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Abstract
This paper presents the solution of important types of non-linear time-fractional
partial differential equations via the conformable Elzaki transform Homotopy
perturbation method. We apply the proposed technique to solve four types of
non-linear time-fractional partial differential equations. In addition, we establish the
results on the uniqueness and convergence of the solution. Finally, the numerical
results for a variety of α values are briefly examined. The proposed method performs
well in terms of simplicity and efficiency.
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1 Introduction
Recently, numerous and improved applications of fractional calculus have given rise to this
issue (see [1–11] and references therein). In 2014, Khalil et al. introduced a new definition
of local type for the fractional derivative using “conformable derivative” (CD) [3]. The fact
that this derivative satisfies a huge portion of the well-known characteristics of integer
order derivatives is described as a main reason for its adoption [10]. Later, Abdeljawad [8]
used this newly defined terminology to describe the fundamental features and results of
fractional calculus.

In [12, 13], the authors discussed the physical and geometric interpretation of the con-
formable derivatives, respectively. In [14], the authors proposed Euler’s and modified Eu-
ler’s method utilizing CD . Moreover, they have discussed the validity of the proposed
method briefly. Since with the rapid development of non-linear science over the last two
decades, scientists and engineers have become increasingly interested in analytical tools
for non-linear problems.

Perturbation methods (PM) are frequently used techniques. However, perturbation
methods, like other nonlinear analytical techniques, have their own set of restrictions.
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Almost all perturbation methods start with the assumption that the equation must have
a small parameter. The applicability of perturbation techniques is severely limited by this
so-called small parameter assumption [15]. The Homotopy Perturbation Method (HPM)
was first proposed by Ji Huan He [15, 16]. The HPM has been used by many researchers in
recent years to solve different types of linear and non-linear differential equations, see, for
example, [17–19] and references therein. In [20], the author applied the HPM along with
Elzaki transformation (ET) to provide the solution of some non-linear partial differential
equation (N – PDEs). Furthermore, they discussed that the developed algorithm can solve
N – PDEs without “Adomian’s polynomials”, which is considered a clear advantage of this
technique over the decomposition method. In 2022, Anaç presented the applications of
the Homotopy perturbation Elzaki transform method to obtain the numerical solutions
of Gas-dynamics and Klein-Gordon equations and showed that numerical solutions of
fractional partial differential equations obtain both quickly and efficiently via a current
method [21]. They studied random non-linear partial differential equations to acquire the
approximate solutions of these equations by the Homotopy perturbation Elzaki Transform
method [22].

The Homotopy Perturbation Method using ET is presented by Elzaki et al. in [20]. In
this research paper, we successfully apply this technique to solve non-linear homogeneous
and non-homogeneous PDEs. The efficiency of ET – HPM to solve this type of prob-
lem is also shown in [23, 24]. We are now going to formulate a Con-version of HPM
using ET (CDETHPM) to solve non-linear time-fractional partial differential equations
(N – TFPDEs). Thus, given a N – TFPDEs as follows

Lα
C

y(u,ν) + N1
(
y(u,ν)

)
+ N2

(
y(u,ν)

)
= H(u,ν), (1)

subject to the initial condition (I.C.)

y(u, 0) = y(u), (2)

where y is a function of two variables, Lα
C

= ∂α

∂να
is a linear operator with CD of order

0 < α ≤ 1, N1 and N2 are a non-linear operator and the second part of linear operator,
respectively, and H(u,ν) is a non-homogeneous term.

The article is outlined as follows: Sect. 2 introduces some key concepts in the con-
formable calculus. Section 3 outlines the essential features of the ET by proposing a new
definition based on CD and integrals. Following that, Sect. 4 is built using conformable-
Elzaki transform (CDET). This section also includes results on the uniqueness and con-
vergence of the solution found using the suggested approach. We applied the approach to
several types of N – TFPDEs and discussed their numerical solutions in Sect. 5. Finally,
Sect. 6 addresses the conclusion of the work.

2 Fundamental properties of conformable calculus
In this section, we will highlight some of the basic properties of CD and ET.

Definition 2.1 Given y : [0,∞) → R as a function. Then, the αth order CD is expressed
as [3],

(
C

α
Dy

)
(ν) = lim

ε→0

y(ν + εν1–α) – y(ν)
ε

, ∀ν > 0,α ∈ (0, 1]. (3)
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If y is α-differentiable (α-Diff) in some (0, τ◦), τ◦ > 0, and (Cα
Dy)(ν) exists, then it is ex-

pressed as

(
C

α
Dy

)
(0) =

(
C

α
Dy

)
(ν).

Remark 2.1 From definition 2.1, the basic properties of the CD can be easily established
(see [3]). In addition, by the direct application of the same definition, the values of the main
elementary functions using CD can be easily obtained (see [3]). We will only highlight the
following result that relates the CD with the ordinary derivatives

Let y is α-Diff at a point ν > 0. If y is Diff then

(
C

α
Dy

)
(ν) = ν1–α dy

dν
(ν).

Remark 2.2 Another important result of the mathematical analysis of functions of a real
variable, the chain rule, has also been formulated in a conformable sense in [8].

