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Abstract
In this paper, we study the following nonlocal problem:

{
–(a – b

∫
� |∇u|2 dx)�u = λ|u|q–2u, x ∈ �,

u = 0, x ∈ ∂�,

where � is a smooth bounded domain in R
N with N ≥ 3, a,b > 0, 1 < q < 2 and λ > 0

is a parameter. By virtue of the variational method and Nehari manifold, we prove the
existence of multiple positive solutions for the nonlocal problem. As a co-product of
our arguments, we also obtain the blow-up and the asymptotic behavior of these
solutions as b ↘ 0.
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1 Introduction and main results
In this paper, we are concerned with the multiplicity of positive solutions for the nonlocal
problem

⎧⎨
⎩–(a – b

∫
�

|∇u|2 dx)�u = λ|u|q–2u, x ∈ �,

u = 0, x ∈ ∂�,
(1.1)

where � is a smooth bounded domain in R
N (N ≥ 3), a, b > 0, 1 < q < 2 and λ > 0 is a

parameter.
In the past two decades, the following Kirchhoff type problem on a bounded domain

⎧⎨
⎩–(a + b

∫
�

|∇u|2 dx)�u = f (x, u), x ∈ �,

u = 0, x ∈ ∂�,
(1.2)

has attracted great attention of many researchers. The Kirchhoff type problem is often
viewed as nonlocal due to the presence of the term b

∫
�

|∇u|2 dx which implies that such a
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problem is no longer a pointwise identity. By using the variational method, there are many
interesting results of positive solutions to (1.2), see e.g. [1, 4, 5, 9, 11] and the references
therein.

If we replace b
∫
�

|∇u|2 dx with –b
∫
�

|∇u|2 dx, then (1.2) turns out to be the following
new nonlocal one:

⎧⎨
⎩–(a – b

∫
�

|∇u|2 dx)�u = f (x, u), x ∈ �,

u = 0, x ∈ ∂�.
(1.3)

This kind of problem involving negative nonlocal term not only presents some inter-
esting difficulties different from Kirchhoff type problem but also has its own physical
and mechanical motivation, see [8, 14]. Yin and Liu [16] considered problem (1.3) when
f (x, u) = |u|p–2u with 2 < p < 2∗ and showed the existence of two nontrivial solutions.
Based on [16], Wang and Yang [15] further obtained the existence of infinitely many sign-
changing solutions. In [17], the authors extended the results of [16] to a general case of
nonlinear terms. For f (x, u) = λ|u|–γ with 0 < γ < 1, [6] got the multiplicity of positive solu-
tions to (1.3). In [10], we proved that problem (1.3) possesses at least one positive solution
when N = 3, f (x, u) = λf (x)|u|p–2u with 3 < p < 4 and f (x) ∈ L

6
6–p (�) may change sign. In

particular, Duan et al. [3] and Lei et al. [7] proved that there exists λ∗ > 0 such that, for each
λ ∈ (0,λ∗), problem (1.1) has two positive solutions by using the minimization argument
and the mountain pass theorem.

From the works described before, it is important and interesting to ask whether the
multiplicity of positive solutions to problem (1.1) can be established by other methods? In
the present paper, we shall give an affirmative answer. The main technique applied here
is a separation argument for the Nehari-type set of problem (1.1), which has been firstly
introduced by Tarantello [13] and later refined by Sun and Li [12].

Let H := H1
0 (�) and Ls(�) be the standard Sobolev spaces endowed with the standard

norms ‖ · ‖ and | · |p, respectively. Denote by → and ⇀ the strong and weak convergence,
respectively. We use on(1) to denote a quantity such that on(1) → 0 as n → ∞. C and Ci de-
note various positive constants which may vary from line to line. We say that I ∈ C1(H ,R)
satisfies the Palais–Smale condition at level c ∈R ((PS)c in short) if any sequence {un} ⊂ H
such that I(un) → c and I ′(un) → 0 in H–1 as n → ∞ has a convergent subsequence. S de-
notes the best constant in the Sobolev embedding H ↪→ L2∗ (�), that is,

S = inf
u∈H\{0}

∫ |∇u|2 dx
(
∫ |u|2∗ dx)2/2∗ > 0.

