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Abstract
In this paper, an energy-stable Crank–Nicolson fully discrete finite element scheme is
proposed for the Benjamin–Bona–Mahony–Burgers equation. Firstly, the stability of
energy is proved, which leads to the boundedness of the finite element solution in
H1-norm. Secondly, combining with the above boundedness and the special
property of bilinear element, the unconditional superclose and superconvergence
results are derived. Finally, numerical examples are provided to illustrate the validity
and efficiency of our theoretical analysis and method.
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1 Introduction
The nonlinear Benjamin–Bona–Mahony–Burgers (BBMB) equation is often used to de-
scribe the propagation of small amplitude long waves in a nonlinear dispersive medium
with dissipative effect, which is considered as the following second-order partial differen-
tial equation [1]:

⎧
⎪⎪⎨

⎪⎪⎩

ut – α�ut – β�u = ∇ · �f (u), (X, t) ∈ � × (0, T],

u(X, t) = 0, (X, t) ∈ ∂� × (0, T],

u(X, 0) = u0(X), X ∈ �,

(1)

where � ⊂ R2 is an open bounded convex polygonal domain with boundary ∂�, α > 0, β >
0, 0 < T < ∞ are given constants, X = (x, y), �f (u) = –( 1

2 u2 + u, 1
2 u2 + u), � and ∇· denote the

two-dimensional Laplace and divergence operators, respectively, u0(X) is a given smooth
function. It is remarkable that when α = 0, β > 0, (1) is called Burgers’ equation, when
α > 0, β = 0, (1) is called Benjamin–Bona–Mahony (BBM) equation. Various analytical
and computational methods have been proposed to solve Burgers’ and BBM equations,
readers with more interests may refer to [2–7] and the references listed.
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Due to the nonlinearity of BBMB equation, it is very difficult to find out the true so-
lution. Thus, a lot of numerical methods have been considered, such as the finite differ-
ence methods [8–11], collocation method [12], meshless method [13, 14], finite element
method (FEM) [15–18], and so on. For the FEM, Kadri [15] proposed semi-discrete and
two kinds of fully discrete Galerkin schemes, studied the L∞-norm error estimates; Kundu
[16] established the convergence of unsteady solution to steady state solution; Karakoc [17]
obtained the convergence analysis by use of a cubic B-spline FEM; Gao [18] discussed
the local discontinuous Galerkin FEM and derived an optimal error estimate. However,
[15–18] only focus on the convergence for the one-dimensional (1D) BBMB equation,
there are few works for the 2D case till now.

It is well known that the superconvergence analysis is an important approach to improve
the precision of FE solution. More precisely, based on the so-called integral identity tech-
nique, the order of error in H1-norm between FE approximation uh and the interpolation
of the exact solution Ihu is much better than that of u and Ihu; this fascinating characteris-
tic is called superclose. The global superconvergence will then be investigated by adding a
postprocessing without changing the existing FE program. Meanwhile, superconvergence
is critical in practical engineering numerical calculation and has always been a research
hotspot. To find out more applications, readers may refer to [19–23]. As far as our knowl-
edge is concerned, research on superconvergence for 2D BBMB equation is not yet to be
found.

In this work, as a first attempt, we develop an energy-stable conforming FE scheme for
problem (1) and study the superclose and superconvergence error estimates. The outline is
organized as follows: in Sect. 2, the FE space and the Crank–Nicolson (C-N) fully discrete
scheme are provided, then the stability of energy and the boundedness of the numerical
solution in H1-norm are proved; in Sect. 3, the unconditional superclose and superconver-
gence results are derived without the restriction of the ratio between mesh size parameter
h and time step �t; in the last section, three numerical examples are given to verify the
theoretical analysis.

2 The FE space and energy-stable scheme
Assume that W k,p(�) is the standard Sobolev space with the norm ‖ · ‖W k,p(�), Hk(�) =
W k,2(�), H0(�) = L2(�) with the norm ‖ · ‖k and ‖ · ‖0, the inner-product in L2(�) is
defined by (·, ·).

