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Abstract
A diffusive phytoplankton–zooplankton model with nonlinear harvesting is
considered in this paper. Firstly, using the harvesting as the parameter, we get the
existence and stability of the positive steady state, and also investigate the existence
of spatially homogeneous and inhomogeneous periodic solutions. Then, by applying
the normal form theory and center manifold theorem, we give the stability and
direction of Hopf bifurcation from the positive steady state. In addition, we also prove
the existence of the Bogdanov–Takens bifurcation. These results reveal that the
harvesting and diffusion really affect the spatiotemporal complexity of the system.
Finally, numerical simulations are also given to support our theoretical analysis.
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1 Introduction
In marine ecosystems, the plankton consist of two species, phytoplankton and zooplank-
ton, which are the basis of the aquatic food chain [1]. Plankton is very important to the
marine ecosystems, and the accumulation of plankton can cause “red tide” [2]. It is one
of the most serious environmental problems faced by the whole world. A red tide is badly
endangering the health of marine and human life.

In order to better understand plankton and explain the cause of “red tide”, the dynam-
ics of plankton systems have been studied by a number of authors [3–7]. The results of
studies suggested that plankton systems could exhibit complex dynamic behaviors, such
as Hopf bifurcation, global Hopf-bifurcation, Hopf-transcritical bifurcation, and so on.
Other references [8–11] discussed the persistence, positivity, boundedness, and chaos of
phytoplankton–zooplankton models. Most of these models were governed by ordinary or
delay differential equations.

The level of plankton species changes not only in time but also in space. Hence, inter-
action and spatial processes of phytoplankton and zooplankton should be taken into ac-
count in mathematical models of plankton population dynamic systems [12–14]. Conse-
quently, the construction of phytoplankton and zooplankton (prey and predator) models
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was commonly used by reaction–diffusion systems. According to a widely accepted ap-
proach [15–18], the functioning of phytoplankton and zooplankton (prey and predator)
can be described by the following reaction–diffusion system:

⎧
⎨

⎩

∂P(X,T)
∂T = D1�P + f (P, Z) – g(P, Z),

∂Z(X,T)
∂T = D2�Z + kg(P, Z) – dZ,

(1.1)

where
(1) P and Z describe the densities of phytoplankton and zooplankton (prey and

predator) at moment T and position X , respectively;
(2) D1 and D2 are diffusivities;
(3) f (P, Z) is the local growth and natural mortality of the prey, g(P, Z) describes the

functional response for the grazing of phytoplankton by zooplankton;
(4) k is the ratio of biomass conversion. The parameter d is the mortality rate of the

predator.
The choice of the functional response f (P, Z) and g(P, Z) in (1.1) can pick various com-

binations, which depend on the type of the prey and predator population. Based on the
results of field and laboratory observations for plankton systems [19], we assume that the
growth of the prey is logistic and g(P, Z) takes the Holling type II functional response
[20, 21]. According to the above facts, the model system (1.1) can be expressed in the
following form:

⎧
⎨

⎩

∂P(X,T)
∂T = D1�P + rP(1 – P

K ) – a1PZ
n+P ,

∂Z(X,T)
∂T = D2�Z + a2PZ

n+P – dZ,
(1.2)

where a1 describes the maximum predation rate, n is the self-saturation prey density.
For system (1.2), a lot of results have been obtained, such as local stability, Hopf bifur-

cation, chaotic attractor, and Turing singularity [20, 22–24].
Furthermore, some phytoplankton and zooplankton can be harvested for food. Hence,

the stocks of edible plankton play an important role for fishery management. For sys-
tem (1.2), considering constant harvesting, Chang et al. [25] discussed the existence and
stability of Hopf bifurcation from the positive constant steady state and derived the direc-
tion and stability of bifurcating periodic solutions, and also considered an optimal control
problem.

In several types of harvesting, Michaelis–Menten type harvesting is more realistic from
biological and economic points of view [26]. In this paper, we investigate the following
model with Michaelis–Menten type prey harvesting:

⎧
⎨

⎩

∂P(X,T)
∂T = D1�P + rP(1 – P

K ) – a1PZ
n+P – qEP

m1E+m2P ,
∂Z(X,T)

∂T = D2�Z + a2PZ
n+P – dZ,

(1.3)

where E measures the harvest effort, q represents the catchability, and m1 and m2 are
appropriate constants.