The Con-laplace transform of order α is expressed as [8, 25]

Lα
C

[
y(ν)

]
(s) =

∫ ∞

0
e(–s να

α )y(ν)
dν

ν1–α . (4)

The function y is considered as conformable exponentially bounded if there are constants
M̆ > 0, γ ∈R and τ◦ > 0, such that

∣
∣y(ν)

∣
∣ ≤ M̆eγ να

α , ∀ν ≥ τ◦. (5)

Finally, for a real valued function of several variable, the conformable partial derivative can
be stated as follows. Consider the real-valued function of n variables with b = (b1, . . . , bn) ∈
R

n being a point whose ith component is positive. Then, the limit can be defined as follows

lim
ε→0

(y(b1, . . . , bi + εb1–α
i , . . . , bn) – y(b1, . . . , bn))

ε
. (6)

If the above limit exists, then we have the α ∈ (0, 1] order ith con-partial derivative of
y at b, denoted by ∂α

∂bαi
y(b). The α-conformable integral of a function y beginning from

τ◦ ≥ 0 is defined as [1],

Iα
D,τ◦ (y)(ν) =

∫ ν

τ◦

y(ξ )
ξ 1–α dξ , (7)

whereas, this is a usual Riemann improper integral for α ∈ (0, 1]. As a result, we have

C
α
D,τ◦I

α
D,τ◦ (y)(ν) = y(ν), ∀ν ≥ τ◦,

where y is any continuous function. Also,

Iα
D,τ◦C

α
D,τ◦ (y)(ν) = y(ν) – y(τ◦), ∀τ◦ > 0 (8)

whenever the real-valued function y is α-Diff with 0 < α ≤ 1 [26].
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3 The conformable Elzaki transform
Elzaki introduces a new integral transform, namely the Elzaki transform, and its main
properties are established in [27]. Subsequent research works show the applicability of this
transform to solve important problems related to ordinary and partial differential equa-
tions [28]. Next, we will define the ET in Con-sense and derive its properties.

Definition 3.1 Suppose thatα ∈ (0, 1] and y : [0,∞) →R are real-valued functions. Then,
the CDET of order α is expressed as

Eα

[
y(ν)

]
(s) = s

∫ ∞

0
e

–να

αs y(ν)
dν

ν1–α , s 	= 0. (9)

Theorem 3.2 If y is a piece-wise continuous function on [0,∞) and Con-exponentially
bounded, then Eα[y(ν)](s) exists for 1

s > γ , s 	= 0.

Proof Since y is Con-exponentially bounded, there exist constants M̆1 > 0, γ ∈R and τ◦ >
0 such that

∣
∣y(ν)

∣
∣ ≤ M̆1eγ να

α , ∀ν ≥ τ◦. (10)

Furthermore, y is piece-wise continuous on [0, τ◦] and hence bounded there, say

∣∣y(ν)
∣∣ ≤ M̆2, ∀ν ∈ [0, τ◦].

This mean that, a constant M̆ can be chosen sufficiently large so that the inequality (10)
holds. Therefore,

∣
∣∣
∣s

∫ τ

0
e– να

αs y(ν)
dν

ν1–α

∣
∣∣
∣ ≤ s

∫ τ

0

∣∣e
–να

αs y(ν)
∣∣ dν

ν1–α

≤ M̆s
∫ τ

0
e–( 1

s –γ ) να

α
dν

ν1–α

= –
M̆s2

1 – γ s
(
e–( 1

s –γ ) να

α – 1
)
.

Letting τ → ∞, we see that

s
∫ ∞

0

∣
∣e

–να

αs y(ν)
∣
∣ dν

ν1–α ≤ M̆s2

1 – γ s
,

1
s

> γ , (s 	= 0). �

Theorem 3.3 Let α ∈ (0, 1], y, ý : [0,∞) →R be real-valued functions, and λi ∈ R, i = 1, 2.
If Eα[y(ν)](s) and Eα[ý(ν)](s) exists, then

Eα

[
λ1y(ν) + λ2ý(ν)

]
(s) = λ1Eα

[
y(ν)

](
y(ν)

)
+ λ2Eα

[
ý(ν)

]
(s).

Proof This result follows directly from the linearity of the integral. �

Theorem 3.4 Let α ∈ (0, 1]. So, we have
1) Eα[c](s) = cs2, for any c ∈R and s > 0;
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2) Eα[νb](s) = α
b
α 	(1 + b

α
)s(2+ b

α ), b > –1 and s > 0;
3) Eα[ec να

α ](s) = s2

1–cs , c is any real number and s > 1
c ;

4) Eα[sin c να

α
](s) = cs3

1+c2s2 , c is any real number and s > 0;
5) Eα[cos c να

α
](s) = s2

1+c2s2 , c is any real number and s > 0;
6) Eα[sinh c να

α
](s) = cs3

1–c2s2 , c is any real number and 0 < s < 1
|s| ;

7) Eα[cosh c να

α
](s) = s2

1–c2s2 , c is any real number and 0 < s < 1
|c| .

Proof
1) Follows from the definition directly.
2) Through a change of variables, we have

s
∫ ∞

0
e

–να

αs νb dν

ν1–α = α
b
α s(2+ b

α )
∫ ∞

0
ξ

b
α e–ξ dξ = α

b
α 	

(
1 +

b
α

)
s(2+ b

α ).

3) Since,

s
∫ ∞

o
e

–να

αs ec να

α
dν

ν1–α = s
∫ ∞

0
e

–να

α ( 1
s –c) dν

ν1–α =
s2

1 – cs
.

4) Using the fact that

∫ ∞

0
e–ν

α
αs sin

(
cν

α
α

) dν

ν1–α = –
cs2

1 + c2s2 e–ν
α
αs

(
cos

(
c
να

α

)
+

1
cs

sin

(
c
να

α

))
,

we can get the required result.
5) Similarly, we have

∫ ∞

0
e–ν

α
αs cos

(
cν

α
α

) dν

ν1–α = –
cs3

1 + c2s2 e–ν
α
αs

(
sin

(
c
να

α

)
–

1
cν

cos

(
c
να

α

))
.

