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1 Introduction

Consider the nonlinear equation

ag(V)

ol AV2V Vi + V3Vt (1.1)

Vt - Vtxx +

where g(V) =37, a; V/ and each g; is constant. Equation (1.1) is regarded as a Camassa—
Holm type equation in Grayshan and Himonas [1]. Equation (1.1) possesses fourth order
nonlinearities. In fact, the standard Camassa—Holm (CH) model [2] and the Degasperis—
Procesi (DP) equation [3] have quadratic nonlinearities, while the Novikov equation [4]
possesses cubic nonlinearities.

As CH, DP, Novikov equations and the generalized Camassa—Holm type equations have
the same dynamic characteristics such as an infinite hierarchy of higher symmetries, con-
served quantities, and a bi-Hamiltonian formulation [5-8], we recall several works relat-
ing to the nonlinear CH, DP, and Novikov equations. A nonlinear nonlocal shallow water
equation including the CH equation is studied in [6], in which the wave breaking of so-
lutions is discovered. Silva and Freire [7, 8] discuss the persistence and continuation of
generalized 0-Holm Staley model with higher order nonlinearities. Guo et al. [9, 10] in-
vestigate several dynamical properties of the CH type equation with higher order non-
linearities (also see [11-14]). Constantin and Ivanov [15] employ the dressing method to
study the DP equation. The blow up structures, global strong and weak solutions for the
DP equation are considered in [16, 17]. Mi and Mu [18] make use of detailed derivations
© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The

images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not

L]
@ Sprlnger permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.


https://doi.org/10.1186/s13661-023-01700-x
https://crossmark.crossref.org/dialog/?doi=10.1186/s13661-023-01700-x&domain=pdf
mailto:Laishaoy@swufe.edu.cn
http://creativecommons.org/licenses/by/4.0/

Tang et al. Boundary Value Problems (2023) 2023:13 Page 2 of 20

to find the property of peakon solutions for a modified Novikov model. Himonas et al.
[19] construct two peakon solutions and illustrate the ill-posedness of the Novikov equa-
tion. For the models relating to the CH, DP, and Novikov equations and their dynamical
properties, we refer the reader to [20-28].

Motivated by the works made in [1,7, 9, 10] to probe the dynamic properties of nonlinear
equations with higher order nonlinearities, we aim to investigate the existence of global
weak solutions for Eq. (1.1), which possesses fourth order nonlinearities. We utilize the
viscous approximation technique to prove the global existence. Here we state that our as-
than the sign condition. The key contributions in this job include a higher integrability

V()

estimate and an upper bound estimate on the factor [=; .

The structure of this work is illustrated as follows. Section 2 states the main conclusion.

sumption on the initial value Vo (x) is Vo(x) € H'(R) and || 572 || .00y < 00, which is weaker

Several lemmas are given in Sect. 3. In Sect. 4, a strong convergent property of the solution

for viscous approximations of Eq. (1.1) is derived and the main result is proved.

2 Main conclusion

Consider the problem

Vi~ Vir + 2V 42V, Vo 1+ V3V,
V(0,x) = Vo(x).

(2.1)

92

W)‘l, we derive that problem (2.1) is equivalent to

Using the inverse operator A™2 = (1 —

Vi+ V3V, =G,
V(O’x) = VO(x)’

(2.2)

where G = A2[L(V4), - BV L y2y v - 3(V2V2),].
The definition of global weak solutions follows that in [21, 22].

Definition 2.1 Suppose that the solution V(t,x) satisfies
(a) V €C([0,00) x R) N L*([0, 00); H'(R));
B) V&N mw < Vol @y
(c) V = V(t, x) satisfies (2.1) or (2.2) in the sense of distributions. Then V'(¢,x) is called a
global weak solution to problem (2.1) or (2.2).

In this work, we utilize ¢ to represent any positive constants that do not depend on

parameter . Our main result is described as follows.

Theorem 2.2 Let || Vo || wr) < 00 and Vo(x) € H'(R). Then at least one global weak solu-
tion V (t,x) for problem (2.1) or (2.2) exists. Moreover, for any T > 0, (t,x) € [0, T) x R, the

inequalities

WX _ g4y (2.3)
0x
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and

6

A4UL dx <c(1+ T)eT (2.4)

0x

J

hold.