For simplicity, dimensionless variables are introduced. Let

u =
P
K

, v =
a1Z
K

, t = tT , x =
√

lX,
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then we can obtain the following reaction–diffusion phytoplankton–zooplankton model:

⎧
⎨

⎩

∂u(x,t)
∂t = d1�u + u(1 – u) – βuv

α+u – hu
c+u ,

∂v(x,t)
∂t = d2�v + β1uv

α+u – mv,
(1.4)

where

β =
1
r

, c =
m1E
m2K

, m =
d
r

, α =
n
K

, β1 =
a2

r
,

h =
qE

m2rK
, d1 =

D1

r
, d2 =

D2

r
.

In this paper, we consider the following homogeneous reaction–diffusion phyto-
plankton–zooplankton system with homogeneous Neumann boundary condition:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u
∂t = d1�u + u(1 – u) – βuv

α+u – hu
c+u , x ∈ �, t > 0,

∂v
∂t = d2�v + β1uv

α+u – mv, x ∈ �, t > 0,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ �,

(1.5)

where � is bounded in R with smooth boundary ∂�, � denotes the Laplacian operator.
The organization of the rest of the paper is as follows: In Sect. 2, we obtain global exis-

tence and boundedness of system (1.5) and demonstrate the asymptotic behavior of system
(1.5). In Sect. 3, we give bifurcation analysis of system (1.5) under different parameters, in-
cluding Hopf bifurcation, Bogdanov–Takens bifurcation. In Sect. 4, some numerical sim-
ulations are included to test and verify our theoretical analysis. Finally, we end the paper
with a brief conclusion in Sect. 5.

2 Dynamical behavior
2.1 Global existence and boundedness
In this subsection, we prove the global existence of solutions of (1.5) and establish a priori
bound of the solution.

Theorem 2.1
(a) If u0(x) ≥ 0, v0(x) ≥ 0 in �, then system (1.5) has a unique, nonnegative, globally

defined, bounded solution (u, v) for all (x, t) ∈ � ×R+.
(b) Any nonnegative solution (u(x, t), v(x, t)) of system (1.5) satisfies

lim sup
t→+∞

u(x, t) ≤ 1, lim sup
t→+∞

∫

�

v(x, t) dx ≤
(

1 +
c2 + 4(c – h)

4cm

)

|�|.

Proof (a) Define

�(u, v) = u(1 – u) –
βuv
α + u

–
hu

c + u
, �(u, v) =

β1uv
α + u

– mv,

then �v ≤ 0 and �u ≥ 0 in R2
+ = {u ≥ 0, v ≥ 0} and (1.5) is a mixed quasi-monotone system

(see [27, 28]). Let (u(x, t), v(x, t)) = (0, 0), (u(x, t), v(x, t)) = (u∗(t), v∗(t)), where (u∗(t), v∗(t))
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is the unique solution of the following system:

⎧
⎪⎪⎨

⎪⎪⎩

du
dt = u(1 – u) – hu

c+u ,
dv
dt = β1uv

α+u – mv,

u(0) = u∗, v(0) = v∗,

(2.1)

where u∗ = supx∈�̄ u(x, 0), v∗ = supx∈�̄ v(x, 0). Since u(1 – u) – hu
c+u < 0 for u ≥ 1, then u(t)

exists globally, and there exists sufficiently small ε > 0 such that u(t) < 1 + ε for t > T ; this
implies that lim supt→+∞ u(x, t) ≤ 1 for (x, t) ∈ �̄× [T ,∞). On the basis of Definition 5.3.1
in [28], we claim that (u(x, t), v(x, t)) = (0, 0) and (u(x, t), v(x, t)) = (u∗(t), v∗(t)) are the lower-
solution and upper-solution to (1.5), respectively, since

∂u
∂t

– �u(x, t) – �
(
u(x, t), v(x, t)

)

= 0 ≥ 0 =
∂u
∂t

– �u(x, t) – �
(
u(x, t), v(x, t)

)

and

∂v
∂t

– �v(x, t) – �
(
u(x, t), v(x, t)

)

=
β1uv
α + u

– mv = 0 ≥ 0 =
∂v
∂t

– �v(x, t) – �
(
u(x, t), v(x, t)

)
,

then 0 ≤ u0(x) ≤ u∗ and 0 ≤ v0(x) ≤ v∗, and they satisfy the boundary conditions. There-
fore, by using Theorem 5.3.3 in [28], system (1.5) has a unique globally defined solution
(u(x, t), v(x, t)) which satisfies

0 ≤ u(x, t) ≤ u∗(t), 0 ≤ v(x, t) ≤ v∗(t).

In addition, by the strong maximum principle, we know that u(x, t) > 0, v(x, t) > 0 for t > 0
and x ∈ �̄. This completes the proof of (a).