6) As

Eα

[
sinh

(
c
να

α

)]
(s) =

1
2
(
Eα

[
ec να

α
]
(s) – Eα

[
e–c να

α
]
(s)

)
,

it is easy to get the required result.
7) Similarly, as

Eα

[
cosh

(
c
να

α

)]
(s) =

1
2
(
Eα

[
ec να

α
]
(s) + Eα

[
e– να

α
]
(s)

)
,

it is easy to get the required result.
�

Theorem 3.5 Suppose that y(ν) is continuous, and (Cα
Dy)(ν) is piece-wise continuous for

all ν ≥ 0. Suppose further that y(ν) is Con-exponentially bounded. Then

Eα

[(
C

α
Dy

)
(ν)

]
(s),

(
1
s

> γ

)
,

exists and, moreover,

Eα

[(
C

α
Dy

)
(ν)

]
(s) =

1
s

Eα

[
y(ν)

]
(s) – sy(0).
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Proof Using definition 3.1, we have

Eα

[(
C

α
Dy

)
(ν)

]
(s) = s

∫ ∞

0
e

–να

αs
(
C

α
Dy

)
(ν)

dν

ν1–α .

Now, using integration by parts [8], we get

Eα

[(
C

α
Dy

)
(ν)

]
(s) = s

[
e– να

αs y(ν)
]τ

0 +
1
s

∫ ∞

0
e– να

αs y(ν)
dν

ν1–α

= s
[

lim
τ→∞ e– τα

αs y(τ ) – y(0)
]

+
1
y

Eα

[
y(ν)

]
(y).

Since y(ν) is Con-exponentially bounded, limτ→∞ e– τα

αs y(τ ) = 0, whenever 1
s > γ . Hence,

Eα

[(
C

α
Dy

)
(ν)

]
(s) =

1
s

Eα

[
y(ν)

]
(s) – sy(0),

for 1
s > γ . �

Indeed, provided that the function y and its CD satisfy the appropriate conditions, an
expression for the CDET of the derivative (n)Cα

D can be derived by successive applications
of the previous theorem. This result is given in the following corollary.

Corollary 3.1 Suppose that y,Cα
Dy, . . . , (n – 1)Cα

Dy are continuous, and (n)Cα
Dy is piece-

wise continuous for all ν ≥ 0. Suppose further that y,Cα
Dy, . . . , (n – 1)Cα

Dy are con-
exponentially bounded. Then Eα[(n)(Cα

Dy)(ν)](s) exists for 1
s > γ and is given by

Eα

[
(n)

(
C

α
Dy

)
(ν)

]
(s) =

1
sn Eα

[
y(ν)

]
(s) –

n–1∑

k=0

s2–n+k(k)Cα
Dy(0).

Remark 3.1 Here, (n)(Cα
Dy)(ν) means the application of the CD , n times.

Remark 3.2 If we assume that y(x,ν) is piece-wise continuous and Con-exponentially
bounded, the following results are easily obtained

1 Using Leibniz’s rule, we can find

Eα

[
∂y(x,ν)

∂x

]
(s) = s

∫ ∞

0
e– να

αs
∂y(x,ν)

∂x
dν

ν1–α

=
∂

∂x

[∫ ∞

0
se– tα

αs y(x,ν)
dν

ν1–α

]
=

∂

∂x
[
C

α
D(x, s)

]
.

Also,

Eα

[
∂2y(x,ν)

∂x2

]
(s) =

∂2

∂x2

[
C

α
D(x, s)

]
.

2 From Theorem 2.4, we have

Eα

[
∂αy(x,ν)

∂να

]
(s) =

1
s

Eα

[
y(x,ν)

]
(s) – sy(x, 0).
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Another important property of the CDET is the convolution theorem, which is stated
below.

Theorem 3.6 Consider two real-valued functions, i.e., y, ý : [0,∞) →R, if the convolution
of y and ý of order 0 < α ≤ 1, expressed as

(y ∗ ý) =
∫ ν

0
y
(

να

α
–

ξα

α

)
ý
(

ξα

α

)
dξ

ξ 1–α . (11)

Then, one can obtain the CDET as

Eα

[
(y ∗ ý)

]
(s) =

1
s

Eα[y](s)Eα[ý](s).

Proof Applying CDET on Eq. (8), we have

Eα

[
(y ∗ ý)

]
(s) = s

∫ ∞

0
e– να

αs

(∫ ν

0
y
(

να

α
–

ξα

α

)
ý
(

ξα

α

)
dξ

ξ 1–α

)
dν

ν1–α . (12)

Let ( να

α
– ξα

α
) = uα

α
, then we get

Eα

[
(y ∗ ý)

]
(s) = s

∫ ∞

0

(∫ ∞

0
e– 1

s ( uα
α + ξα

αα )y
(

uα

α

)
du

u1–α

)
ý
(

ξα

α

)
dξ

ξ 1–α , (13)

which can be written as

Eα

[
(y ∗ ý)

]
(s) =

1
s

Eα[y](s)Eα[ý](s). (14)�

Finally, we can define the inverse CDET as follows.

Definition 3.7 For a piece-wise continuous on [0,∞) and Con-exponentially bounded
y(ν) whose CDET is Y(s), we call y(ν) the inverse CDET of Y(s) and write y(ν) = E–1

α [Y(s)].
Symbolically

y(ν) = E–1
α

[
Y(s)

] ⇐⇒ Y(s) = Eα

[
y(ν)

]
. (15)

The inverse CDET possesses a linear property as indicated in the following result.

Theorem 3.8 Given two ET, Y(s) and Ý(s) then,

E–1
α

[
λ1Y(s) + λ2Ý(s)

]
= λ1E–1

α

[
Y(s)

]
+ λ2E–1

α

[
Ý(s)

]
,

for any constants λ1,λ2 ∈R.

