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1 Introduction
In this paper, we are interested in the nonexistence of nontrivial solutions of pseudo
parabolic-type equations and systems in the Heisenberg group. Besides their intrinsic in-
terest, nonexistence results are a useful tool for proving related existence theorems for the
corresponding Dirichlet problem on bounded domains.

To better describe the setting, we recall the seminal work of Fujita. In his paper [6], Fujita
studied the following nonlinear heat equation:

ur(x,t) — Au(x, t) = u™*?(x,t), (x,t) € RN x (0, 00), O
u(x,0) = ug(x) >0, xeRN.
He showed the following results. If 0 < p < %, then a solution of problem (1) blows up in
finite time for N > 2 while being globally well-posed for p > %
One of the further generalizations of problem (1) is considering the fractional Laplacian
(-A)* instead of the classical one (—A). For example, in [9], the authors considered the
Cauchy problem

ur(x, 1) + (=AYulx, t) = alx, O)|ulx, )| (x, 1), (x,t) € RN x (0,00),

u(x,0) = up(x) >0, xeRN,

for s > 0.
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As a generalization to the Heisenberg group, Ahmad and Alsaedi in [1] considered the
following problem:

ou o
— —Ap) 2 |u|™ = |ul?, 3
oy + (AR ul™ = ul ®3)

where p > 1, supplemented with the initial data

0
u(1,0) = uo(n), a—Z(n,O) = w1 (),

where (-Apg)* is the fractional Kohn-Laplacian, s € (0,1), p > 1.
In this paper, we study nonexistence of all nontrivial weak solutions of pseudo parabolic-
type equation of the type

Wy (~Am)Tu—(=Ap) 2, = Il lul?,

M(U’O) = ”0(’7) > 0) ne HVI’

(4)

where p > 1, and y is a real number, ||y is defined in (8), the operator (~Ap)? 0O<a<2)
accounts for anomalous diffusion (see below for the definition).
We also present the critical exponent for the pseudo parabolic-type system

W (D) S u— (=A) S = Il V19,

Bt (AR 2V = (=Ap) v, = )} ul?, -
74(77’0) = u()(n) 2 O) 77 € HVI’

v(n,0) =vo(n) =0, neH"

wherep>1,g>1.

In recent years, increasing attention has been given to the analysis and PDEs, An im-
portant aspect most directly related to the present work is the fine analysis of blow-up
solutions of the nonlinear elliptic equations, see [14, 16]. In particular, equations on the
Heisenberg have been widely studied, see [2, 3, 5, 7, 8, 10, 11, 13, 15, 18—20] and the refer-
ences therein. In [12], the authors studied the Kirchhoff elliptic, parabolic, and hyperbolic-
type equations on the Heisenberg group, In addition, the analogous results have been
transferred to the cases of systems. Later, Zheng [21] established Liouville theorems for
the following system of differential inequalities:

Agu™ + |n|2v|P <0,
H |77|1-1|| = ©)

Apv™ + |} |ul? <0

on different unbounded open domains of Heisenberg group H”, including the whole space
and the half space of H".

2 Preliminaries

In this section we recall some basic facts regarding the Heisenberg vector fields and frac-
tional powers of subelliptic Laplacian in the Heisenberg group, which will be used in the
sequel.
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The Heisenberg group H” can be identified with (R?"*1,0), where 2x + 1 stands for the

“« »

topological dimension and the group multiplication “o” is defined by
Eok:= <x+5c,y+j/,t+i+22xi51i—yifci>
i=1

forany & = (x,,¢), £ = (&,7,2) in H" with x = (x1,...,%,), & = ®1,...,%4), ¥ = (¥1,...,¥n), and
¥y =(1,...,9s) denoting the elements of R”. Moreover, they are homogeneous of degree
one with respect to the dilations