3 Several lemmas
Assume

.
exz—l, |x| < 1)

0, || > 1,

ox) =

which has a compact set [—1,1]. Set the smooth function ¢, (x) = 8’%¢>(8’%x) associated

withO< e < i and
Via = [ 9= Vol6)ds =g+ Vo
R
We have V, o € C* for V, € H'(R) and

Veo— Vo in HY(R),ase — 0,

(3.1)
I Veollmw < el Vollaw)-
Consider the following viscous approximation problem:
Ve 39Ve _ 0%
T-'—VEW_GS_SZMZ’ (32)
Ve(0,%) = Vs,O(x),
in which
1 ag(Ve) V.V, av.\?
Ge= A2 = (VY - Vi i _3(Vv? .
‘ [4( s ox | f ox o2 A\ ox .
Letting &, (t,x) = %ﬁf”c), from (3.2), we obtain
oh ohe 1 0%h
LV V2R - " = H,(t,%), 3.3
at+88x+268 eaxz S(x) ( )
where
L 214 5 272 3
H.(t,x) =g(V,) - ZVS + A ZLVS -g(Vo) - EVS h; — (Vgha)x . (3.4)

For problem (3.2), we have the conclusion.

Lemma 3.1 Provided that V, € H'(R) and arbitrary x > 2, then problem (3.2) has a
unique solution V, € C([0,00); H*(R)) and

v\ t VN [(9*Ve)?
2 & & & _ 2
A(Vs +< 8x> )dx+28/0 /R<< ™ ) +< 2 ) >(s,x)dxds— Vel )y
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which is equivalent to

9 2

2 “lav.
Vet ey 22 [ |50

ds = ” VS,OH?.[I(R)'
HY(R)

Proof For the initial value V € H'(R) and arbitrary ¥ > 2, we obtain V, o € H*(R). Uti-
lizing the main result in [23] yields that system (3.2) possesses a unique solution V,(¢,x)
belonging to C([0, 00); H*(R)).
For integer j > 1, we have [ aa_\;l Vdx = [;jV/"'VV, dx = 0. Using the definition of g(V')
yields [, 8V dx = 0.
Using system (3.2), we have
v, 3V, ag(Vy)

- =4V?
ot ot | ox “ ox 92 | F 9a3

AV, 92V, V383V5 V. 'V,
0x2 xt )’

which leads to

1d CIAN V> [(02V.
—— V2 ° dx+8/ = I dx =0.
2dt Jr 0x R 0x 0x2

The proof is finished. O

If Vo(x) € H'(R), then using (3.1) and Lemma 3.1 gives rise to

I VellLo®) < cll Vellmmy < el Veollmiwy < cllVollmm) < ¢

(3.5)
lg(Ve)lloew) < c.
Assume K(x) € L"(R) (1 < r <00 or r = 00). Note that
1 oo
A2K(x) = 5 / e K (n)dn
and
1 [ oK
A[KW)], == / -te-n IK () dn
* 2 ) 5 an
1 * oK 1 *° 0K
= —e”‘f e”ﬂ dn + —e"/ e"’ﬂ dn
2 J  Ony 2 s an
1 * 1 *°
:—Ee"‘/ e"K(n)dn + ie"/ e "K(n)dn,
from which we have
1 oo
A [KW)],| < 3 / e MK ()| dn. (3.6)
Lemma 3.2 Assume 0<t< T, Vo e H'(R), || %x(") llzoom)y < 00. Then the solution of prob-

lem (3.2) satisfies

6
/l;{(aa‘;‘g) dx <c(1+ T)eT (3.7)
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and

VAN LA
8/ /( ) (—> dxdt <c(1+T)e. (3.8)
0 R ox 8x2

Proof Using (3.3) and writing V' = V; for conciseness, we have
Loave, 13
V,;x + EV Vx +V Vxx_gvxxx
14 YE > 21 3
:—EV +g(V)+ A ZV —g(V)—§V vi-(vv7), ) (3.9)
Applying the identity
/ VfV3Vxxdx:/ V2V3dV, = _/ Vi[5ViVi V2 + 3V Ve dx
R R R
yields
6/ v3vaxxdx=—3/ V2V! dx,
R R
from which we have
Loave, 13 5
EV Vi+ V2V |V dx=0. (3.10)
R