Associated with problem (1.1), we define the energy functional

Ib(u) =
a
2
‖u‖2 –

b
4
‖u‖4 –

λ

q

∫
�

|u|q dx.

Then Ib ∈ C1(H ,R). Recall that a function u ∈ H is called a weak solution to (1.1) if, for
any φ ∈ H , there holds

(
a – b‖u‖2)∫

�

∇u∇φ dx – λ

∫
�

|u|q–2uφ dx = 0.
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Define the Nehari type set of (1.1)


b =
{

u ∈ H :
〈
I ′

b(u), u
〉

= 0
}

=
{

u ∈ H : a‖u‖2 – b‖u‖4 = λ

∫
�

|u|q dx
}

,

and then decompose 
b into three subsets:


0
b =

{
u ∈ 
b : a(2 – q)‖u‖2 – b(4 – q)‖u‖4 = 0

}
,


+
b =

{
u ∈ 
b : a(2 – q)‖u‖2 – b(4 – q)‖u‖4 > 0

}
,


–
b =

{
u ∈ 
b : a(2 – q)‖u‖2 – b(4 – q)‖u‖4 < 0

}
.

It is important to notice that there exists a norm gap in 
b:

‖ũ‖2 >
a(2 – q)
b(4 – q)

> ‖u‖2 for all u ∈ 
+
b , ũ ∈ 
–

b . (1.4)

Set

Tb =
2(2 – q)
(4 – q)2

a
4–q

2

b
2–q

2

S
q
2

|�| 2∗–q
2∗

.

Our main results are as follows.

Theorem 1.1 Assume that λ ∈ (0, Tb), then problem (1.1) has at least two positive solutions
u∗ ∈ 
+

b , ũ∗ ∈ 
–
b with ‖u∗‖ < ‖ũ∗‖.

Moreover, as a by-product of our arguments, we regard b as a parameter and obtain the
blow-up behavior of the solution ũb ∈ 
–

b and the asymptotic behavior of the other one
ub ∈ 
+

b of problem (1.1) as b ↘ 0. Namely, we have the following theorem.

Theorem 1.2 Assume that {bn} is a sequence satisfying bn ↘ 0 as n → ∞. Then there
exists a subsequence, still denoted by {bn}, such that

(i) ‖ũbn‖ → ∞ as n → ∞.
(ii) ubn → u0 in H as n → ∞, where u0 is a positive solution of the problem

⎧⎨
⎩–a�u = λ|u|q–2u, x ∈ �,

u = 0, x ∈ ∂�.
(1.5)

Remark 1.3 Compared with [3, 7], we adapt a new method to show the existence and
multiplicity of positive solutions to problem (1.1). In particular, we obtain the blow-up and
the asymptotic behavior of these solutions. As far as we know, such phenomena about the
solutions to (1.1) are first observed, which reveals some relationship between the nonlocal
problem (1.1) and the classical semilinear problem (1.5).

The paper is organized as follows. In Sect. 2, we present some preliminaries. Sections 3
and 4 are devoted to the proofs of Theorems 1.1 and 1.2, respectively.
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2 Preliminaries
Lemma 2.1 Let λ ∈ (0, Tb). Then 
±

b �= ∅ and 
0
b = {0}.

Proof For any u ∈ H , u �= 0, we define

h(t) = at2–q‖u‖2 – bt4–q‖u‖4, ∀ t > 0.

It is easy to see that g(t) attains its maximum value at tmax = [ a(2–q)
b(4–q)‖u‖2 ]1/2 with

h(tmax) =
2(2 – q)
(4 – q)2

a
4–q

2

b
2–q

2
‖u‖q.

We note that, by Hölder’s inequality, for λ ∈ (0, Tb), there holds

λ

∫
�

|u|q dx ≤ λ|�| 2∗–q
2∗ S–q/2‖u‖q < h(tmax).