Denote Th to be a regular rectangular subdivision of �. For K ∈ Th, hK = diam K , h =
maxK∈Th hK . The bilinear element space Vh is defined by

Vh =
{

vh ∈ H1
0 (�) : vh|K ∈ span{1, x, y, xy}, vh|∂� = 0,∀K ∈ Th

}
.

The associated interpolation operator is defined as Ih : v ∈ V = H1
0 (�) → Ihv ∈ Vh.

The variational form of (1) is to find u ∈ V such that

⎧
⎨

⎩

(ut , v) + α(∇ut ,∇v) + β(∇u,∇v) = –(�f (u),∇v), ∀v ∈ V ,

u(X, 0) = u0(X).
(2)

Let {tn|tn = n�t; n = 0, 1, 2, . . . , N} be a uniform partition of [0, T] with �t = T/N . For a
given continuous function u on [0, T], we define that un = u(X, tn), ∂̄tun = un–un–1

�t , tn– 1
2

=
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(n – 1
2 )�t, un– 1

2 = un+un–1

2 . The C-N fully discrete scheme for (2) is to find Un
h ∈ Vh such

that
⎧
⎨

⎩

(∂̄tUn
h , vh) + α(∇ ∂̄tUn

h ,∇vh) + β(∇Un– 1
2

h ,∇vh) = –(�f (Un– 1
2

h ),∇vh), ∀vh ∈ Vh,

Un
h (X, 0) = Ihu0(X).

(3)

First of all, we achieve the following special properties of bilinear element from [19, 24].

Lemma 2.1 For all vh ∈ Vh, there hold

‖u – Ihu‖0,p ≤ Ch2‖u‖2,p, u ∈ W 2,p(�), (4)
(∇(u – Ihu),∇vh

) ≤ Ch2‖u‖3‖vh‖1, u ∈ H3(�). (5)

Here and later, we denote by C a generic positive constant which is independent of h and
�t and may stand for different values at different places.

Then the energy stability of (3) and the boundedness of ‖Un
h ‖1 are proved as follows.

Theorem 2.1 Let En = ‖Un
h ‖2

0 + α|Un
h |21 (n = 0, 1, . . . , N ) be the discrete energy, Un

h is the
solution of (3), then there holds

En ≤ En–1 (n = 1, 2, . . . , N). (6)

Furthermore, we obtain

∥
∥Un

h
∥
∥

1 ≤ M1, (7)

where M1 =
√

max{1,α}
min{1,α} ‖U0

h‖1 is a positive constant.

Proof Taking vh = Un– 1
2

h in (3), we can get

(
∂̄tUn

h , Un– 1
2

h
)

+ α
(∇ ∂̄tUn

h ,∇Un– 1
2

h
)

+ β
(∇Un– 1

2
h ,∇Un– 1

2
h

)
= –

(�f (Un– 1
2

h
)
,∇Un– 1

2
h

)
. (8)

Firstly, the left-hand side of (8) can be rewritten as

1
2�t

(∥
∥Un

h
∥
∥2

0 –
∥
∥Un–1

h
∥
∥2

0

)
+

α

2�t
(∣
∣Un

h
∣
∣2
1 –

∣
∣Un–1

h
∣
∣2
1

)
+ β

∥
∥∇Un– 1

2
h

∥
∥2

0. (9)

Secondly, the right-hand side can be split as

–
(�f (Un– 1

2
h

)
,∇Un– 1

2
h

)
=

∫

�

(
1
2
(
Un– 1

2
h

)2 + Un– 1
2

h

)
[(

Un– 1
2

h
)

x +
(
Un– 1

2
h

)

y

]
dx dy

=
∫

�

1
2
(
Un– 1

2
h

)2[(Un– 1
2

h
)

x +
(
Un– 1

2
h

)

y

]
dx dy (10)