We multiply (3.9) by V> and apply (3.10) to obtain

1d
6dt [y

1 1 5
:/ V,E(g(\/)——v‘*) dx+/ VfA-2<—v4—g(V)——v2v§—(vv3) )dx
R 4 R 4 2 x

< ||V g(V)—lVA‘ dx +
[lvaferr-3v)]as- |

+ g/|v,fA-2(V2v§)|dx+f|VjA-2(VVj)x\dx. (3.11)
R R

Vfdx+5£/ VEV2 dx
R

1
VoA (é_L vt —g(V)) dx

Applying the Holder inequality gives rise to

J

dx

V2 (g(V) - %LV‘*)

5 1
3 3
§c</ Vfdx) (/ Vzdx> +c§c(1+/Vfdx>, (3.12)
R R R

in which inequality (3.5) and ||V/||zx®) < ¢ (j = 1,2,...6n) are employed. Utilizing the

Holder inequality again yields

3 3
/|Vx|4dx§(f vfdx> (/ vjdx> 5c(1+/|Vx|6dx>, (3.13)
R R R R
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and

; %
/|vx|5dxs</ v,?dx) (/ v;dx>
R R R

1 1 3

2 1 1

50(/ Vxﬁdx) (f Vfdx) SC(/ Vfdx) .
R R R

We have

’ 1

Using (3.6) yields

1 oo
2] =5 e vvan

From (3.13)—(3.18), we obtain

/|VfA’2(VVf)x|dx
R
< 1//|v,§|e—\x-nl|w;|dndx
2 JrJr
<c[wiras [ 1vPan
R R
i 1
§c</ Vfdx) (/ Vfdx) :c/ Ve dx.
R R R

Using (3.11)—(3.19) results in

4 Vfdx§c<1+/ Vfdx),
dt Jr R
which combining with (3.11) gives (3.7) and (3.8).

Lemma 3.3 Forany0<t< T and x € R, then

| Ge (&, ’)HLOO(R)’ |G (e ')“LI(R)’ |Gt )] 2y <€

1
3 /Re"“”'<g(v(t, m) -V n)) dn

- L[ e
A2 (V2VY)| = ‘E/Re w "(vzv,f)dn‘ §c(1+/RVnZdn> <c.

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

Page 6 of 20
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and

HHS(t’.)HLOC(]R)’ ”He(tr')”Ll(R); ||H£(t")||L2(]R)r

<c, (3.21)

H OH,(t,-)
LL(R)

0x

where the constant ¢ > 0 does not rely on ¢, G;(t,x) and H.(t,x) are defined in (3.2) and
(3.4).

Proof To write concisely, we utilize the notation V' = V,(t,x) and % = k. (¢, x). In the proof
of Lemma 3.2, we have proved that

|Gellzom) < c. (3.22)
Using (3.6) yields
o o Bg(V))‘
g (), - 2
< c</ e ytdn + / e“"_"||g(V)| dn) <c, (3.23)
R R
a2V ) <e [ e |vavian, 829

and
X

o0
A2V e [ v, ans ger [T e (v, i

= ‘—e‘x‘/ Ve[V +2VV,e | dn

—00

1 = 2 2
_Zex/x Vie'[-V +2VV,,]dn‘

ze [ (Vv VW
R

<c / (V2 + |V3) . (3.25)
R

From (3.22)—(3.25), using (3.14) and the Tonelli theorem, we derive that (3.20) holds.

Now we prove (3.21). Note that g(V) = 27:2 a; V7. Using (3.5) and (3.6) gives rise to

)=V e &)=V = (326)
|A2(V2h?)| < % /R e MV dn <, (3.27)
and
A7 VI | < c/ooe"‘x"’”|Vh|3dn < c/R |k dx. (3.28)

From (3.26)—(3.28), using the Tonelli theorem, we obtain that the first three inequalities
in (3.21) hold.
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We have
0H,(t, 1
J = |:g(V) — _\/4:|
ox 4 x
214 > 272 3
+A 1 Vi-g(Ve)— 3 Vi - (Veh), ) - (3.29)
Using (3.6) and (3.26)—(3.29), we obtain the last inequality in (3.21). O

Lemma 3.4 Let || Vol 1o®) < 00, Vo(x) € HY(R). Then solution V, of problem (3.2) satisfies

V. (t,x)

<c(1+1), O0<t<T. (3.30)

Proof From Lemma 3.3, we obtain |H,| < c and

oh oh, 1
e S VS T
ot ox 2

9%h,
0x2

=H,(t,x) <c. (3.31)