Proof Suppose that Eα[y(ν)] = Y(s) and Eα[ý(ν)] = Ý(s). Since

Eα

[
λ1y(ν) + λ2ý(ν)

]
(s) = λ1Eα

[
y(ν)

]
(s) + λ2Eα

[
ý(ν)

]
(s)

= λ1Y(s) + λ2Ý(s),

we have E–1
α [λ1Y(s) + λ2Ý(s)] = λ1E–1

α [Y(s)] + λ2E–1
α [Ý(s)]. �
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Remark 3.3 It is easy to show that the relationship between CDLT and CDET is

Eα

[
y(ν)

]
(s) = sLα

C

[
y(ν)

]
(

1
s

)
, s > 0, 0 < α ≤ 1.

4 Conformable Elzaki transform HPM
By solving for Lα

C
y(u,ν), Eq. (1) can be written as

Lα
C

y(u,ν) = H(u,ν) – N1
(
y(u,ν)

)
– N2

(
y(u,ν)

)
. (16)

By implementing the CDET on both sides of the above equation, we get

Eα

[
Lα
C

y(u,ν)
]

= Eα

[
H(u,ν) – N1

(
y(u,ν)

)
– N2

(
y(u,ν)

)]
. (17)

Using Remark 2.1, we get

1
s

Eα

[
y(u,ν)

]
(s) – sy(u, 0) = Eα

[
y(u,ν) – N1

(
y(u,ν)

)
– N2

(
y(y,ν)

)]
. (18)

After substituting the initial condition, the Eq. (1) can be re-written as

Eα

[
y(u,ν)

]
(s) = s2y(u) + sEα

[
H(u,ν)

]

– sEα

[
N1

(
y(u,ν)

)]
– sEα

[
N2

(
y(u,ν)

)]
. (19)

Finally, by applying inverse CDET, we get

y(u,ν) = Y(u, t) – E–1
α

[
sEα

[
N1

(
y(u,ν)

)
+ N2

(
y(u,ν)

)]]
, (20)

where Y(u,ν) represents the term that has emerged from the source term and I.C. The
HPM suggests the solution (u,ν) to be decomposed into the infinite series of compo-
nents [29, 30],

y(u,ν) =
∞∑

n=0

qnyn(u,ν), (21)

and non-linear term N1(y(u,ν)) is decomposed into

N1
(
y(u,ν)

)
=

∞∑

n=0

qnAn(y), (22)

for some He’s polynomials An(y) [31, 32] given by

An(y0, y1, . . . , yn) =
1
n!

∂n

∂qn

[

N1

( ∞∑

i=0

qiyi

)]

, n = 0, 1, 2, . . . . (23)
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Using Eqs. (19) and (20) in Eq. (18), we get

∞∑

n=0

qnyn(u,ν) = P0(u,ν) – q

(

E–1
α

[

sEα

[

N2

( ∞∑

n=0

qnyn(u,ν)

)

+
∞∑

n=0

qnAn(y)

]])

, (24)

which is the coupled CDET and HPM via He’s polynomials. The approximation can be
easily obtained by comparing all like powers of the coefficients q as follows

q0 : y0(u,ν) = P0(u,ν),

q1 : y1(u,ν) = –E–1
α

[
sEα

[[
N2y0(u,ν)

]
+

[
A0(s)

]]]
,

q2 : y2(u,ν) = –E–1
α

[
sEα

[[
N2

(
y1(u,ν)

)]
+

[
A1(s)

]]
,
]

q3 : y3(u,ν) = –E–1
α

[
sEα

[[
N2

(
y2(u,ν)

)]
+

[
A2(s)

]]]
,

. . . .

(25)

Then the solution is

y(u,ν) =
∞∑

n=0

yn(u,ν) = y0(u,ν) + y1(u,ν) + y2(u,ν) + · · · . (26)

Finally, to authenticate the obtained solution, we will establish results on the uniqueness
and convergence of the solution. To prove the results, we will consider the Banach space
[0, τ◦] of all functions continuous on [0, τ◦] with supremum norm. Furthermore, we will
assume that y(u,ν), yn(u,ν) ∈ [0, τ◦].

Theorem 4.1 (Uniqueness theorem) The solution obtained by CDETHPM of FPDEs (14)
has a unique solution, whenever 0 < γ < 1.

Proof The solution of Eq. (14) is of the form y(u,ν) =
∑∞

n=0 qnyn(u,ν), where

y(u,ν) = y(u, 0) + E–1
α

[
sEα

[
H(u,ν) – N1

(
y(u,ν)

)
– N2

(
y(u,ν)

)]]
.

Let y(u,ν) & ý(u,ν) be two distinct solutions of Eq. (14), then we have

∣
∣y(u,ν) – ý(u,ν)

∣
∣ =

∣
∣–E–1

α

[
sEα

[
N1

(
y(u,ν) – ý(u,ν)

)

+ N2
(
y(u,ν) – ý(u,ν)

)]]∣∣.

Using Theorem 3.4, we get

∣∣y(u,ν) – ý(u,ν)
∣∣ ≤

∫ ν

0

(∣∣N1
(
y(u,ν) – ý(u,ν)

)∣∣

+
∣∣N2

(
y(u,ν) – ý(u,ν)

)∣∣)
∣
∣∣
∣

(
να

α
–

ξα

α

)∣
∣∣
∣

dξ

ξ 1–α .
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We now assume that N1 and N2 satisfy the Lipschitz condition, so N2 is a bounded oper-
ator with

∣
∣N2

(
y(u,ν)

)
– N2

(
ý(u,ν)

)∣∣ ≤ λ1
∣
∣y(u,ν) – ý(u,ν)

∣
∣,

for λ1 > 0, and N1 is given by

∣∣N1
(
y(u,ν)

)
– N1

(
ý(u,ν)

)∣∣ ≤ λ2
∣∣y(u,ν) – ý(u,ν)

∣∣,

for λ2 > 0. Then the above equation can be written as

∣∣y(u,ν) – ý(u,ν)
∣∣ ≤

∫ ν

0

(
λ1

∣∣y(u,ν) – ý(u,ν)
∣∣

+ λ2|y(u,ν) – ý(u,ν)
)
∣
∣∣
∣

(
να

α
–

ξα

α

)∣
∣∣
∣

dξ

ξ 1–α .

