8)|qdﬂ>

[T Do
(L[ (=Y Tt tioran) ]

It is clearly seen that

2“ﬁ’1aﬁF(ﬂ+1)ﬁa o+8 b e g o+8 [o+8
S A (550) e (750)]-2 (50)
<(8—0)2a’3
- 8
[(Tl(a,ﬂ)—Tz(a,ﬂ)
x 5 |

(T1(@,B) "

Tl(ar ﬂ) + TZ(Ol’ ,3)
2

9”(0)|q+ ’ﬁ//((s)r])q

+ (Tl(a,ﬁ) ; Tz(()l,ﬂ) |54’”(a)‘q i TI(O{’,B) ; TZ(O[’IB) ‘y//(S)’q>qi|

Corollary 2 Let us consider o = 1 in Theorem 3. Then, the following inequality holds:
2T B+ 1) 5 [0+ b [0+ fo+8
’W[J-f< 3 )+lm< 5 )]—J( : )’

G011\
= 8 \2 g+2
1 B+4 s g 1 38 +8 ot L
6 4B+2)(B+3) T IR 5)|"d
(G- amva679) 7 (- mgaaia )17 O ax

1 36+8 o g (1 B +4 reta o\
(G-awr269) 7 (6~ at 27170 a) |

Remark 4 If we take @ = 1 and 8 = 1, then Theorem 3 becomes [19, Proposition 5].

3.2 Inequalities of trapezoid type involving conformable fractional integrals
In this subsection, inequalities of trapezoid-type are obtained for twice-differentiable
functions. We use the conformable fractional integral operators to obtain these inequali-

ties.

Lemma 2 If .7 : [0,8] — R is a twice-differentiable mapping on (o,8) such that F" €
Ly[o, 8], then the following equality holds:

F©@)+F©6) 2P'PTB+D[p 0 (048N  pra [0+
5 — (8_0-)0513 |: ‘75_/ (T) + jg+</< 5 )i| (37)

G-0)af [ (1) [T1-(1-57° SAl-pn  l+p
1 Iri—-(1-s21° anf1+1 1-u
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Proof By employing integration by parts, we have

o [T (e 1)
([T ) (e )
L
[T )
RN RS

aB-1
LI o W‘( for )]

_8—0'0 2

2 Ir-@a-s- o+8 2 Z
([T 9750 () oo
2 Fw+n (56 —x)\
(522) T Lo ()

2 “l 9
X(E(S x)) . F(x)dx

([ ) (55) - () oo

2 \""rp+1) 820 ya (5 x)? T
(=) T L ) e

+
0

k%

e L) Jo )
2 r-@a-s» o+ 2 \°1 _
:‘s-a(/o [ 2 ] ”’S)f (T)*(m> o’
2 af+2 S
_(ﬁ> r(ﬂu)%“_ﬁ("; )

In a similar manner,

L/ rlri—(1-s)7” Al+u  1-p
- [T )7 (55
2 T1-1-5)27 \_, (o+8 2 \’1 P
e () () e

af+2
() e (73)

§—o
Then, it follows that

(6 —0)*a?

Az + A
3 {Az + Ay}
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_F@)+FE) 27PTE D[, (048 4oy 0+
T2 G- [S'J(T)“Z”J(T)]‘

Thus, the proof of Lemma 2 is accomplished. O

Theorem 4 Let .7 : [0,8] — R be a twice-differentiable mapping on (o, 8) such that F" €
Li([0,8]). If |.%"| is convex on [0, 8], then the following expression holds:

F(0)+F©E) 2PPTB+D[g 0 (0+8\ pu ~(0+8
() A ()] e
§—0)abf
< 0@ (|70 + |70
Here,
~ 1 1 1_(1_S)ot B
d>1<a,ﬂ)—/0 /ﬂ[ia ] ds| du

1 1 1 1
= / Blp+1,—|-ABB+1,—,1-1-w*")|du,
aﬂ"‘l 0 o o

where B and 2 denote the beta function and incomplete beta function, respectively.

Proof Taking the absolute values of both sides of (3.7), we derive

|54‘(a>2+9‘(8) _2fT(B +1) [ﬂja a(a;a) +5j§,j(o;a>” 659

(6-0)
(8 -—0)%af 1
==

Mi-@1-s5*1"° 1- 1

Ll (e )

" o 2 2

1 1 1=(1=-295) B 1 1-—

+/ /[7( 9 ] dsHﬁ/’<—+Ma+—M8>‘du,}.