Assume that J = J(t) is the solution of the following ordinary differential equation(ODE):

g 1, .o,

— +—(V* = 3.32

dt " 2( 8) Ji=c (332)
with initial value J(0) = || 3})’;" | Loo(®)- Let V¥ be the solution V,(¢,x) when sup,g /. (¢, %) =

J (), we derive that J(¢) is a supersolution of Eq. (3.31) associated with V, ¢(x). Using the
comparison principle of parabolic equations gives rise to

he(t,x) < J(2).
Let I(¢) := ct. Consider that % + 2(VF)I2(0) — ¢ = 2(V7)*(ct)* > 0. Applying the com-
parison principle for ODE (3.32), we know J(t) < I(£) = ct + || 3';;‘0 llzoo(ry, which leads to
(3.30). O

We let 2, =[0,00) x R.

Lemma 3.5 Let V.(t,x) satisfy problem (3.2), || Vox |l 1) < 00, and Vo € H'(R). Then there
exists a subsequence s; — 0asi— oo and V € L*([0, 00); H (R)) NH([0, T] x R) to satisfy

Ve, =~V inH'([0,T] x R), (3.33)

V., >V in L) (3.34)

Proof Since

vV, V. 9G 3%V,
A (3.35)
ot ox ox ox?

for every fixed T > 0, applying Lemmas 3.1-3.3 and (3.35) yields

< Co(1+ Vel Vol w))s (3.36)

H Vv,
L2([0,T]xR)

at

Vv
ot

L2(R)
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where Cj relies on || Vox|lzoom), IVollgi ), and T. Consequently, we obtain that {V,} is
bounded uniformly in the space L>([0, co); H'(R)) N H*([0, T] x R) and (3.33) holds. Note
that, for every s, t € [0, T,

2 rav, 2
|| Vs(t,~) - VS(S")”LZ(IR) = A(l a7 (T,x) df) dx

T 2
<lt-s 8V‘e(r,x) dt dx.
0
R Jo T

Utilizing H'(R) c L.(R) C L2 _(R) and applying the conclusions in [22], we obtain

loc loc

(3.34). O

Lemma 3.6 Suppose that || Voyllzo®) < 00 and Vo € HY(R). Then the sequence He(t,x)
is uniformly bounded in VV&)CI(QJ,) Moreover, there is a sequence &; — 0 if i — 00 and a

Sfunction H € L*([0, 00); WE(R)) to satisfy

H., — H strongly in L}, (Q2,),1<r<o0. (3.37)

r
loc

Proof Applying notations V' = V,(¢,x) and & = h, for conciseness, we acquire

0H,
at

(g/(V) - V3)Vt
+ AP (V2 =g (V) Ve = 5VVik® =5V hh +0,(Vil* +3VI )]

=[(@WV) = V)V, = A2 (VP g (V) V] - 5[ A2 VP V]
-[Aa™? [szh(Hg -Vih, - %v%2 - shxx)j| - [A20.(Vil® + 3VI*hy)]
:Ao +A1 +A2 +A3. (338)

Applying (3.5) and (3.36) yields

1 1
2 2
|A0|§c||V||§oc(R)< f Vde) ( / vfdx> <c (3.39)
R R

Using (3.13) and (3.36) gives rise to

3 3
/R|A1|dx§c|:/Re"”"(/R(th)zdn) (/R vfdn> dx <c. (3.40)

We have

|4,] < C</ el
R

/R e ¥ N5V 1k, dn

< C(/ e_lx_r”
R

dn

/R e 15V2hn,, an

dn

5
5V2hH, - 5v‘*h3

+ te

5
5V2hH, - 3 Vi3
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1
+5 / e N2 [25V*h + sign(n - x) V] dn’
R

+ &

/ e M, [10VH? + 5Vh, + sign(n - x)5V>h] dn D (3.41)
R

Utilizing the Schwartz inequality, (3.13)—(3.14), and Lemma 3.1 yields

./|A2|dx50<1+/|h|3d’7)+8c/(|hhn|+|h2hn|+|hn|2)d”
R R R
§c<1+/ |h|3dn> +sc/(h2+h4+3|hn|2)d77
R R