Now, using mean value theorem of Con-integral calculus [33],

∣∣y(u,ν) – ý(u,ν)|∣∣ ≤ (λ1 + λ2)
∣∣y(u,ν) – ý(u,ν)

∣∣M̆τα◦
α

,

where

M̆ = max

{
να

α
–

τα

α
: ∀ν ∈ [0, τ0]

}
.

Hence

∣∣y(u,ν) – ý(u,ν)
∣∣ ≤ ∣∣y(u,ν) – ý(u,ν)

∣∣γ ,

where γ = (λ1 +λ2) M̆τα◦
α

. So, (1 –γ )|y(u,ν) – ý(u,ν)| ≤ 0, implies y(u,ν) = ý(u,ν) whenever,
0 < γ < 1. �

Theorem 4.2 Assume that initial guess y0 remains inside the ball BBB(y, r) of the solution
y(u,ν). Then, the series solution

∑∞
n=0 yn is convergent if ∃ε ∈ (0, 1) such that ‖yn+1‖ ≤

ε‖yn‖.

Proof We need to prove that partial sums sn =
∑n

n=0 yn is a Cauchy sequence in (C[0, τ◦],
‖·‖). As

‖sn+1 – sn‖ ≤ ‖yn+1‖ ≤ ε‖yn‖ ≤ ε2‖yn–1‖ ≤ · · · ≤ εn+1‖yo‖,

Hence

‖sn – sm‖ ≤
∥∥
∥∥∥

n∑

i=m+1

yi

∥∥
∥∥∥

≤
n∑

i=m+1

‖yi‖ ≤ εm+1
n–m–1∑

i=0

εi‖y0‖

≤ εm+1 1 – εm–n

1 – ε
‖y0‖, ∀m, n ∈ N, (n ≥ m).
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Since ε ∈ (0, 1), hence

‖sn – sm‖ ≤ εm+1

1 – ε
‖y0‖,

y0 is also bounded; therefore, ‖sn – sm‖ → 0 as m, n → ∞. Hence sn is a Cauchy sequence
in (C[0, τ◦],‖·‖), so

∑∞
n=0 yn(u,ν) is convergent. �

Remark 4.1 Note that th εm+1

1–ε
‖y0‖ is the maximum truncation error of y(u,ν).

5 Applications of the proposed technique
In this section, we apply the CDETHPM for solving N – TFPDEs.

Example 5.1 Consider N – TFPDEs as follows

⎧
⎨

⎩

∂αy
∂να

+ y(u,ν) ∂y
∂u = 0, ν ≥ 0, 0 < α ≤ 1,

I.C. : y(u, 0) = –u.
(27)

If α = 1, then Eq. (25) becomes the classical N – PDE [20]. By taking CDET on both sides
of the equation and from the properties of CDET, Eq. (25) reduces to

Eα

[
y(u,ν)

]
(s) = y(u, 0)s2 – sEα

[
y
∂y
∂u

]
. (28)

Using I.C and inverse CDET, we have

y(u,ν) = –u – E–1
α

[
sEα

[
y
∂y
∂u

]]
. (29)

After applying the HPM, we have

∞∑

n=0

qnyn = –u – q

(

E–1
α

[

sEα

[ ∞∑

n=0

qnAn(y)

]])

, (30)

where

∞∑

n=0

qnAn(y) = y
∂y
∂u

.

Here, An(y) are He’s polynomials that represent the non-linear term. So, we have the first
few components of He’s polynomials

A0(y) = y0
∂y0

∂u
,

A1(y) = 2y0
∂y1

∂u
+ y0

∂2y1

∂u2 + y1
∂2y0

∂u2 ,

A2(y) = 2y0
∂y1

∂u
+

(
∂y1

∂u

)2

+ y0
∂2y2

∂u2 + y2
∂2y0

∂u2 + y1
∂2y1

∂u2 ,
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and so on. Comparing the coefficients of like power of q, we get

q0 : y0(u,ν) = –u,

q1 : y1(u,ν) = –E–1
α

[
sEα

[
A0(y)

]]
= –E–1

α

[
sEα

[
y0

∂y0

∂u

]]
= –u

να

α
,

q2 : y2(u,ν) = –E–1
α

[
sEα

[
A1(y)

]]

= –E–1
α

[
sEα

[
y0

∂y1

∂u
+ y1

∂y0

∂u

]]
= –u

(
να

α

)2

,

q3 : y3(u,ν) = –E–1
α

[
sEα

[
A2(y)

]]

= –E–1
α

[
sEα

[
y0

∂y2

∂u
+ y1

∂y1

∂u
+ y2

∂y0

∂u

]]
= –u

(
να

α

)3

.

(31)

Similarly, the approximations may be obtained in the following way

q4 : y4(u,ν) = –u
(

να

α

)4

, (32)

q5 : y5(u,ν) = –u
(

να

α

)5

, (33)

and so on. Substituting Eqs. (31) and (32) in the following equation

y(u,ν) =
∞∑

n=0

yn(u,ν) = y0(u,ν) + y1(u,ν) + y2(u,ν) + y3(u,ν) + · · · , (34)

we get

y(u,ν) = –u
(

1 +
να

α
+

(
να

α

)2

+
(

να

α

)3

+
(

να

α

)4

+ · · ·
)

=
u

να

α
– 1

, ∀ν ∈ [0,α
1
α ). (35)

The numerical solution for various values of α, i.e., for α = 0.5, 0.7, is given in Fig. 1. For
α = 1 as a special case, we have the solution, y(u,ν) = u

ν–1 , which is the same solution as
in [20].