It follows that there are two and only two positive constants t+ = t+(u) and t– = t–(u) such
that

h
(
t+)

= λ

∫
�

|u|q dx = h
(
t–)

and h′(t+)
< 0 < h′(t–)

.

Equivalently, we obtain t+u ∈ 
–
b and t–u ∈ 
+

b .
Next, we prove that 
0

b = {0}. Arguing by contradiction, we assume that there exists
w ∈ 
0

b satisfying w �= 0. Then we have a(2 – q)‖w‖2 – b(4 – q)‖w‖4 = 0. This yields b‖w‖2 =
a(2–q)

4–q . For λ ∈ (0, Tb), it follows from w ∈ 
b and Hölder’s inequality that

0 = a‖w‖2 – b‖w‖4 – λ

∫
�

|w|q dx

≥ 2a
4 – q

‖w‖2 – λ|�| 2∗–q
2∗ S–q/2‖w‖q

= ‖w‖q
[

2(2 – q)
(4 – q)2

a
4–q

2

b
2–q

2

(
4 – q
2 – q

) q
2

– λ|�| 2∗–q
2∗ S

–q
2

]
> 0,

which makes no sense. This ends the proof. �

Lemma 2.2 Given u ∈ 
±
b , there exist ρu > 0 and a differential function gρu : Bρu (0) →R

+

defined for w ∈ H , w ∈ Bρu (0) satisfying

gρu (0) = 1, gρu (w)(u – w) ∈ 
±
b ,

and

〈
g ′(0),φ

〉
=

(2a – 4b‖u‖2)
∫
�

∇u∇φ dx – qλ
∫
�

|u|q–2uφ dx
a(2 – q)‖u‖2 – b(4 – q)‖u‖4 .
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Proof We only give the proof for the case u ∈ 
–
b . In a similar way, one can prove the other

case u ∈ 
+
b . Fix u ∈ 
–

b and define F : R+ × H →R by

F(t, w) = at‖u – w‖2 – bt3‖u – w‖4 – λtq–1
∫

�

|u – w|q dx.

By u ∈ 
–
b ⊂ 
b, we easily see that F(1, 0) = 0 and

Ft(1, 0) = a(2 – q)‖u‖2 – b(4 – q)‖u‖4 < 0.

Then, we are able to use the implicit function theorem for F at the point (1, 0) and get
ρ > 0 and a differential functional g = g(w) > 0 defined for w ∈ H , ‖w‖ < ρ such that

g(0) = 1, g(w)(u – w) ∈ 
b, ∀w ∈ H ,‖w‖ < ρ.

Thanks to the continuity of g , we can take ρ > 0 possibly smaller (ρ < ρ) such that, for any
w ∈ H , ‖w‖ < ρ , there holds

g(w)(u – w) ∈ 
–
b .

Moreover, for any φ ∈ H , r > 0, it follows from

F(1, 0 + rφ) – F(1, 0)

= a‖u – rφ‖2 – b‖u – rφ‖4 – λ

∫
�

|u – rφ|q dx – a‖u‖2 + b‖u‖4 + λ

∫
�

|u|p dx

= –a
∫

�

(
2r∇u∇φ – r2|∇φ|2)dx – λ

∫
�

(|u – rφ|q – |u|q)dx

+ b
[

2
∫

�

|∇u|2 dx
∫

�

(
2r∇u∇φ – r2|∇φ|2)dx

–
(∫

�

(
2r∇u∇φ – r2|∇φ|2)dx

)2]

that

〈Fw,φ〉|t=1,w=0

= lim
r→0

F(1, 0 + rφ) – F(1, 0)
r

= –
(
2a – 4b‖u‖2)∫

�

∇u∇φ dx + qλ

∫
�

|u|p–2uφ dx.

Consequently, we derive

〈
g ′(0),φ

〉
= –

〈Fw,φ〉
Ft

|t=1,w=0 =
(2a – 4b‖u‖2)

∫
�

∇u∇φ dx – qλ
∫
�

|u|q–2uφ dx
a(2 – q)‖u‖2 – b(4 – q)‖u‖4 .