<c
and
t
/ / |As|dxdt < cT. (3.42)
o Jr
For A3, we have

Az = A [Vil® + 3V hy |

1
A2 [Vth3 +3VH? (HE V3, - 5 V2?4 shxx)]

X

3
=A" [vth3 + 3V’ H, - —v3h4] = 3A[V*HPhy ], + 3e AT [ VI by ]
2 x X

X

=11 +12 +13. (343)

From (3.6), we obtain

1 oo 3 2 3 31,4
|11|=‘—/ e-x-"'[vth +3Vh HE——Vh}
2 ) o 2

o0
< /. e_lx_r”
-0

By simple calculation, we derive that

dn‘

n

3
Vi3 + 3VHEH, — 3 V3nt dn. (3.44)

L= =3A[V*h ] = -A?[(V*R), - (V*), 1°],
=—AT(1- A*) (V%) + A [4VPHY],

=—A (V) + 4N [ VPR + VR (3.45)
and

Iy =3¢ A [(VIPhy) - (VI®) I,
=3e A7 (1 - A*)[VIhy] - 3e A*[(H° + 2Vhhy) b, ],

= —=3¢(VI’hy) + 3e A7 [VIPhy| - Be A7 (W + 2V by (3.46)

Page 10 of 20
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Using (3.13), (3.21), (3.36), and (3.44) gives rise to

/Ot/R|11|dxdt
cof o ( ) () o[

<c(1+T). (3.47)

Applying (3.13), (3.14), (3.45), and the Tonelli theorem yields

t t
/ /|12|dxdt§c/ [1+/|h|3dx+/ |h|4dx:|dt§c(1+T). (3.48)
0 JR 0 R R

Using Lemmas 3.1 and 3.2 derives that

t
sf /|(Vh2hx)|dxdt
o Jr
t t
580/ /|h2hx|dxdt§cs/ /(h4+h§)dxdt§c. (3.49)
o Jr o Jr

From (3.6), we obtain
e[ A2 [ + 2V ], < e [ |G 4 20h, iy,
R
Note that
2] < e[y )? + 2] < [R2 + (W) + 2] < c[202 + H492])
We have
t
6 / / A (4 + 2Vhh,)h,] | ddt
o Jr
t
< sc/ </ |(H® +2thn)hn|dn/ e"x_”ldx) dt
o \Jr R
t
< ec/ /|(h3 + 2th,,)h,,‘ dndt
o Jr
t
<ec / / (Hihy| + |Wi2) dn dt
o Jr
t
< ec/(; /R(h6 + h% + h4h%) dndt <c, (3.50)

in which we have used Lemma 3.1 and (3.8). From (3.43), (3.46), (3.47)—(3.50), we obtain
Js Jo \Isldxdt < c(1 + T) and

/0 /R |Asldxdt <c(1+T). (3.51)
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From (3.38)—(3.41), (3.42), and (3.51), we derive that 321;5 is uniformly bounded in

LIIOC(SL). Making use of Corollary 4 on page 85 in [29] and Lemma 3.3, we conclude that

H, is uniformly bounded in Wﬁ;é(QJ. Thus, we derive that (3.37) holds. O
We employ the overbars to represent weak supper limits.

Lemma 3.7 Let1<ry <6andl <ry<3. Then there exists a subsequence &; — 0 when i —
o0, and two functions h € L (Q,) and h* € L]

loc loc

(2,) such that the following conclusions

hey —h inL}(R.),  hg—h inLZ([0,00);L%(R)), (3.52)
B~k in L () (3.53)

hold. Moreover,

W (t,x) < h2(t,x)  in the sense of distribution on Q,, (3.54)

oV . g

F h  in the sense of distribution on Q. (3.55)
x

Proof Employing Lemmas 3.1 and 3.2 leads to (3.52) and (3.53). Applying the weak conver-
gence in (3.52), we have inequality (3.54). Applying Lemma 3.6, (3.52) and sending ¢ — 0
directly give (3.55). The proof is finished. O

For writing concisely, we use {V:}es0, {He}es0, and {Hg}es0 to replace the sequences
{ Ve, Yiens {he }ien, and {Hg, }ien (N denotes all the natural numbers), separately. For ev-
ery convex function ¥ € C1(R) associated with v’ bounded, Lipschitz continuous in R,
using Lemma 3.7 yields

Y(h:) =~ ¥(h) inLl(Q),1<r <6,

Y(he) >y (h) in L, ([0,00); LA(R)).