+
∫

�

Un– 1
2

h
[(

Un– 1
2

h
)

x +
(
Un– 1

2
h

)

y

]
dx dy.
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By using the Green formula and noting that Un– 1
2

h |∂� = 0, we obtain

∫

�

(
Un– 1

2
h

)2[(Un– 1
2

h
)

x +
(
Un– 1

2
h

)

y

]
dx dy

= –
∫

�

(
Un– 1

2
h

)[
2Un– 1

2
h

(
Un– 1

2
h

)

x + 2Un– 1
2

h
(
Un– 1

2
h

)

y

]
dx dy

+
∫

∂�

Un– 1
2

h
(
Un– 1

2
h

)2 · �n ds

= –
∫

�

2
(
Un– 1

2
h

)2[(Un– 1
2

h
)

x +
(
Un– 1

2
h

)

y

]
dx dy,

where �n is the outer normal vector, so we arrive at

∫

�

(
Un– 1

2
h

)2[(Un– 1
2

h
)

x +
(
Un– 1

2
h

)

y

]
dx dy = 0. (11)

Similarly, we have

∫

�

Un– 1
2

h
[(

Un– 1
2

h
)

x +
(
Un– 1

2
h

)

y

]
dx dy = 0, (12)

substituting (11) and (12) into (10), we obtain

(�f (Un– 1
2

h
)
,∇Un– 1

2
h

)
= 0. (13)

From (8), (9), and (13), there holds

1
2�t

[(∥
∥Un

h
∥
∥2

0 –
∥
∥Un–1

h
∥
∥2

0

)
+ α

(∣
∣Un

h
∣
∣2
1 –

∣
∣Un–1

h
∣
∣2
1

)]
+ β

∥
∥∇Un– 1

2
h

∥
∥2

0 = 0, (14)

therefore, we have

∥
∥Un

h
∥
∥2

0 + α
∣
∣Un

h
∣
∣2
1 + 2�tβ

∥
∥∇Un– 1

2
h

∥
∥2

0 =
∥
∥Un–1

h
∥
∥2

0 + α
∣
∣Un–1

h
∣
∣2
1,

which implies En ≤ En–1, (6) is obtained.
Next we start to demonstrate (7). Multiplying 2�t on both sides of (14), replacing n with

i, and summing for i from 1 to n, we have

∥
∥Un

h
∥
∥2

0 + α
∣
∣Un

h
∣
∣2
1 + 2�tβ

n∑

i=1

∥
∥∇Ui– 1

2
h

∥
∥2

0 =
∥
∥U0

h
∥
∥2

0 + α
∣
∣U0

h
∣
∣2
1. (15)

From (15) and the triangular inequality, we have

min{1,α}∥∥Un
h
∥
∥2

1 ≤ max{1,α}∥∥U0
h
∥
∥2

1,

which ends the proof. �
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3 Superclose and superconvergence analysis
We first demonstrate the following unconditional superclose result.

Theorem 3.1 Let un and Un
h be solutions of (2) and (3), respectively. Assume that u ∈

L∞(0, T ; H3(�)), ut ∈ L2(0, T ; H3(�)), utt , uttt ∈ L2(0, T ; H1(�)), there holds

∥
∥Ihun – Un

h
∥
∥

1 ≤ C
(
h2 + (�t)2), (16)

where �t > 0 is small enough so that 1 – C�t > 0.

Proof Let un – Un
h = (un – Ihun) + (Ihun – Un

h ) := ξn + ηn, then the error equation can be
derived by (2) and (3):

(
∂̄tη

n, vh
)

+ α
(∇ ∂̄tη

n,∇vh
)

+ β
(∇ηn– 1

2 ,∇vh
)

= –
(
∂̄tξ

n, vh
)

– α
(∇ ∂̄tξ

n,∇vh
)

– β
(∇ξn– 1

2 ,∇vh
)

+
(�f (Un– 1

2
h

)
– �f (u(tn– 1

2
)
)
,∇vh

)
–

(
Rn

1, vh
)

(17)

– α
(∇Rn

1,∇vh
)

– β
(∇Rn

2,∇vh
)
,

where Rn
1 = ut(tn– 1

2
) – ∂̄tun, Rn

2 = u(tn– 1
2

) – un– 1
2 .