This completes the proof. �
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Lemma 2.3 If λ ∈ (0, Tb), then we have
(i) the functional Ib is coercive and bounded from below on 
b;
(ii) inf
+

b ∪
0
b

Ib = inf
+
b

Ib ∈ (–∞, 0).

Proof (i) For u ∈ 
b, by Hölder’s inequality, we have

Ib(u) = Ib(u) –
1
4
〈
I ′

b(u), u
〉

=
a
4
‖u‖2 – λ

(
1
q

–
1
4

)∫
�

|u|q dx

≥ a
4
‖u‖2 – λ

(
1
q

–
1
4

)
|�| 2∗–q

2∗ S–q/2‖u‖q,

and the conclusion (i) follows.
(ii) For u ∈ 
+

b , there holds

Ib(u) = Ib(u) –
1
q
〈
I ′

b(u), u
〉

= a
(

1
2

–
1
q

)
‖u‖2 – b

(
1
4

–
1
q

)
‖u‖4

<
–a(2 – q)‖u‖2 + b(4 – q)‖u‖4

4q
< 0.

This together with Lemma 2.1 gives that inf
+
b ∪
0

b
Ib = inf
+

b
Ib < 0. Moreover, from (i) we

infer that inf
+
b ∪
0

b
Ib �= –∞. Therefore, inf
+

b ∪
0
b

I ∈ (–∞, 0). �

Lemma 2.4 For all λ > 0, Ib satisfies the (PS)c condition at any level c < a2

4b .

Proof The proof is similar to that of [16, Lemma 2]. We omit the details. �

3 Proof of Theorem 1.1
Lemma 3.1 Assume that λ ∈ (0, Tb), then problem (1.1) has a positive solution ub with
ub ∈ 
+

b .

Proof It is easily verified that the sets 
+
b ∪ 
0

b and 
–
b are closed. Applying the Ekeland

variational principle, we can derive a minimizing sequence {un} ⊂ 
+
b ∪
0

b satisfying that

lim
n→∞ Ib(un) = inf


+
b ∪
0

b

Ib < 0 (3.1)

and

Ib(z) ≥ Ib(un) –
1
n

‖z – un‖ for all z ∈ 
+
b ∪ 
0

b. (3.2)

Noting that Ib(|u|) = Ib(u), we may suppose that un ≥ 0 in �. By Lemma 2.3, {un} is
bounded in H , and so we can assume

un ⇀ ub in H ,
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un → ub in Ls(�), 2 ≤ s < 2∗,

un → ub a.e. in �.

In what follows we prove that ub is a positive solution to (1.1). The proof will be divided
into four steps.

textbfStep 1: ub �= 0.
By contradiction, we suppose that ub = 0. Since un ∈ 
+

b ∪ 
0
b, we see that, for n large,

a‖un‖2 >
4 – q
2 – q

b‖un‖4.

As a consequence, we derive

Ib(un) =
1
2

a‖un‖2 –
1
4

b‖un‖4 + on(1) ≥
(

4 – q
2(2 – q)

–
1
4

)
b‖un‖4 + on(1) > 0,

which is a contradiction to (3.1). Thus, ub �= 0.
textbfStep 2: There exists a constant C1 > 0 such that

2a‖un‖2 – λ(4 – q)
∫

�

|un|q dx < –C1. (3.3)

To prove that, it suffices to verify

2a lim inf
n→∞ ‖un‖2 < λ(4 – q)

∫
�

|ub|q dx.

By un ∈ 
+
b ∪ 
0

b,

2a lim inf
n→∞ ‖un‖2 ≤ λ(4 – q)

∫
�

|ub|q dx.

Suppose to the contrary that

2a lim inf
n→∞ ‖un‖2 = λ(4 – q)

∫
�

|ub|q dx.

Then we can assume ‖un‖2 → A > 0 as n → ∞, where A satisfies

λ

∫
�

|ub|q dx =
2aA
4 – q

.