Applying v’ (h.) to multiply Eq. (3.3), we obtain

3 19, 4 32y (he) , ahe\*
EW(hs) + ga(vg ¥ (he)) E o +ey (he)( ™ )

1 o) ’
V2ot - vy ot = 2y 20 )
2 3 ox

+ Hoy' (). (3.56)

Lemma 3.8 Assume ||Vox||zoo®) < 00 and Vy € H(R). For every convex ¥ € CY(R) asso-
ciated with ' bounded, Lipschitz continuous in R, let hyy(h) and ' (h)h? represent the
weak limits of her (h.) and h>y’'(h.) in L}

loc

(24), 1 < ry < 3, respectively. Then, in the sense
of distributions on Q., the inequality

9y (h)
ot

19,

oy(h)  ——
ox

<V (h) - %vzw/(h)h2 - %\/3 + Hy'(h) (3.57)

holds.
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Proof Applying the assumptions of function ¥, Lemmas 3.5-3.7 and taking ¢ — 0 in
(3.56), we obtain (3.57). a

From (3.52) and (3.53), almost everywhere in €2,, we have

h=h,+h_=h, +h_,
W = (h.)* + (h.)?, B2 = (1) + (ho)?,

in which A, := Xy[0,400)(A), A_ 1= Ay (—o0,0(A) for A € R. Using Lemma 3.4 leads to
he,h<c(1+t), tel0,T].
Lemma 3.9 Assume || Vol 1or) < 00 and ug € H'(R). In the sense of distributions on .,

then

oh 10 1 ,— 2 ,0h
—+=-—(V’h) ==V’ -V’ — + H. (3.58)
at 3 ox 2 3 ox

Proof Making use of (3.3), Lemmas 3.6-3.7, and sending ¢ — 0 in (3.3), we derive that

(3.58) holds. O
A generalized formulation of (3.58) is described in the next lemma.
Lemma 3.10 Let assumptions in Theorem 2.2 hold. For every convex function ¥ € C*(R)

with ' € L*(R) and an arbitrary T > 0, then, in the sense of distributions on 2., the
following identity

) 19, ,
5 T3ael V)

= V2 (h) - V' (h) + %v%w’(h) - %vBM + Hy'(h) (3.59)

ox

holds.

Proof Let {w,} be a sequence of mollifiers in R. We utilize notation x to represent the
convolution about variable x. Assume

hy(t,x) = (h(t, 2) % wy)(x).

Using ¥'(h,) to multiply (3.58), we have

ayh) ., 3k,
eV
’ 19 3 272
=vy'(h,) —ga—(V h)*wy + =V?h2 xw,
x
- %\/331?9(6}’) * Wy +H*w,,:|. (3.60)
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Employing the assumption of v, ¥’ and taking y — 0 in (3.60), we have

y(h) 1 50y (h) 2,39

L0V 050 12—2/__ ,

o +3V e Vhlp(h)+2\/h1/f(h) 3 ™ + Hvy'(h),

which leads to
oyl 1oy ()
ot 3 ox
1 ,— 2 0v(h

= V2 (h) - V22’ (h) + 5\/Zh%p’(h) - gv?’%) + Hy' (h).

The desired result is obtained. g

4 Proof of the main result
Using the methods in [21] or [22], we will derive that /. in (3.59) is strong convergence.

Subsequently, we prove the existence of global weak solutions.

Lemma 4.1 ([22]) Let Vy € H'(R). Then

‘ ) . — Vo \>
lim | h°(t,x)dx =1lim | h2(t,x)dx = — ) dx.
t—0 Jp t—0 Jp R\ O0x

Lemma 4.2 ([22]) For each constant B > 0, let Vo € H'(R). Then

lim / (WE(h(6 ) — viE (h(t,x))) dx = 0,
—VJR

where

1 if1¢] < B,
¥(¢):= 2 _— l.f|§|
B|¢| - 3B ifl|¢|>B

and Y5 (&) := YB(§) X10+00) (0 )s Y5 (8) := ¥B(E) X (-o001(§), ¢ €R.