Taking vh = ηn– 1
2 in (17), there holds

(
∂̄tη

n,ηn– 1
2
)

+ α
(∇ ∂̄tη

n,∇ηn– 1
2
)

+ β
(∇ηn– 1

2 ,∇ηn– 1
2
)

= –
(
∂̄tξ

n,ηn– 1
2
)

– α
(∇ ∂̄tξ

n,∇ηn– 1
2
)

– β
(∇ξn– 1

2 ,∇ηn– 1
2
)

+
(�f (Un– 1

2
h

)
– �f (u(tn– 1

2
)
)
,∇ηn– 1

2
)

(18)

–
(
Rn

1,ηn– 1
2
)

– α
(∇Rn

1,∇ηn– 1
2
)

– β
(∇Rn

2,∇ηn– 1
2
)
.

The left-hand side of (18) can be rewritten as

1
2�t

[(∥
∥ηn∥∥2

0 –
∥
∥ηn–1∥∥2

0

)
+ α

(∥
∥∇ηn∥∥2

0 –
∥
∥∇ηn–1∥∥2

0

)]
+ β

∥
∥∇ηn– 1

2
∥
∥2

0. (19)

Now we estimate the right-hand side: By virtue of Lemma 2.1, we arrive at

(
∂̄tξ

n,ηn– 1
2
)

+ α
(∇ ∂̄tξ

n,∇ηn– 1
2
)

+ β
(∇ξn– 1

2 ,∇ηn– 1
2
)

≤ Ch4
(

1
�t

∫ tn

tn–1

‖ut‖2
3 dτ +

∥
∥un– 1

2
∥
∥2

3

)

+
1
2
∥
∥∇ηn– 1

2
∥
∥2

0. (20)

Using the Taylor expansion, the truncation error can be estimated as

(
Rn

1,ηn– 1
2
)

+ α
(∇Rn

1,∇ηn– 1
2
)

+ β
(∇Rn

2,∇ηn– 1
2
)

≤ C
(∥
∥Rn

1
∥
∥2

1 +
∥
∥Rn

2
∥
∥2

1

)
+

1
2
∥
∥∇ηn– 1

2
∥
∥2

0

≤ C(�t)3
∫ tn

tn–1

(‖uttt‖2
1 + ‖utt‖2

1
)

dτ +
1
2
∥
∥∇ηn– 1

2
∥
∥2

0, (21)
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the nonlinear term can be written as

∣
∣
(�f (Un– 1

2
h

)
– �f (u(tn– 1

2
)
)
,∇ηn– 1

2
)∣
∣

=
∣
∣
∣
∣

(
1
2
((

u(tn– 1
2

)
)2 –

(
Un– 1

2
h

)2),∇ηn– 1
2

)

+
(
u(tn– 1

2
) – Un– 1

2
h ,∇ηn– 1

2
)
∣
∣
∣
∣

=
∣
∣
∣
∣

(
1
2
((

u(tn– 1
2

)
)2 –

(
un– 1

2
)2 +

(
un– 1

2
)2 –

(
Un– 1

2
h

)2),∇ηn– 1
2

)

+
(
u(tn– 1

2
) – un– 1

2 + un– 1
2 – Un– 1

2
h ,∇ηn– 1

2
)
∣
∣
∣
∣

=
∣
∣
∣
∣
1
2
(
u(tn– 1

2
)2 –

(
un– 1

2
)2,∇ηn– 1

2
)

+
1
2
((

un– 1
2
)2 –

(
Un– 1

2
h

)2,∇ηn– 1
2
)

(22)

+
(
u(tn– 1

2
) – un– 1

2 + un– 1
2 – Un– 1

2
h ,∇ηn– 1

2
)
∣
∣
∣
∣

=
∣
∣
∣
∣
1
2
(
Rn

2
(
u(tn– 1

2
) + un– 1

2
)
,∇ηn– 1

2
)

+
1
2
((

ξn– 1
2 + ηn– 1

2
)(

un– 1
2 + Un– 1

2
h

)
,∇ηn– 1

2
)

+
(
Rn

2,∇ηn– 1
2
)

+
(
ξn– 1

2 + ηn– 1
2 ,∇ηn– 1

2
)
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

4∑

i=1

Ai

∣
∣
∣
∣
∣
.