Combining this with {un} ⊂ 
b, we have

0 = aA – bA2 –
2aA
4 – q

.

It follows that

A =
a(2 – q)
b(4 – q)

,
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which leads to a contradiction

0 <
2(2 – q)
(4 – q)2

a
4–q

2

b
2–q

2
‖un‖q – λ

∫
�

|un|q dx

→ 2(2 – q)
(4 – q)2

a
4–q

2

b
2–q

2

[
a(2 – q)
b(4 – q)

]q/2

–
2a

4 – q
a(2 – q)
b(4 – q)

=
2a2(2 – q)
b(4 – q)2

[(
2 – q
4 – q

)q/2

– 1
]

< 0

when λ ∈ (0, Tb). Thus, (3.3) holds.
textbfStep 3: I ′

b(un) → 0 in H–1.
Let 0 < ρ < ρn ≡ ρun , gn ≡ gun , where ρun and gun are given as in Lemma 2.2 with u = un.

Let wρ = ρu with ‖u‖ = 1. Fix n and set zρ = gn(wρ)(un – wρ). By zρ ∈ 
+
b , we have from

(3.2) that

Ib(zρ) – Ib(un) ≥ –
1
n

‖zρ – un‖.

Then, by the mean value theorem,

〈
I ′

b(un), zρ – un
〉
+ o

(‖zρ – un‖
) ≥ –

1
n

‖zρ – un‖.

Hence, we derive

〈
I ′

b(un), –wρ +
(
gn(wρ) – 1

)
(un – wρ)

〉 ≥ –
1
n

‖zρ – un‖ + o
(‖zρ – un‖

)
,

and thus,

–ρ
〈
I ′

b(un), u
〉
+

(
gn(wρ) – 1

)〈
I ′

b(un), un – wρ

〉 ≥ –
1
n

‖zρ – un‖ + o
(‖zρ – un‖

)
,

from which it follows that

〈
I ′

b(un), u
〉 ≤ 1

n
‖zρ – un‖

ρ
+

o(‖zρ – un‖)
ρ

+
gn(wρ) – 1

ρ

〈
I ′

b(un), un – wρ

〉
. (3.4)

By Step 2, Lemma 2.2, and the boundedness of {un}, one sees that

‖zρ – un‖ =
∥∥(

gn(wρ) – 1
)
(un – wρ) – wρ

∥∥ ≤ ∣∣gn(wρ) – 1
∣∣C2 + ρ

and

lim
ρ→0

|gn(wρ) – 1|
ρ

=
〈
g ′

n(0), u
〉 ≤ ∥∥g ′

n(0)
∥∥ ≤ C3.

Therefore, for fixed n, we deduce by taking ρ → 0 in (3.4) that

〈
I ′

b(un), u
〉 ≤ C

n
,

which provides that I ′
b(un) → 0 as n → ∞.
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textbfStep 4: ub is a positive solution of problem (1.1) and ub ∈ 
+
b .

It follows from Step 3, Lemmas 2.3 and 2.4 that, along a subsequence, un → ub in H
with Ib(ub) < 0 and I ′

b(ub) = 0. Hence, ub ≥ 0 is a weak solution to problem (1.1) satisfying
ub ∈ 
+

b . The standard elliptic regularity argument and the strong maximum principle
imply that ub is positive. Thus we complete the proof of Lemma 3.1. �

Lemma 3.2 Assume that λ ∈ (0, Tb), then problem (1.1) has a positive solution ũb with
ũb ∈ 
–

b .

Proof Similar to the proof of Lemma 3.1, one can construct a bounded and nonnegative
sequence {ũn} ⊂ 
–

b satisfying that

(i) lim
n→∞ Ib(ũn) = inf


–
b

Ib,

(ii) Ib(z) ≥ Ib(ũn) –
1
n

‖z – un‖, for all z ∈ 
–
b ,

(iii) ũn ⇀ ũb in H ,

(iv) ũn → ũb in Ls(�), 2 ≤ s < 2∗,

(v) ũn → ũb a.e. in �.