Lemma 4.3 ([22]) Suppose constant B > 0. Then, for every { € R,

V(L) = 307 = 2(B = 1Z1)* X(-o0-B)n(B.00) ()
V(8)¢ = ¢+ (B=[¢])sign(¢) X (oo B)n(B,o0)(£)s
YE(£) = 3(0)* = 3B =) XBoo)(£),

(Wg) () = ¢ + (B= ) XB,oo)(6),

V5(2) =3(¢2)* = 2B+ ) X-o0r-5)(0),

(W) (¢) = ¢ = (B+ ) X(00-B)(C)-
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Lemma 4.4 Let Vo € H (R) and || Vol 1 ®) < 00. Then the inequality

dyg(h) Yy (h)
/((h )2 - h?) (tx)dx<——// < 5 8Bx )dxds

+/0 /I;H(s,x)[th(s,x)—h+(s,x)]dxds (4.1)

holds.

Proof For t € (0, T), we choose that B is sufficiently large to satisfy B > ¢ (see Lemma 3.4).
Employing Lemmas 3.8 and 3.10, and v/} (see Lemma 4.3) from (3.57) and (3.59) leads to

0 —— 190 —
5z s () = v (n) + 5 = (V2[5 () - v (A)])

2 -
< V(G50 ~ b ) = - (02 (05) )~ 2 5) )
2050 awg(h)>

2 2 3
VA=) ) 0= Sy (MDY

+ H(t,x)((v) () = (¥3) ). (4.2)
Since ¥}, is increasing, we have
V(2 - 1) (y3) (h) < 0. (4.3)
Applying Lemma 4.3 results in
300~ S (08 00 =~ B R x4,
W30 - 512(y3) 00 = 5 HB s OD, @4)

Making use of Lemma 3.4, we choose sufficiently large B > 0 to ensure /1 < ¢(1 + t) < B. Let
Tz = (0, % —1) x R. From (4.4), we have

00~ S () 00 =3 - SR (V) D=0 in Y,

In (O, % —1) x R, it holds that

vy =507 (W) () =h,
V() =52 () () =h.

Using (4.2)—(4.5), in the domain (0 2 -1) x R, we have the following inequality:

10

0
5, W = v5(0) + 2= (V: [y () - v ()])

_zvs(w . M) N

=73 ox S ) HHER((v) ) - () (). (46)



Tang et al. Boundary Value Problems (2023) 2023:13

For almostall 0 < £ < % — 1, integrating (4.6) over (0,¢) x R leads to

% fR (01>~ 1) dax < lim f [Va(t)(6,2) = v ()] dx

__// <8¢B(h) 31/f§(h))dxds
ox
+/o AH(s,x)[h+(s,x)—h+(s,x)]dxds.

Setting B — oo and utilizing Lemma 4.2 yield the desired result. 0

Lemma 4.5 Suppose Vo € H'(R) and || Vo || 1ow) < 00. Then
_ B rt -
/ (T30~ ) dx < — / / VB + W) Aoy (B) dvds
R o Jr
BZ t
-— / / V(B + h) X(—oo,-p)(h) dx ds
2 Jo Jr

+B/t/ Vz[m—l/fg(h)]dxds
+—/ /V2 h2 dxds
__/ / (3‘/’3(h) awai(h))dxds

+ /O /R Htx)((v5) () - (v5) () dxds. (4.7)
Proof From Lemmas 3.4 and 4.3, choosing that B > 0 is suitably large and using ¥, we
obtain
S G -vi) + 2 (VG h
E(WB( )= Y3 )) + ga_( [WB( ) — ¥z )])

= V(g0 — s () - = (3 001 (v5) 0)

oYz (h) oYz (h
LR

+H(, x)((wg)/(h) - (w;)/(h)). (4.8)
As -B < (¥3) <0and V? >0, we have

2 2
) (v5) 0 = P (). (49)

Using (4.8)—(4.9) and Lemma 4.3 yields

V2 , BV?
V2hyrg (h) - Thz(w,; ) (h) = _Th(B + 1) X(—o0,-8) (M), (4.10)

vy —————  BV?
VIG5~ =2 (V5) (h) = ==~ hB+ B X (). (4.11)

Page 16 of 20
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Applying (4.10)—(4.11) leads to

i V[ () — vz (0)])

0 —— 1
5 W =y () + 5 =

1 1
< =3BV B+ W (e () + 5BYH(B + 1) (o)

Loy 2T v
2 3 ox ox

+H(E2)((v5) ) - (¥3) ().