By the estimation of truncation error, there holds

A1 + A3 ≤ C
∥
∥Rn

2
∥
∥

0

∥
∥ηn– 1

2
∥
∥

1

(∥
∥u(tn– 1

2
) + un– 1

2
∥
∥

0,∞ + 1
)

≤ C
∥
∥Rn

2
∥
∥

0

∥
∥ηn– 1

2
∥
∥

1 (23)

≤ C(�t)3
∫ tn

tn–1

‖utt‖2
0 dτ + C

∥
∥ηn– 1

2
∥
∥2

1.

From the Sobolev imbedding theorem, (4) and (7), we have

A2 ≤ C
∥
∥ξn– 1

2 + ηn– 1
2
∥
∥

0,4

∥
∥un– 1

2 + Un– 1
2

h
∥
∥

0,4

∥
∥ηn– 1

2
∥
∥

1

≤ C
∥
∥ξn– 1

2 + ηn– 1
2
∥
∥

0,4

(∥
∥un– 1

2
∥
∥

0,4 +
∥
∥Un– 1

2
h

∥
∥

0,4

)∥
∥ηn– 1

2
∥
∥

1

≤ C
∥
∥ξn– 1

2 + ηn– 1
2
∥
∥

0,4

(∥
∥un– 1

2
∥
∥

0,∞ +
∥
∥Un– 1

2
h

∥
∥

1

)∥
∥ηn– 1

2
∥
∥

1

≤ C
∥
∥ξn– 1

2 + ηn– 1
2
∥
∥

0,4

∥
∥ηn– 1

2
∥
∥

1 (24)

≤ Ch4∥∥un– 1
2
∥
∥2

2,4 + C
∥
∥ηn– 1

2
∥
∥2

1

≤ Ch4∥∥un– 1
2
∥
∥2

3 + C
∥
∥ηn– 1

2
∥
∥2

1

and

A4 ≤ C
(∥
∥ξn– 1

2
∥
∥

0 +
∥
∥ηn– 1

2
∥
∥

0

)∥
∥ηn– 1

2
∥
∥

1 ≤ Ch4∥∥un– 1
2
∥
∥2

2 + C
∥
∥ηn– 1

2
∥
∥2

1. (25)
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Substituting (23)–(25) into (22), we get

∣
∣
(�f (Un– 1

2
h

)
– �f (u(tn– 1

2
)
)
,∇ηn– 1

2
)∣
∣

≤ C(�t)3
∫ tn

tn–1

‖utt‖2
0 dτ + Ch4∥∥un– 1

2
∥
∥2

3 + C
∥
∥ηn– 1

2
∥
∥2

1. (26)

Hence, from (18)–(21) and (26), we have

1
2�t

[(∥
∥ηn∥∥2

0 –
∥
∥ηn–1∥∥2

0

)
+ α

(∣
∣ηn∣∣2

1 –
∣
∣ηn–1∣∣2

1

)]

≤ Ch4 + C(�t)3
∫ tn

tn–1

(‖utt‖2
1 + ‖uttt‖2

1
)

dτ + C
∥
∥ηn– 1

2
∥
∥2

1,

multiplying by 2�t, then summing up the above inequality and noting that η0 = 0, we can
obtain

∥
∥ηn∥∥2

1 ≤ Ch4 + C(�t)4 + C�t
n∑

i=1

∥
∥ηi∥∥2

1. (27)

Choosing �t small enough so that 1 – C�t > 0 and applying discrete Gronwall’s lemma,
there holds

∥
∥ηn∥∥2

1 ≤ C
(
h4 + (�t)4),

the proof is completed. �

To obtain the global superconvergence estimate, we combine the adjacent four small
elements K1, K2, K3, K4 into a big element K̃ , i.e., K̃ =

⋃4
i=1 Ki (see Fig. 1), the corresponding

subdivision is defined by T2h.
As in [19], we define the following interpolation postprocessing operator I2h:

I2hu|K̃ ∈ Q2(K̃), ∀u ∈ C(K̃), I2hu(Zi) = u(Zi), i = 1, 2, . . . , 9, (28)

where Q2(K̃) and C(K̃) denote the spaces of biquadratic piecewise polynomial and con-
tinuous function on K̃ , respectively, Zi are all vertices of four small elements (see Fig. 1).