Without loss of generality, we may suppose that 0 ∈ �. Take a cut-off function ϕ(x) ∈
C∞

0 (�) satisfying 0 ≤ ϕ ≤ 1 in � and ϕ(x) ≡ 1 near zero. Define

vε(x) = ϕ(x)
(N(N – 2))(N–2)/4ε(N–2)/2

(ε2 + |x|2)1/2 .

It is known that (see [2])

‖vε‖2 = SN/2 + O
(
εN–2).

Firstly, we prove the following upper bound for inf
–
b

Ib:

inf

–

b
I–

b ≤ sup
t>0

Ib(ub + tvε) <
a2

4b
, (3.5)

where ub is the first positive solution obtained in the previous subsection. By ub ∈ 
+
b and

(1.4), we easily see that a – b‖ub‖2 > 0. Since ub is a positive solution of (1.1), we also have

0 =
〈
I ′

b(ub), tvε

〉
= t

(
a – b‖ub‖2)∫

�

∇ub∇vε dx – tλ
∫

�

uq–1
b vε dx, (3.6)

from which it follows that

∫
�

∇ub∇vε dx =
λ

∫
�

uq–1
b vε dx

a – b‖ub‖2 > 0. (3.7)

To proceed, set wε = ub + Rvε with R > 1. By (3.7), we have

‖wε‖2 = ‖ub‖2 + 2R
∫

�

∇ub∇vε dx + R2‖vε‖2 ≥ ‖ub‖2 + R2S3/2 + O(ε). (3.8)
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Let h(t) be defined as in Lemma 2.1. As can be seen from the proof of Lemma 2.1, we have
that h(tε) = λ

∫
�

| wε

‖wε‖ |q dx and h′(tε) < 0, where tε = t+( wε

‖wε‖ ). From the structure of h and∫
�

| wε

‖wε‖ |q dx > 0, it follows that tε is uniformly bounded by a suitable positive constant C1,
∀R ≥ 1 and ∀ε > 0.

On the other hand, we can infer from (3.8) that there exists ε1 > 0 such that

‖wε‖2 ≥ ‖ub‖2 +
1
2

R2S3/2, ∀ε ∈ (0, ε1).

Thus, we can find R1 ≥ 1 such that ‖wε‖ > C1, ∀R ≥ R1, and ∀ε ∈ (0, ε1).
Let

E1 =
{

u : u = 0 or ‖u‖ < t+
(

u
‖u‖

)}
and E2 =

{
u : ‖u‖ > t+

(
u

‖u‖
)}

.

Note that H – 
–
b = E1 ∪ E2 and 
+

b ⊂ E1. Since ub ∈ 
+
b , by the continuity of t+(u), one

sees that ub + tR1vε for t ∈ (0, 1) must intersect 
–
b , and consequently

inf

–

b
Ib ≤ sup

t>0
Ib(ub + tvε).

Hence (3.5) will follow if we show that

sup
t>0

Ib(ub + tvε) <
a2

4b
.

By the mean value theorem, we can get δ(x) ∈ [0, 1] satisfying

(
ub(x) + tvε(x)

)q – uq
b(x) = q

(
ub(x) + δ(x)tvε(x)

)q–1tvε(x) ≥ qtuq–1
b (x)vε(x) (3.9)

for any x ∈ �. By (3.6), (3.7), and (3.9),

Ib(ub + tvε)

=
a
2
‖ub‖2 + at

∫
�

∇ub∇vε dx +
a
2

t2‖vε‖2 –
b
4
‖ub‖4 – bt2

(∫
�

∇ub∇vε dx
)2

–
b
4

t4‖vε‖4 – bt‖ub‖2
∫

�

∇ub∇vε dx –
b
2

t2‖ub‖2‖vε‖2

– bt3‖vε‖2
∫

�

∇ub∇vε dx –
λ

q

∫
�

(ub + tvε)q dx

≤ Ib(ub) +
a
2

t2‖vε‖2 –
b
4

t4‖vε‖4 –
b
2

t2‖ub‖2‖vε‖2

–
λ

q

∫
�

[
(ub + tvε)q – uq

b – qtuq–1
b vε

]
dx

≤ a
2

t2‖vε‖2 –
b
4

t4‖vε‖4 –
b
2

t2‖ub‖2‖vε‖2,

which implies that there exists t1 > 0 small enough such that

sup
0<t<t1

Ib(ub + tvε) <
a2

4b
.