Integrating (4.12) over (0,£) x R, we have

/}R (Vg (h) = vz (W) (&, %) dx

B t
B / / V(B + ) X ooy (1) dx dis
2 Jo Jr

t t
2 / / Vzh(B+h)X(,oc,,B)(h)dxds+E / / V2(h2 - h*) dxds
2 0 JR 2 0 JR
t N =71 _
_%/ /V3<M_3¢B<h>)dxds
3Jo Jr ox ox

+ fo /R H(t,x)((v5) (0 - (v5) (h)) dx ds.

Using Lemma 4.3 yields

—_

Y (h) =Yz (h) = = ()2 - (h-)?)

N

1 1
+5(B+ 1) X(oo,-5) () — 5 B+ 1) X(-o0-5) (),

which results in

BV [z () — vz (0)] = gvz((h_)z - (h)?)

Page 17 of 20

(4.12)

(4.13)

B B
+ S VB + o) = 5 VIB+ I Koo, (4:14)

Making use of (4.8), (4.13), and (4.14), we acquire

[ @50 vz )60 d

B t
< —— / / V2h(B + 1) X(-00,-B) (1) dx ds
2 Jo Jr

§ ' 2 t T e
+ 2/0 /RV h(B+h)X(—oo,—B)(h)dde+B/(; /RV [1//B(h) le(h)]dxds

B t
+ = / / V(B + h)2X(_co,_)(h) dx ds
2 0 JR
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B t
2 / / V2(B + h)2 X (oo, () d dis

+—/ fvz - 1) dxd. ——f /VB(GI/’B(’“) al/zfx(h))dxds

+ /0 fR H(t,x)((v3) () - (v5) () dxds.

Using the identity B(B + h)? — Bh(B + h) = BX(B + k) and (4.15), we obtain (4.7).

Lemma 4.6 Assume that all the assumptions in Theorem 2.2 hold. Then
W% =h*  almost everywhere in 2.

Proof Applying inequalities (4.1) and (4.7), we have
1 —— _
/R <—[(h+)2 —(h)?] + [¥5 - w;])u,x) dx

//V23+h —0o,-B)(H) dx ds

-5 / / V(B + 1) X(—oo,—B) (1) dx ds +B/ / Vz[lﬁg(h) - wg(h)] dxds

+—/ /V2 -h%) dxds——// (81/,3(1/1) 81#(‘)Bx(h)>dxd5

; / [ HG (0 =1+ [(05) ) - (v5) 0] s
0
Using Lemma 3.6, for 0 < £ < T, we can find a constant Ky > 0 such that
”H(t,x) HLOO([O,T)xJR) =< Ko.
We use (4.18) and Lemma 4.3 to obtain

B+ (W5) (1) = h— (B + h) X005 (H),

e+ (W) (1) = h = (B + h) (-0, (H).

Using the convex property of the map ¢ — ¢, + (¥5)'(¢) yields

0<[h, —h]+ [(lﬁé)/(h) - (1/f§)/(h)]
= (B + ) X(-00,-B) = (B + h) X(—00,-B) (1) < 0.

Utilizing (4.17) and (4.20) yields

1

/R<§[(h+)2 - ()] + [v5 - %E])(t,x) dx
' T =7 _ B [t L=
53/0 /Rv [I/fg(h)—lﬂg(h)]dxds+§/0 /RV (7 1) deds

(4.15)

O

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

Page 18 of 20
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+ /0 /R 2V2h(yp(h) — yp(h)) dx ds. (4.21)

From Lemma 3.4, we choose sufficiently large B satisfying V2k < cB. Thus, from (4.21)

and Lemma 4.3, we acquire

1 77 \2 —
0 < /R<§[(h+)2 — (h+)2] + [lﬁé — 1/’3]>(t,x) dx
= CB/O A(%[W— (h+)2] + [I/I_I;— lpg]>(t,x) dxds. (4.22)

For each t > 0, the Gronwall inequality is used for (4.22) to yield

0= [ (ST - 007]+ (75 - 5] ) e s = (429
R

Using the Fatou lemma and letting B — oo in (4.23) lead to rise to
0< f (ﬁ— hz)(t,x)dx =0,
R

which results in (4.16). a

Proof of Theorem 2.2 (a) and (b) in Definition 2.1 are derived by directly applying Lemmas

3.1 and 3.5. From Lemma 4.6, we have
he —hin L3 (2,). (4.24)

From Lemma 3.5 and (4.24), we conclude that V is a global weak solution to system (2.2).
From Lemmas 3.2 and 3.4, we obtain that (2.3) and (2.4) hold. The proofis finished. [
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