Meanwhile, I2h has the following properties (see [19]):

I2hIhu = I2hu, ‖u – I2hu‖1 ≤ Ch2‖u‖3, ‖I2hvh‖1 ≤ C‖vh‖1, ∀vh ∈ Vh. (29)

Figure 1 The big element K̃
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Theorem 3.2 Under the assumption of Theorem 3.1, there holds the global superconver-
gence result as follows:

∥
∥un – I2hUn

h
∥
∥

1 ≤ C
(
h2 + (�t)2).

Proof Let un – I2hUn
h = un – I2hIhun + I2hIhun – I2hUn

h . By (16), (29), and the triangular
inequality, we can get

∥
∥un – I2hUn

h
∥
∥

1 ≤ ∥
∥un – I2hIhun∥∥

1 +
∥
∥I2hIhun – I2hUn

h
∥
∥

1

≤ ∥
∥un – I2hun∥∥

1 +
∥
∥I2h

(
Ihun – Un

h
)∥
∥

1 (30)

≤ Ch2∥∥un∥∥
3 + C

∥
∥Ihun – Un

h
∥
∥

1

≤ C
(
h2 + (�t)2),

the proof is completed. �

Remark 3.1 In this paper, the boundedness of ‖Un
h ‖1 is crucial to the unconditional su-

perclose and superconvergence results, the technique we used is more simple and direct
than those in [22] and [23] ([22] applied an error splitting technique and [23] employed
a complicated mathematical inductive hypothesis method to derive the boundedness of
numerical solution).

4 Numerical examples
In this section, we give three examples to verify the validity of theoretical analysis, here
we divide the domain � into m × n rectangular meshes.

Example 1 We consider the following homogeneous BBMB equation:

ut – �ut – �u – ∇ · �f (u) = 0, (x, y, t) ∈ [0, 1] × [0, 1] × (0, T].

Initially, the energy En = ‖Un
h ‖2

1 under the initial condition u(x, y, 0) = sinπx sinπy is
plotted in Fig. 2, here t ∈ [0, 0.1], h = 1

20 , �t = 1.0e–05.
Then a larger initial condition (u(x, y, 0) = 100 sinπx sinπy) is considered, and En is dis-

played in Fig. 3, here t, h, and �t are the same as above.
From Figs. 2–3 we can see that the energy is stable, which is consistent with the conclu-

sion of Theorem 2.1.

Example 2 We consider the following inhomogeneous BBMB equation:

⎧
⎨

⎩

ut – �ut – �u – ∇ · �f (u) = g(x, y, t), (x, y, t) ∈ [0, 1] × [0, 1] × (0, T],

u(x, y, 0) = 2xy(x – 1)(y – 1), (x, y) ∈ [0, 1] × [0, 1],

here g(x, y, t) could be computed by the exact solution u(x, y, t) = (1 + e–t)xy(x – 1)(y – 1).
First of all, we take ‖Ihun – Un

h ‖1 as an example to validate the unconditional stabil-
ity. Here fix h = 1

100 and choose �t = h
10 , h

20 , h
40 , h

80 , respectively, we provide the results of
‖Ihun – Un

h ‖1 at t = 0.1, 0.5, and 1.0 in Table 1.
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Figure 2 En under the initial condition u(x, y, 0) = sinπx sinπy

Figure 3 En under the initial condition u(x, y, 0) = 100 sinπx sinπy

Table 1 Error results of ‖Ihun – Unh‖1 with h = 1
100

t �t = h
10 �t = h

20 �t = h
40 �t = h

80

0.1 1.0893e–06 1.0958e–06 1.0991e–06 1.1007e–06
0.5 4.6014e–06 4.6203e–06 4.6295e–06 4.6340e–06
1.0 7.5644e–06 7.5844e–06 7.5939e–06 7.5986e–06

From Table 1, we can observe that ‖Ihun – Un
h ‖1 is stable at a certain time and free from

the ratio between �t and h.
Moreover, the convergence, superclose, and superconvergence results at t = 0.1, 0.5, and

1.0 are listed in Tables 2–4, respectively. At the same time, we describe the error reduction
results in Figs. 4–6, respectively. To confirm the convergence order, we choose �t = h.