Example 5.2 Consider N – TFPDE as follows

⎧
⎨

⎩

∂αy(u,ν)
∂να

= ( ∂y(u,ν)
∂y )2 + y(u,ν) ∂2y(u,ν)

∂u2 , ν ≥ 0, 0 < α ≤ 1,

I.C. : y(u, 0) = u2.
(36)

If α = 1, then for m = 1, Eq. (36) becomes the classical porous medium equation PDE [24],
given by

∂y(u,ν)
∂ν

=
∂

∂u

(
y(u,ν)m ∂y(u,ν)

∂u

)
.
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Figure 1 Numerical solution using CDETHPM in Example 5.1 forα = 0.5, 0.7

Taking CDET on both sides of the Eq. (36) and using properties of CDET, we have

Eα

[
y(u,ν)

]
(s) = y(u, 0)s2 + sEα

[(
∂y
∂u

)2

+ y
∂2y
∂u2

]
. (37)

Applying inverse CDET subject to the I.C., we get

y(u,ν) = u2 + E–1
α

[
sEα

[(
∂y
∂u

)2

+ y
∂2y
∂u2

]]
. (38)

With the help of HPM, the above equation can be written as

∞∑

n=0

qnyn = u2 + q

(

E–1
α

[

yEα

[ ∞∑

n=0

qnAn(y)

]])

, (39)

where

∞∑

n=0

qnAn(y) =
(

∂y
∂u

)2

+ y
∂2y
∂u2 .

Here, An(y) are He’s polynomials that represent the non-linear term. The first few terms
of He’s polynomials are

A0(y) =
(

∂y0

∂u

)2

+ y0
∂2y0

∂u2 ,

A1(y) = 2
∂y0

∂u
∂y1

∂u
+ y0

∂2y1

∂u2 + y1
∂2y0

∂u2 ,

A2(y) = 2
∂y0

∂u
∂y2

∂u
+

(
∂y1

∂u

)2

+ y0
∂2y2

∂u2 + u2
∂2y0

∂u2 + y1
∂2y1

∂u2 ,
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and so on. The like powers of the coefficient, q can be equated as

q0 : y0(u,ν) = u2,

q1 : y1(u,ν) = E–1
α

[
sEα

[
A0(y)

]]

= E–1
α

[
sEα

[(
∂y0

∂u

)2

+ y0
∂2y0

∂u2

]]
= 6u2 να

α
,

q2 : y2(u,ν) = E–1
α

[
sEα

[
A1(y)

]]

= E–1
α

[
sEα

[
2
∂w0

∂x
∂w1

∂x
+ w0

∂2w1

∂x2 + w1
∂2w0

∂x2

]]

= 36u2
(

να

α

)2

,

q3 : y3(u,ν) = E–1
α

[
sEα

[
A2(y)

]]

= E–1
α

[
sEα

[
2
∂w0

∂x
∂w2

∂x
+

(
∂w1

∂x

)2

+ w0
∂2w2

∂x2

+ w2
∂2w0

∂x2 + w1
∂2w1

∂x2

]]

= 216u2
(

να

α

)3

.

(40)

Similarly, the approximations may be obtained in the following way

q4 : y4(u,ν) = 64u2
(

να

α

)4

, (41)

q5 : y5(u,ν) = 65u2
(

να

α

)5

, (42)

and so on. Substituting Eqs. (40) and (41) in the following equation

y(u,ν) =
∞∑

n=0

yn(u,ν) = y0(u,ν) + y1(u,ν) + y2(u,ν) + y3(u,ν) + · · · , (43)

we have

y(u,ν) = u2
(

1 +
6ναα

α
+

(
6να

α

)2

+
(

6να

α

)3

+
(

6να

α

)4

+ · · ·
)

=
u2

1 – 6να

α

, ∀ν ∈
[

0,
(
α

6

) 1
α

)
. (44)

The numerical solution for different values of α, i.e., for α = 0.5, 0.7, is presented in Fig. 2.
For α = 1, we have the classical solution subject to I.C., of the Eq. (36) as

y(u,ν) =
u2

1 – 6ν
, (45)

which is the same solution as in [24].
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Figure 2 Numerical solution using CDETHPM in Example 5.2 forα = 0.5, 0.7

Example 5.3 Consider the time-fractional non-dimensional Fisher equation

⎧
⎨

⎩

∂αy(u,ν)
∂να

= ∂2y(u,ν)
∂u2 + y(u,ν)(1 – y(u,ν)), ν ≥ 0, 0 < α ≤ 1,

I.C. : y(u, 0) = λ.
(46)

For α = 1, we have the classical non-dimensional Fisher equations [34] as follows

∂y(u,ν)
∂ν

=
∂2y(u,ν)

∂u2 + y(u,ν)
(
1 – y(u,ν)

)
. (47)

Taking CDET on both sides of the Eq. (46) and using the properties of CDET, we have

(
1
s

– 1
)

Eα

[
y(u, v)

]
= y(u, 0)s + Eα

[
∂2y
∂u2 – y2

]
. (48)

By rearranging all the terms appropriately, the above equation becomes

Eα

[
y(u,ν)

]
= y(u, 0)

(
s2

1 – s

)
+

(
s

1 – s

)
Eα

[
∂2y
∂u2 – y

]
. (49)

Using I.C. and inverse CDET, we reduce Eq. (49) to

y(u,ν) = λe
να

α + E–1
α

[(
s

1 – s

)
Eα

[
∂2y
∂u2 – y2

]]
. (50)

After successful application of the HPM, we get

∞∑

n=0

qnyn = λe
να

α + q

(

E–1
α

[(
s

1 – s

)
Eα

[ ∞∑

n=0

qnAn(y)