0 " o 2 2

If we use the convexity of the |.%#”| on [0, J], then we establish
{f(a);r?(& —zaﬁ_laﬁr(ﬂ+l)[ﬂ%“ﬂ‘(a;8>+5j;’+ﬂ<0+8>:”

(6 —o)b 2
2B 1 P71 _(1—¢8 -
L o CE e
w
1
g

T1-(1-s)" 1
[T a5t 3o o)
(8 a)zaﬂ(/ /[ —(1—s)"‘i| s

Remark 5 If o = 1 is chosen in (3.8), then Theorem 4 reduces to [5, Corolalry 3.6].

du)(lf”(ow 176, -

Remark 6 Letus consider @ =1and 8 = 1in (3.8). Then, Theorem 4 is equal to [19, Propo-

sition 2].
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Theorem 5 Let .7 : [0,8] — R be a twice-differentiable function on (0,8) such that

F" € L]o,8] with o < 8. If |F"|1 is convex on [o,8] with q > 1, then the following dou-
ble inequality holds:

j(a)-'—y(a) 20"3’10[/3]"(’34_1) B Ta o+ B 70 o o+
2 (-o)F [‘75"?(7)* Jgpf( 5 >” (3.10)

LG _ZW (©2(p)? [(Iﬁ“(onq - SI?’(&)I‘Z)%’ R (3|ﬁ*'/(o>|q4+ |5f“(a)|q>%}

§—0)abf 1
= 0= g 170+ |70

where L +1 =1 and
' q

®5(p)=/01 f:[l_(ii_s)ards

Proof Using the Holder inequality in (3.9), we have
Fo)+F@) 22T+ 1)[, 048\ 4, (048
’ 2 (-o)F [%Q<T>+ j‘”‘/( 2 >”
a8 5
5(8—0)201'3{(/1 /1[1—(1—5) } dspd,u)p
8 0 m o
1 _ q 7
x(/ ﬁ”(l—ﬂa+l+ﬂ8> du)
o 2 2
1) p1 aB 5/l
(LIl o) ()]
o 1Ju (o4 0
Since |.#"|1 is convex on [0, 8], we obtain
F(0)+F©E) 27PTB+D[g 0 (0+8\ pu (0 +8
‘ 2 (-0 [‘%/( 2 >+ ”7"“%( 2 )H
_ B 1 P11 _ (1 _ a8 ,%
E(8 o)’ </ /[1 (1-ys) ] dspdu)
8 0 " o
1 ;
([ (FE1er- 5w o) i)
0
1 1
+(/ (1;M|y1/(a)iq+I_TM|§//(5)|q>dM>q:|
0
_@-o0 aﬂ< [ } pw)'l’
x [(W( o) +31F B ) (a|ﬁ’/(a>|q+|ﬂ~<a)|q>%]
4 4 '

Let us consider @y = |.%"(0)|%, 01

»
du.

Q-

1
1 1- 1 q
9//(%0 + 2“8) du) }

=3|.7"()I%, @y = 3|.F"(0)|? and 0, = |.#"(8)|7 and
with the help of the inequality (3.6). Finally, the proof of Theorem 5 is completed. d
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Remark 7 If we choose @ =1 in Theorem 5, then we derive

Fo)+ F©) 2'TB+1)[ 4 o+8 s o+8
FR - e () e (53]

< (a—o)2< PB+1) )i[<|fﬂ<o)|q+a|9”<a>w)%
8B+ \pB+1)+1 4

. (3If%‘”(a>|’f ¥ |£Z”<8)|‘I)%]
4

3 (a—a)2< 4p(p +1)

=8B+ )\ pB+ D)+ 1) [|[7" )| +|.Z" )],

which is given in [5, Corollary 3.9].

Proof It will be sufficient to write down the solution of the integral below,

@’f(za):[ol

Under conditions A > B >0 and p > 1, the following inequality is satisfied

p

1 ,U,’B+1 du

ﬁ+1_,3+1

|A—BIF < AP — BP. (3.11)

From the inequality (3.11), we have

1 ! 1 !
ol (p) = / 1-pP 1P du < (/ 1 - p?tP+y dﬂ)
= Gy 0| | (B+1p 0( )
_ 1 p(B+1)
B+ \pB+1)+1)
When the solution of ®f(p) is substituted for (3.10), the proof is finished. O