From Tables 2–4 and Figs. 4–6, we can see that ‖un – Un
h ‖1 is convergent at rate of O(h),

‖Ihun – Un
h ‖1 and ‖un – I2hUn

h ‖1 are convergent at rate of O(h2), which coincides with the
conclusions of Theorems 3.1–3.2.
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Table 2 Numerical results of u at t = 0.1

m× n ‖un – Un
h‖1 order ‖Ihun – Un

h‖1 order ‖un – I2hUn
h‖1 order

4× 4 7.2863e–02 / 6.4179e–04 / 7.1337e–04 /
8× 8 3.5745e–02 1.0274 1.5938e–04 2.0095 1.6411e–04 2.1199
16× 16 1.7779e–02 1.0075 4.0251e–05 1.9854 4.0554e–05 2.0168
32× 32 8.8776e–03 1.0019 1.0329e–05 1.9622 1.0349e–05 1.9703
64× 64 4.4373e–03 1.0005 2.4987e–06 2.0468 2.4999e–06 2.0489

Table 3 Numerical results of u at t = 0.5

m× n ‖un – Un
h‖1 order ‖Ihun – Un

h‖1 order ‖un – I2hUn
h‖1 order

4× 4 6.1063e–02 / 2.7140e–03 / 3.0059e–03 /
8× 8 3.0096e–02 1.0207 6.7986e–04 1.9971 6.9905e–04 2.1043
16× 16 1.4988e–02 1.0057 1.7159e–04 1.9862 1.7281e–04 2.0161
32× 32 7.4865e–03 1.0014 4.3815e–05 1.9694 4.3893e–05 1.9771
64× 64 3.7423e–03 1.0004 1.0696e–05 2.0338 1.0701e–05 2.0357

Table 4 Numerical results of u at t = 1.0

m× n ‖un – Un
h‖1 order ‖Ihun – Un

h‖1 order ‖un – I2hUn
h‖1 order

4× 4 5.1679e–02 / 4.4691e–03 / 4.9353e–03 /
8× 8 2.5582e–02 1.0144 1.1293e–03 1.9845 1.1598e–03 2.0891
16× 16 1.2756e–02 1.0039 2.8497e–04 1.9865 2.8691e–04 2.0152
32× 32 6.3737e–03 1.0010 7.2411e–05 1.9765 7.2534e–05 1.9838
64× 64 3.1863e–03 1.0003 1.7824e–05 2.0201 1.7832e–05 2.0219

Figure 4 Numerical results for u at t = 0.1

Example 3 We consider the inhomogeneous BBMB equation in larger domains.
Firstly, we introduce the following equation:

⎧
⎨

⎩

ut – �ut – �u – ∇ · �f (u) = g(x, y, t), (x, y, t) ∈ [0, 5] × [0, 5] × (0, T],

u(x, y, 0) = 2xy(x – 5)(y – 5), (x, y) ∈ [0, 5] × [0, 5],

where the exact solution u(x, y, t) = (1 + e–t)xy(x – 5)(y – 5).
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Figure 5 Numerical results for u at t = 0.5

Figure 6 Numerical results for u at t = 1.0

Table 5 Error results of ‖Ihun – Unh‖1 with h = 1
20

t �t = h
10 �t = h

20 �t = h
40 �t = h

80

1 6.7407e–02 6.7791e–02 6.7913e–02 6.7714e–02
2 3.7426e–02 3.7565e–02 3.7626e–02 3.7493e–02
3 2.7182e–02 2.7260e–02 2.7196e–02 2.7198e–02