8.(8) = (Ax, Ay, A%) (A >0). )
We consider the norm on H” defined by

1
i

" 2
€= p(E) = [(Zx% +y?) + tz} ®)
i=1

and the associated Heisenberg distance

A

du(£,8) = p(E7 0 8),

where £-! is the inverse of £ with respect to “o’ i.e., £-1 = _£. Let Dg(€) denote the Koranyi
ball with center at £ and radius R associated with the gauge distance dy (&, £)=pEtog),
and we will refer to it as Heisenberg ball. For every & € H” and R > 0, we will use the

notation
Dg(£) := {n € H"|du(€,7) <R},
it follows that
|Dr(§)| = | Dr(0)] = |D1(0)|RY,
where |D;(0)| is the volume of the unit Heisenberg ball under Haar measure, which is

equivalent to 2x + 1 dimensional Lebesgue measure of R?"*1, The n-dimensional Heisen-
berg algebra is the Lie algebra spanned by the left-invariant vector fields

X 9 9 1
i = o APNPR i yeeer M,
I PP
d 0
Yii=— -2x;—, i=1,...,n,
Byi ot
0
T:=—. 9
Y )

The Heisenberg gradient, or the horizontal gradient of a regular function u, is then defined
by

Vyu:=(Xiu,...,X,u, 1u,...,Y,u).
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While its Heisenberg Hessian matrix is

" X Xiu - XX | iXqu oo Y, Xqu |
V2o XiXu - X, Xyu| V1iXu --- Y, X,u
H X\Yiu - XY | Y\ - Y,Yiu
| X\Yu o X Yu | ViYu o-- Y,Yu o

Consider the vector fields X, Y} forj=1,...,n in (9), the sub-Laplacian on the Heisenberg
group is a linear differential operator of the second order defined by

n
Apgu = ZXJZu + szu

j=1

2”:3%1 9%u A %u A 8%u 452 +9?) 3%u (10)
=Y ot — Ay —— —dx—— +4(x + ) —.

= oy Vamae - ayer 0 o

A natural group of dilatations on H” is given by
8, (n) = (Ax, Ay,8), A>0,

whose Jacobian determinant is A9, where
Q=2n+2

is the homogeneous dimension of H".

Here, we recall a result on fractional powers of sub-Laplacian in the Heisenberg group
taken from [4]. Let A/(¢,x) be the fundamental solution of —Ay + ;. Forall 0 < B <4, the
integral

Rg(x) = B / 27N (%) d
converges absolutely for x #0.If 8 <0, B ¢ {0,-2,—4,...}, then

B +00
R L/ SN (%) d
(%) r) s t2 N (t,x) dt

defines a smooth function in H” \ {0} since ¢ — N/(¢,x) vanishes of infinite order as t — 0
if x # 0. In addition, ieﬁ is positive and homogeneous of degree § — 4.

Lemma 2.1 Ifu belongs to the Schwartz class S(H") (see [5]) and 0 < e < 2, then (—Ay)*u €
L*(H) and

(—Ap)Yu) = | (uxoy) —ux) — x3)(Viau),y))R 2(y) dy
H

=P.V. /I;(u(y) - u(x))f?_ZS(y’l ox)dy, (11)
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where P.V . is the Cauchy principal value and x is the characteristic function of the unit ball
B,(0,1), (p(x) = R;*‘; (%), 0 < <2, p is an H-homogeneous norm in H" smooth outside the

origin).

3 Main results
(£2) is called a local weak solution to
(H"™) if the equality

Definition 3.1 A locally integrable function u € L] _
(4) in Q = H" x (0, T) with the initial data 0 < uy() € L}

loc

/|n|L|u|Pwdndt+/ wo(n)y (1,0 dn
Q H"
—/ uwtdndﬂ/ u(=Ap) 2y dn dt
Q Q
+ f (= D) e dn e + f wo(n) (= D) (,0) iy di (12)
Q H"
is satisfied for any test function 0 <y € C,zh’tl(Q).

Theorem 3.2 Let 1 <p < % and y > =2, then (4) does not have a nontrivial weak

solution.