(b) Let
∫

�
u(x, t) dx = U(t),

∫

�
v(x, t) dx = V (t), then

dU
dt

=
∫

�

ut dx =
∫

�

d1�u dx +
∫

�

[

u(1 – u) –
βuv
α + u

–
hu

c + u

]

dx, (2.2)

dV
dt

=
∫

�

vt dx =
∫

�

d2�u dx – mV +
∫

�

β1uv
α + u

dx. (2.3)

By using the Neumann boundary condition and adding (2.2) and (2.3), we can obtain

(U + V )t = –mV +
∫

�

[

u(1 – u) –
(β – β1)uv

α + u
–

hu
c + u

]

dx

≤ –m(U + V ) + mU +
∫

�

u
[

1 – u –
h

c + u

]

dx

= –m(U + V ) + mU +
∫

�

u
[

1 –
(u + c

2 )2

c + u
+

c2

4 – h
c + u

]

dx

≤ –m(U + V ) +
[

m +
(

1 +
c2 – 4h

4c

)]

U .
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Since lim supt→+∞ u(x, t) ≤ 1, we can obtain lim supt→+∞ U(x, t) ≤ |�|. Thus, for small ε >
0, there exists T1 > 0 such that

(U + V )t ≤ –m(U + V ) +
[

m +
(

1 +
c2 – 4h

4c

)]

(1 + ε)|�|, t > T1. (2.4)

From (2.4), we can obtain

∫

�

v(x, t) dx = V (t) < U(t) + V (t) ≤ 1 + ε

m

[

m +
(

1 +
c2 – 4h

4c

)]

|�|, t > T2. (2.5)

Hence, we get

lim sup
t→+∞

∫

�

v(x, t) dx ≤
(

1 +
c2 + 4(c – h)

4cm

)

|�|,

which completes the proof of (b). �

2.2 Existence and stability of the positive constant steady state solution
The steady state solutions of (1.5) satisfy:

⎧
⎪⎪⎨

⎪⎪⎩

–d1�u = u(1 – u) – βuv
α+u – hu

c+u , x ∈ �,

–d2�v = β1uv
α+u – mv, x ∈ �,

∂u
∂n = ∂v

∂n = 0, x ∈ ∂�.

(2.6)

Then (1.5) has the unique positive constant solution (σ , vσ ) by mathematical calculation,
where

σ =
αm

β1 – m
, vσ =

(α + σ )((c + σ )(1 – σ ) – h)
β(c + σ )

.

The positive constant solution exists if and only if

(C1) β1 > m, 0 < h < h∗ = (c + σ )(1 – σ ).

Further in this section, we fix α, β , β1, c, m, σ and take h as the bifurcation parameter. We
have discussed the existence and stability of the positive constant steady state solutions,
and the bifurcating periodic solutions were affected by the variance of h. The local stability
of the positive constant steady state solution can be summarized as follows.

Theorem 2.2 Suppose α > 0, β1 > 0, m > 0, c > 0, d1 > 0, d2 > 0,
(a) if c > 1,

(1) when max{c, β1–m
β1+m } < α < β1–m

m , β1 > 2m, then (σ , vσ ) is locally asymptotically
stable for 0 < h < h̄ and is unstable for h̄ < h < h∗;

(2) when 0 < α < min{c, β1–m
β1+m }, β1 > 2m, then (σ , vσ ) is locally asymptotically stable

for h̄ < h < h∗ and is unstable for 0 < h < h̄.
(b) if 0 < c < 1,

(1) when max{c, β1–m
β1+m , (1–c)(β1–m)

2m } < α < β1–m
m , β1 > 2m, then (σ , vσ ) is locally

asymptotically stable for 0 < h < h̄ and is unstable for h̄ < h < h∗;
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(2) when (1–c)(β1–m)
2m < α < min{c, β1–m

β1+m }, β1 > 2m, then (σ , vσ ) is locally asymptotically
stable for h̄ < h < h∗ and is unstable for 0 < h < h̄;

(3) when max{c, β1–m
β1+m } < α < (1–c)(β1–m)

2m , m < β1 < 2m, then (σ , vσ ) is locally
asymptotically stable for 0 < h < h̄ and is unstable for h̄ < h < h∗;

(4) when 0 < α < min{c, β1–m
β1+m , (1–c)(β1–m)

2m }, m < β1 < 2m, then (σ , vσ ) is locally
asymptotically stable for h̄ < h < h∗ and is unstable for 0 < h < h̄,

where h̄ is given by

h̄ =
(2σ + α – 1)(c + σ )2

α – c
. (2.7)

Proof The linearized system of (1.5) at a positive constant solution (σ , vσ ) has the form

(
φt

ψt

)