]])

,

where

∞∑

n=0

qnAn(y) =
∂2y
∂u2 – y2.
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Here, An(y) are He’s polynomials that represent the non-linear terms, and the first three
components of He’s polynomials are

A0(y) =
∂2y0

∂u2 – y2
0,

A1(y) =
∂2y1

∂u2 – 2y0y1,

A2(y) =
∂2y2

∂u2 – y2
1 – 2y0y2

and so on. Comparing like powers of the coefficient q, we get

q0 : y0(u,ν) = λe
να

α ,

q1 : y1(u,ν) = E–1
α

[(
s

1 – s

)
Eα

[
A0(y)

]]

= E–1
α

[(
s

1 – s

)
Eα

[
∂2y0

∂u2 – y2
0

]]
= –λ2e

να

α
(
e

να

α – 1
)
,

q2 : y2(u,ν) = E–1
α

[(
s

1 – s

)
Eα

[
A1(y)

]
]

= E–1
α

[(
s

1 – s

)
Eα

[
∂2y1

∂u2 – 2y0y1

]]
= λ3e

να

α
(
e

να

α – 1
)2,

q3 : y3(u,ν) = E–1
α

[(
s

1 – s

)
Eα

[
A2(y)

]
]

= E–1
α

[(
s

1 – s

)
Eα

[
∂2y2

∂u2 – y2
1 – 2y0y2

]]

= –λ4e
να

α
(
e

να

α – 1
)3.

(51)

Similarly, the approximations may be obtained in the following way

q4 : y4(u,ν) = λ5e
να

α
(
e

να

α – 1
)4,

q5 : y5(u,ν) = –λ6e
να

α
(
e

να

α – 1
)5,

(52)

and so on. Using Eqs. (51) and (52) in the following equation

y(u,ν) =
∞∑

n=0

yn(u,ν) = y0(u,ν) + y1(u,ν) + y2(u,ν) + y3(u,ν) + · · · ,

we get

y(u,ν) = λe
να

α
(
1 – λ

(
e

να

α – 1
)

+ λ2(e
να

α – 1
)2 + λ3(e

ναα
α – 1

)3

+ λ4(e
ναα
α – 1

)4 + · · · )

=
λe να

α

1 + λ(e να

α – 1)
, ∀ν ≥ 0, (53)
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Figure 3 Numerical solution using CDETHPM in Example 5.3 forα = 0.5, 0.7 and λ = 0.1, 0.5

such that |λ(e να

α – 1)| < 1. The numerical solution for different values of α and λ, i.e.,
for α = 0.5, 0.7 and λ = 0.1, 0.5, is given in Fig. 3. For α = 1 as a special case, we have the
classical solution of the problem as follows:

y(u,ν) =
λeν

1 + λ(eν – 1)
,

which is the same solution in [34].

Example 5.4 Consider the time-fractional (2 + 1)-dimensional Burger equation

⎧
⎪⎪⎨

⎪⎪⎩

∂αy(u,w,ν)
∂tα + w(x, y, t) ∂y(u,w,ν)

∂u

+ y(u, w,ν) ∂y(u,w,ν)
∂w – ε( ∂2y(u,w,ν)

∂u2 + ∂2y(u,w,ν)
∂w2 ) = 0, ν ≥ 0, 0 < α ≤ 1,

I.C., y(u, w, 0) = u + w.

(54)

If we put α = 1, we have the classical (2 + 1)-dimensional Burger equation [35]. Taking
CDET on both sides of the Eq. (54) and using properties of CDET, we have

Eα

[
y(u, w,ν)

]
(s) = y(u, w, 0)s2 – sEα

[(
y
∂y
∂u

+ y
∂y
∂w

)
– ε

(
∂2y
∂u2 +

∂2y
∂w2

)]
(55)
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Now, taking inverse CDET subject to I.C., we get

y(u, w,ν)(s) = u + w – E–1
α

[
sEα

[
y
∂y
∂u

+ y
∂y
∂w

– ε

(
∂2y
∂u2 +

∂2y
∂w2

)]]
. (56)

Finally, applying HPM, we have

∞∑

n=0

qnyn = (u + w) – q

(

E–1
α

[

sEα

[ ∞∑

n=0

qnAn(y)

]])

, (57)

where

∞∑

n=0

qnAn(y) = y
∂y
∂u

+ y
∂y
∂w

– ε

(
∂2y
∂u2 +

∂2y
∂w2

)
.

Here, An(y) are He’s polynomials that represent the non-linear terms, and one can write
the first few components of He’s polynomials as follows

A0(y) = y0
∂y0

∂u
+ y0

∂y0

∂w
– ε

(
∂2y0

∂u2 +
∂2y0

∂w2

)
,

A1(y) = y0
∂y1

∂u
+ y1

∂y0

∂u
+ y0

∂y1

∂w
+ y1

∂y0

∂w

– ε

(
∂2y0

∂u2 +
∂2y0

∂w2

)
,

A2(y) = y0
∂y2

∂u
+ y1

∂y1

∂u
+ y2

∂y0

∂u
+ y0

∂y2

∂w

+ y1
∂y1

∂w
+ y2

∂y0

∂w
– ε

(
∂2y0

∂u2 +
∂2y0

∂w2

)
,

and so on. By comparing the like coefficient of the power of q, we get

q0 : y0(u, w, t) = u + w,

q1 : y1(u, w,ν) = –E–1
α

[
sEα

[
A0(y)

]]

= –E–1
α

[
sEα

[
y0

∂y0

∂u
+ y0

∂y0

∂w
– ε

(
∂2y0

∂u2 +
∂2y0

∂w2

)]]

= –2(u + w)
να

α
,

q2 : y2(u, w,ν) = –E–1
α

[
sEα

[
A1(y)