Proof Let u be a global weak solution of (4) and ¥ be a smooth nonnegative test function

such that
/ |n|y(1 ) 1 -v |%|p |(_AH)%¢’p/ + ‘(—AH)%%F,)dndt
+ [ -2t 0)dn
< 00, (13)

where p’ = p/(p — 1). By using Young’s inequality, from identity (12) we obtain

/mmmwdnmf o) ¥ (0, 0) iy
Q H"”
s/ |u||wt|dndt+/ | A8 v | dndt
Q Q
. /Q | Ap) S | dm i + /H o)) F (0, 0)dn s
1
55/ nlLlulPy dnde
Q
+C /Q P (gl + A S+ [(~amE ] ) dndt

+ f o) (=An) $ (1, 0) dn. (14)
HVI
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In the sequel C denotes a constant which may vary from line to line but is independent of
the terms which will take part in any limit processing. Therefor the inequality

Alnlﬁlulpwdndtﬂ/m uo(m)¥ (1,0) dn

<ac /Q Y (gl + (A S+ |(~Am) Sl ) dndt

w2 [ -0 00,0y (15)
follows from (14).
Taking
C(EI HE T t et "
w(n’t)_\p(T)qJ(ﬁ)’ 7’]—(5,%—,‘[)61‘[ ,t>0,R>0, (16)

with W € C2°(R") is the standard cut-off function

1, ifo<r<i,
Y(r)=1\, ifl<r<2, (17)
0, ifr>2.

We note that supp(v) is a subset of
Qp={(n1)=E1,0) e H" xR, : |E[* + [E]* + [7]* + |¢]* < 2R*},
and supp(Ap¥) is included in
Qe={6)=EE v, ) e H" xR :R* < [5[* + §]* + |o ) + |ef” < 2R*}.
We note from [17] that there is a positive constant C; > 0, independent of R, such that
[cAmiy| <R
and
Wil <GR?, (A iy] =GR

We perform the change of variables RE = &, Ré =&, R*% = 1, R°f = ¢, and from (15), we
obtain the estimates

[ v dnae 2 [ uativn,0dn
Q H"
S C(R 4+ RV R )Ry 121 Qe g f |0 ()| [(=2)3 $ (1, 0)|
HVI

< CRP+r(1=p)Qra 4 oo, (18)
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When 1<p< ”8*0‘ , the exponents of R of (18) are negative. Letting R go to infinity and

using Fatou’s lemma yields

[t dnae+2 [ oty
Q H"
< liRminf(f nlp|ul’y dndt + 2/ uo(n)lﬁ(n,O)dn), (19)
— 00 Q H}‘l
which is zero from (18), and nonzero u cannot exist since

/ so(n)dn = 0.
HV’

Y+Q+a

In the case where p = 3

, from (15), we get

[ty dnae <. (20)
We recall the domain

Qri={x=(£,&1,0) e QR < |§* + |E|* + 2 + £* < 2R*},
then by (20) and the Lebesgue dominated convergence theorem, we have

Jim [ Inlhlulry dnde =0 1)
By using the Holder inequality in (14), we get

/ il Py dde
Q

1
7

1
p ) / /
5(/ |n|L|u|Pwdndt> [(/ |n|L“”’wl-P|1/u|P)”
QR QR

Qp

1

¥ ( / W |~ A S g, ")} + / uo(n) (=) 3 (1, 0) dn
Qr H"

<c / Il Py i d. (22)
QR
Finally, we get
fmmmwwdndtscf il dndt. (23)
Q Qr

By letting R — oo and using (21), we get u = 0, ending the proof. O

Next, we will consider system (5).
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Definition 3.3 A pair («,v) with p,q > 1 is called a weak solution of system (5) in Q =
H" x (0, T) with the Cauchy data (uo, vo) € L1 (H") x LL (H") if the following identities:

loc loc
f I\ |y dn it + / o) ¥ (n, 0) iy
Q H"
=—/u1/ftdndt+fu(—AH)%1pdndt
Q Q
+ / w(=Ap)S Y dndi + / so(n)(=Ar) 3 ¥ (n,0) i dt (24)
Q H"
and
/ 2 P dydt + / vo(n)¥r(n, 0) i
Q H"
:—/Vl/ftdndt+/ V(=Aw) Ty dn dt
Q Q

. / V=) Y dnd + / Vo) (=) £ (1, 0) iy dit (25)
Q H"

are satisfied for any regular function 0 <y € C,ZL',1 (€2).