Corollary 3 Ifwe take o« =1 and B =1 in Theorem 5, then we obtain

16

Fl)+ FE) 1 P

’ D) _8—0/0 F(x)dx
SR ) (zer +3|54‘”(5)|q>5 (22 |5N(a)|q>%}
- 16 2p+1 4 4
< (8 —6)2< 8p )1’[|j//(0)|q ¥ |§//(6)|Q]

2p+1

Theorem 6 Assume that .7 : [0,5] — R is a twice-differentiable mapping on (o,8) such
that F" € Li[0,8] and |.F" |1 is convex on [o,8] with q > 1. Then, the following inequality
holds:

Fo)+.F©) 22T+ 1)[,,, o+8\ 4. o+8
‘ 2 (-0 [7‘”@( 2 )+ j‘””dj( 2 >”

< (8 _;)Zaﬂ (@1(0(,,3))1_%7 I:((Dl(a,ﬂ) ; @2(0[,,3) |§”(a)|q

Page 13 0of 16
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1

|g~//(8)|‘1>q

+ @1((1,,3) + CI)Q(Ol,ﬂ)
2

(e, B) — Py

Page 14 of 16

+ (q)l(arﬁ) + @2((1,,3)

F" (o) +
0|

2

Here,

1
Dy (e, B) =/0 M m

r-@a-s7°
-/;1[7“ ] ds

1 ! 1 1 o
:aﬁ+1/0 “‘B<’8+1’5)_%<ﬁ+1’5’1_(1_“))

(ct, ,B) |9//(5)|q) ZI:|.

du,

where B and 2 denote the beta function and incomplete beta function, respectively.

Proof With the help of the power-mean inequality in (3.9), we have

‘ﬁ(0)+ﬁ(8) ~ 298 1oPT(B + 1) [ﬁ%“_f(%ra) +’3,_7(f‘+97<a +8>]‘

2 (6 —o)*b

(8 -0)%af Yriri-a-s97”
Sl

1 1 1—(1—5)0‘ B
(=

(L] o
A

Since |.#"|1 is convex on [0, 8], we obtain

Q

1-1
d,u)

ﬁ”(—l P

2
d,u)

1
+,u8>
2

1 _ a8 _
/ [71 (1-5) i| dst”(lJrMa+—1 M(S)
u o 2 2

2

1

q q
d,u)

1

)]

2

|ﬁ(o)+§(8) ~ 298-1oAT (B + 1) |:ﬂt78a—'g.<UT+6> +3j:+g‘(g +8>”

2 8 —-0)*
a8
9 :| ds

(P
(LT
(I

(6-0)af -1 @y (a, B) — Pa(a, B)
2%(%(%}3))1(1[( 1o . 2 (o

du)

n q)l(a’/g) ; q)Z(arﬁ) |§”(8)‘q>q

1- 17 1 a!! 1
(T’ﬂﬂ (o)|q+%|J (5)|‘7) du)

/1[1_(1_8)a1|ﬁds‘(1+M|9\“(6)|q+
u o 2

1

1

SHer)u) ]

|y//(o_)|q

1

2

+ (Ql(arﬁ) + @2(0[,,3) |y//(o_)|q + @1(0[,/3);(1)2(0[,/3) |g~//(5)|‘1)qi|

Finally, we obtain the required result.
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Corollary 4 Let us consider o = 1 in Theorem 6. Then, we derive

‘ﬁ(a);ﬁ(a)_zﬁ—lr(ﬁu) []5y(a_+5> . y(0+8>:|‘

6-0) [ 2 o+ 9
_(8_6)2 1 1_% :3"'4' al q 3ﬂ+8 ol qzll
<5 (5) (a7 g ” o)
36+8 N B+4 , q%
H(me75 O o) |

Remark 8 If we take « =1 and 8 = 1 in Theorem 6, then Theorem 6 becomes [19, Propo-
sition 6].

4 Concluding remarks

In this paper, new inequalities are established, including the Conformable fractional in-
tegral, a construct that generalizes inequalities obtained with the Riemann integral and
inequalities created with the help of Riemann-Liouville fractional integrals. It will appeal
to readers that the inequalities produced in the research include both Conformable frac-
tional integrals and twice-differentiable functions. To the best of our knowledge, these
results are new in the literature. We hope that the ideas and techniques of this paper will
inspire interested readers working in this field. With the techniques used in the obtained
inequalities, different types of fractional integrals can be used to obtain new inequalities
in the future. In addition, new inequalities can be obtained by considering different order
derivatives of the functions.
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