Table 6 Numerical results of u at t = 1

m× n ‖un – Un
h‖1 order ‖Ihun – Un

h‖1 order ‖un – I2hUn
h‖1 order

16× 16 8.0941 / 1.5482 / 1.6887 /
32× 32 4.0095 1.0134 4.9625e–01 1.6414 5.2125e–01 1.6959
64× 64 1.9943 1.0075 1.1871e–01 2.0636 1.2037e–01 2.1144
128× 128 9.9582e–01 1.0019 1.6704e–02 2.8291 1.6761e–02 2.8442

Here we take t = 1, 2, and 3, respectively, the unconditional stability is validated in Ta-
ble 5, the convergence, superclose, and superconvergence results are listed in Tables 6–8,
respectively.
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Table 7 Numerical results of u at t = 2

m× n ‖un – Un
h‖1 order ‖Ihun – Un

h‖1 order ‖un – I2hUn
h‖1 order

16× 16 6.6821 / 1.1840 / 1.2678 /
32× 32 3.3145 1.0114 3.2218e–01 1.8778 3.3841e–01 1.9055
64× 64 1.6538 1.0029 7.4794e–01 2.1068 7.5961e–02 2.1554
128× 128 8.2649e–01 1.0007 1.5762e–02 2.2464 1.5813e–02 2.2641

Table 8 Numerical results of u at t = 3

m× n ‖un – Un
h‖1 order ‖Ihun – Un

h‖1 order ‖un – I2hUn
h‖1 order

16× 16 6.1503 / 9.9968e–01 / 1.0411 /
32× 32 3.0608 1.0067 2.4141e–01 2.0499 2.4919e–01 2.0627
64× 64 1.5287 1.0015 6.2188e–02 1.9567 6.2752e–02 1.9895
128× 128 7.6418e–01 1.0003 1.4664e–02 2.0843 1.4697e–02 2.0941

Table 9 Numerical results of u at t = 1

m× n ‖un – Un
h‖1 order ‖Ihun – Un

h‖1 order ‖un – I2hUn
h‖1 order

32× 32 29.0467 / 12.6079 / 13.3593 /
64× 64 13.7423 1.0797 4.1904 1.5891 4.3447 1.6205
128× 128 6.6382 1.0497 1.2041 1.7990 1.2251 1.8262
256× 256 3.2728 1.0202 2.5485e–01 2.2402 2.5658e–01 2.2555

Table 10 Numerical results of u at t = 2

m× n ‖un – Un
h‖1 order ‖Ihun – Un

h‖1 order ‖un – I2hUn
h‖1 order

32× 32 25.9705 / 14.2278 / 15.2578 /
64× 64 11.6481 1.1567 4.2769 1.7340 4.4823 1.7672
128× 128 5.5048 1.0813 9.8468e–01 2.1188 1.0043 2.1579
256× 256 2.7120 1.0213 1.4919e–01 2.7224 1.5014e–01 2.7419

Table 11 Numerical results of u at t = 3

m× n ‖un – Un
h‖1 order ‖Ihun – Un

h‖1 order ‖un – I2hUn
h‖1 order

32× 32 24.9412 / 14.8079 / 15.8557 /
64× 64 10.8178 1.2051 4.1108 1.8488 4.3097 1.8793
128× 128 5.0430 1.1010 5.9951e–01 2.7775 6.0899e–01 2.8230
256× 256 2.5055 1.0091 9.4431e–02 2.6664 9.4848e–02 2.6827

Secondly, we consider the following equation:

⎧
⎨

⎩

ut – �ut – �u – ∇ · �f (u) = g(x, y, t), (x, y, t) ∈ [0, 8] × [0, 8] × (0, T],

u(x, y, 0) = 2xy(x – 8)(y – 8), (x, y) ∈ [0, 8] × [0, 8],

here u(x, y, t) = (1 + e–t)xy(x – 8)(y – 8).
The convergence, superclose, and superconvergence results at t = 1, 2, and 3 are pro-

vided in Tables 9–11, respectively.
From Tables 5–11, we can see that under the large initial condition, the numerical results

are also in good agreement with our theoretical analysis.
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