]]

= –E–1
α

[
sEα

[
y0

∂y1

∂u
+ y1

∂y0

∂u
+ y0

∂w1

∂w
+ y1

∂y0

∂w

– ε

(
∂2y0

∂u2 +
∂2y0

∂w2

)]]
= 4(u + w)

(
να

α

)3

,

q3 : y3(u, w,ν) = –E–1
α

[
sEα

[
A2(y)

]]

= –E–1
α

[
sEα

[
y0

∂y2

∂u
+ y1

∂y1

∂u
+ y2

∂y0

∂u
+ y0

∂y2

∂w
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Figure 4 Numerical solution using CDETHPM in Example 5.4 forα = 0.5, 0.7

+ y1
∂y1

∂w
+ y2

∂y0

∂w
– ε

(
∂2y0

∂u2 +
∂2y0

∂w2

)]]

= –8(u + w)
(

να

α

)3

,

Similarly, the approximations may be obtained in the following way

q4 : y4(u, w,ν) = 16(u + w)
(

να

α

)4

,

q5 : y5(u, w,ν) = –32(u + w)
(

να

α

)5

,

and so on. Substituting the above values in the following equation:

y(u, w,ν) = y0(u, w,ν) + y1(u, w,ν) + y2(u, w,ν) + y3(u, w,ν) + · · · , (58)

we get,

y(u, w,ν) = (u + w)
(

1 – 2
να

α
+ 22

(
να

α

)2

– 23
(

να

α

)3

+ 24
(

να

α

)4

+ · · ·
)

(59)

=
u + w

1 – 2 να

α

, ∀ν ∈
[

0,
(
α

2

) 1
α

)
. (60)

The numerical solution for different values of α, i.e., for α = 0.5, 0.7, is presented in Fig. 4.
For α = 1, we have the classical solution of the problem as follows

y(u, w,ν) =
u + w
1 – 2ν

,

which is the same solution as given in [35].
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Remark 5.1 The above example can easily be generalized to the case of time fractional
(n + 1)-dimensional Burger’s equation.

∂αy(u1, u2, . . . , un,ν)
∂να

+ y(u1, u2, . . . , un,ν)
∂y(u1, u2, . . . , un,ν)

∂u

+ y(u1, u2, . . . , un,ν)
∂y(u1, u2, . . . , un,ν)

∂w

–ε

(
∂2y(u1, u2, . . . , un,ν)

∂u2 (61)

+
∂2y(u1, u2, . . . , un,ν)

∂w2

)

= 0, ∀ν ≥ 0, 0 < α ≤ 1, (62)

with I.C., y(u1, u2, . . . , un, 0) = u1 + u2 + · · ·+ un. If α = 1, then Eq. (61) becomes the classical
(n + 1)-dimensional Burger equation [35]. Repeating the similar procedure, we have

∞∑

n=0

qnyn(u1, u2, . . . , un,ν) = (u1 + u2 + · · · + un) – q

(

E–1
α

[

sEα

[ ∞∑

n=0

qnAn(y)

]])

,

where

A0(y) =
n∑

i=1

(
y0

∂y0

∂ui
+ y0

∂y0

∂u

)
– ε

n∑

i=1

(
∂2y
∂u2

i

)
,

A1(y) =
n∑

i=1

(
y0

∂y1

∂ui
+ y1

∂y0

∂ui

)
– ε

n∑

i=1

(
∂2y
∂u2

i

)
,

and so on. Comparing the power of the coefficient q, we have

q0 : y0(u1, u2, . . . , un,ν) =
n∑

i=1

ui,

q1 : y1(u1, u2, . . . , un,ν) = –n
να

α

n∑

i=1

ui,

q2 : y2(u1, u2, . . . , un,ν) = n2
(

να

α

)2 n∑

i=1

ui,

q3 : y3(u1, u2, . . . , un,ν) = –n3
(

να

α

)3 n∑

i=1

ui,

(63)

and also

q4 : y4(u1, u2, . . . , un,ν) = n4
(

να

α

)4 n∑

i=1

ui,

q5 : y5(u1, u2, . . . , un,ν) = –n5
(

να

α

)5 n∑

i=1

ui,

(64)
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and so on. Therefore, substituting Eqs. (63) and (64) in the following equation

y(u1, u2, . . . , un,ν) = y0(u1, u2, . . . , un,ν) + y1(u1, u2, . . . , un,ν)

+ y2(u1, u2, . . . , un,ν) + y3(u1, u2, . . . , un,ν) + · · · ,

we obtain

y(u1, u2, . . . , un,ν) =
n∑

i=1

ui

(
1 – n

να

α
+ n2

(
να

α

)2

– n3
(

να

α

)3

+ n4
(

να

α

)4

+ · · ·
)

=
1

1 – n να

α

n∑

i=1

ui, ∀ν ∈
[

0,
α

n

1
α

)
. (65)

For α = 1 as a special case, the classical solution can be found as follows:

y(u1, u2, . . . , un,ν) =
1

1 – nν

n∑

i=1

ui, (66)

which is the same solution as in [35].

6 Conclusion
In this paper, we have presented CDETHPM as a novel approach for solving N – TFPDEs.
We have also established the results on the uniqueness and convergence of the solution.
The numerical results show that the suggested method is effective in finding exact and
approximate solutions for N – TFPDEs. The efficiency and approximation of the given
technique have been verified through four different problems. Moreover, it is interesting
to note that CDETHPM is able to significantly reduce the amount of computing work
required compared to traditional approaches while retaining good numerical accuracy.
The suggested technique has a distinct advantage over the decomposition method and can
handle non-linear problems without using Adomian polynomials. Finally, this approach
can be used to solve a variety of both linear and non-linear TFPDEs.
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