Theorem 3.4 Assume that

RO g 22 oyt
q pq qp

Qfmax{ p rq 1Pq )4

Then there is no nontrivial weak solution (u,v) of system (5).

Proof Let yr be a nonnegative function such that

4 =14 2
wR(ﬂ,t):‘y(W>\l—’(%>, n=(&E1)eH" t>0,R>0, (26)

with W € C2°(R") being the standard cut-off function

1, ifo<r<i,
Y(r)=1\, ifl<r<2, (27)
0, ifr>2.

Let (¢, v) be a nontrivial weak solution of (5). We note that for large R,

/H o), 0) iy - f o(n)(=Ar0) 9 (1,0) d dt > 0

H"

and

/ Vol (1, 0) dn — / vo(n) (=) ¥ (1,0) i dt = .
H" H"
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Using (24) with v = ¥, one has

/ U V| d dt + / o) ¥, 0) i — / so(n)(—An) rln, 0) iy dt

H"

5A|u||<wR)t|dndt+/ |u||<—AH>%wR|dndt+/ )| (=A)S (W), | iy de

S(/anllyflulpwkdndt> |:< Ian WR”!(WR);} dndt>

|

+( |n|;7w;7|<—AH>%wR|’”/dndt)”’
(/ inl7 |u|PwRdndt) HR), (28)

1
7

S

(f |n|H wﬁ ~A) T (YR | dndt>

[ izt vdnde [ votnatn0)dn = [ vl vao0)dn

sfg|v||(t/ne)t|dndt+f |v|<(—AH)%wR|dndt+fﬂ|v||(—A)%(wR)t|dndt

,‘1_
(/ nl} IVIqudndt> [( InIH < @R)|” dndt>
(/|n|H 7 AHﬁwr”dndr)q’

(/ M e STNRCTORNL dndt)
( / il IVI"llfRdndt) HR). (29)

1
7

==

Setting

IR - / 2l yrdndt,  J(R) = / 12 Ve dn dt,
we have
J(R) < I(R)? A (R), (30)

where ¢4 (R) = Ay (R) + By (R) + Cy(R), and

Aw(R)=< Ian” 1/fR |(1/f1e " dndt> ,

S

Bw(m-(f A TN I dndt) ,
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N =

_P’ v
=< Ve |(—Am (Wr)]” dndt)
Q
Similarly, we have
I(R) < J(R)7 #(R), (31)

where @4 (R) = A'(y) + B (¥) + C'(¥) and

(R)-(/ i 0 (ol dndt) ,

(R)—(/ |n|,; ?|( Ap) gt dndt> ,

=

|

_Q =

Cy ( R)—( Ian 7|( Ap)Z (Yr)e|” dndt>

To estimate the integrals .27 (R) and .2%(R), we introduce the scaled variables RE = &,
RE =&, R*% = 7, R%F = t, and we conclude that

HR) = C(R T (32)
and
AR <C(R 72T, (33)

Using (31) and (33) in (30), we obtain

1
v (R))l_"%’ <oy @ (R) < CR7,

no_ 2, Q2 _p gy X2
7 p P
Similarly, we have

where o7 = —

1
(I(R) 7 < o/," (R) < CR7,

where g; = — 22 — 2« | Q2
pa q " ap q

Now, we require that o; < 0 or gy < O which is equivalent to

— 20 + Q+2

Q < max , T T
/+ -t
pq @' " q

In this case, the integrals I(R) and J(R), increasing in R, are bounded uniformly with
respect to R. Using the monotone convergence theorem, we deduce that |5|}7[v|? and
7|72 |u|? are in L'(H). Note that instead of (28), more precisely,

/ U V| dn dt < C / V2l dn d, (34)

QR
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where C is a positive constant independent of R. Finally, using the dominated convergence
theorem, we obtain that

1im/ In|22 |ulPyrdndt = 0. (35)
R—+00 QR
Hence,
/ Il i dy dt = 0, (36)
Q

which implies that v = 0 and u = 0 via (29). This contradicts the fact that (,v) is a non-
trivial weak solution of (5), which achieves the proof. O
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