Shi and Qian Boundary Value Problems         (2021) 2021:55 Page 11 of 13

Thus, we only need to consider the case of t ≥ t1. Since

sup
t≥t1

Ib(ub + tvε) ≤ sup
t>0

{
a
2

t2‖vε‖2 –
b
4

t4‖vε‖4
}

–
b
2

t2
1‖ub‖2‖vε‖2

=
a2

4b
–

b
2

t2
1‖ub‖2‖vε‖2 <

a2

4b
,

we deduce that (3.5) holds.
Secondly, we claim that ũb �= 0. If, to the contrary, ũb = 0, from {ũn} ⊂ 
–

b it then follows
that

a‖ũn‖2 – b‖ũn‖4 + on(1) = 0.

As a consequence, we obtain ‖ũn‖2 → a
b as n → ∞. Furthermore,

inf

–

b
Ib = lim

n→∞ Ib(ũn) = lim
n→∞

[
a
2
‖ũn‖2 –

b
4
‖ũn‖4 – λ

∫
�

|ũn|q dx
]

=
a2

4b
,

which contradicts (3.5). Hence, the claim holds. This time we can proceed as in the proof
of Lemma 3.1 and deduce that ũb is a positive solution of problem (1.1) with ũb ∈ 
–

b . The
proof is complete. �

Proof of Theorem 1.1 This is an immediate consequence of (1.4), Lemmas 3.1 and 3.2. �

4 Proof of Theorem 1.2

Proof of Theorem 1.2 For any sequence {bn} with bn ↘ 0, we can use Theorem 1.1 to obtain
sequences {ubn} ⊂ 
+

bn
and {ũbn} ⊂ 
–

bn
corresponding to positive solutions to problem

(1.1) with b = bn when λ ∈ (0, Tbn ).
By ũbn ∈ 
–

bn
and (1.4), we see that

lim
n→∞‖ũbn‖2 ≥ lim

n→∞
a(2 – q)
bn(4 – q)

= ∞,

and conclusion (i) follows.
Next, we prove conclusion (ii) of Theorem 1.2. Note that

Ib(ubn ) = inf

+

bn ∪
0
bn

Ibn < 0

for all n ∈N. Then, by Hölder’s inequality, we have

0 ≥ Ibn (ubn ) –
1
4
〈
I ′

bn (ubn ), ubn

〉
≥

(
1
2

–
1
4

)
‖ubn‖2 – λ

(
1
q

–
1
4

)
|�| 2∗–q

2∗ S
–q
2 ‖ubn‖q.

Since 1 < q < 2, it follows that {ubn} is bounded in H . As a consequence, there exists a sub-
sequence of {bn} (still denoted by {bn}) such that ubn ⇀ u0 in H as n → ∞. Furthermore,
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we have that, for all v ∈ H ,

0 = lim
n→∞

〈
I ′

bn (ubn ), v
〉

= lim
n→∞

[(
a – bn‖ubn‖2)∫

�

∇ubn∇v dx – λ

∫
�

uq–1
bn

v dx
]

= a
∫

�

∇u0∇v dx – λ

∫
�

uq–1
0 v dx,

which implies that u0 is a positive solution to problem (1.5). To complete the proof, we
only need to show that ubn → u0 in H . This follows easily from

a‖ubn – u0‖2

=
〈
I ′

bn (ubn ) – I ′
0(u0), ubn – u0

〉
+ bn

∫
�

|∇ubn |2 dx
∫

�

∇ubn∇(ubn – u0) dx

+ λ

∫
�

(
uq–1

bn
– uq–1

0
)
(ubn – u0) dx

→ 0,

as n → ∞. Theorem 1.2 is thus proved. �
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