= L

(
φ

ψ

)

:= D

(
	φ

	ψ

)

+ J(σ ,vσ )

(
φ

ψ

)

with the domain X = {(φ,ψ) ∈ H2(�) × H2(�) : ∂φ

∂n = ∂ψ

∂n = 0}, where

D :=

(
d1 0
0 d2

)

, J(σ ,vσ ) :=

(
A∗(σ , vσ ) B∗(σ , vσ )
C∗(σ , vσ ) D∗(σ , vσ )

)

and

A∗(σ , vσ ) = 1 – 2σ –
βαvσ

(α + σ )2 –
hc

(c + σ )2 ,

B∗(σ , vσ ) = –
βσ

α + σ
,

C∗(σ , vσ ) =
β1αvσ

(α + σ )2 ,

D∗(σ , vσ ) =
β1σ

α + σ
– m = 0.

Recall that –	 under the Neumann boundary condition has eigenvalues μ0 = 0, μk = k2,
k = 1, 2, 3, . . . . λ is an eigenvalue of L if and only if λ is an eigenvalue of the matrix Jk =
–μkD + J(σ ,vσ ) for some k ≥ 0. The characteristic equation of L is

λ2 – Tkλ + Dk = 0, k = 0, 1, 2, . . . , (2.8)

where

Tk := tr Jk = –k2(d1 + d2) + A∗(σ , vσ ),

Dk := det Jk = k4d1d2 – A∗(σ , vσ )d2k2 – B∗(σ , vσ )C∗(σ , vσ ),
(2.9)

and we notice that h̄ ∈ (0, h∗) defined in (2.7) is the root of A∗(σ , vσ ) = 0.
By direct calculations, if α < β1–m

m , we observe that h∗ > 0. When max{c, β1–m
β1+m } < α or α <

min{c, β1–m
β1+m }, then h̄ > 0. And if c > 1, it is clear that h̄ < h∗ for β1 > 2m. If 0 < c < 1, we can

get h̄ < h∗ for β1 > 2m, α > (1–c)(β1–m)
2m or β1 < 2m, α < (1–c)(β1–m)

2m . Next, we note that dA∗(h)
dh =
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(α–c)σ
(c+σ )2(α+σ ) . Obviously, A∗(h) is monotone increasing for α > c and monotone decreasing
for α < c. Hence, according to the above analysis, when c > 1, max{c, β1–m

β1+m } < α < β1–m
m ,

β1 > 2m or max{c, β1–m
β1+m , (1–c)(β1–m)

2m } < α < β1–m
m , β1 > 2m or max{c, β1–m

β1+m } < α < (1–c)(β1–m)
2m ,

m < β1 < 2m, we can obtain, for 0 < h < h̄, k ≥ 0,

Tk := tr Jk = –k2(d1 + d2) + A∗(σ , vσ ) < 0,

Dk := det Jk = k4d1d2 – A∗(σ , vσ )d2k2 – B∗(σ , vσ )C∗(σ , vσ ) > 0.

Hence (σ , vσ ) is a locally asymptotically stable steady state solution of (1.5). When h̄ < h <
h∗, then A∗(σ , vσ ) > 0. For k = 0,

Tk := tr Jk = A∗(σ , vσ ) > 0,

which implies that (2.8) has at least one root with positive real part. Hence (σ , vσ ) is an
unstable steady state solution of (1.5). This completes a(1), b(1), b(3).

The proofs of a(2), b(2), b(4) are similar to the above, thus they are omitted here. The
proof is completed. �

Remark 2.3 If min{c, β1–m
β1+m } < α < max{c, β1–m

β1+m }, then h̄ < 0. Based on the biological signifi-
cance, we abandon this case.

3 Bifurcation analysis in a diffusive system
3.1 Bifurcation analysis using the harvesting h as the parameter
Next, we study Hopf bifurcations from the constant steady state of (1.5) with the Neumann
boundary condition on the spatial domain � = (0,π ).

In this subsection, we show the existence of the spatial homogeneous and nonhomoge-
neous periodic solutions of system (1.5), and we also obtain the conditions for direction
and stability of the Hopf bifurcation. As is well known, the eigenvalue problem

–ψ ′′ = μψ , x ∈ (0,π ), ψ ′(0) = ψ ′(π ) = 0

has eigenvalues μn = k2 (k = 0, 1, 2, . . .) corresponding to the eigenfunction ψn(x) = cos kx.
From the proof of Theorem 2.2, the eigenvalues λ(k) of Jk (k ≥ 0) are given by

λk =
Tk ±

√

T2
k – 4Dk

2
, k = 0, 1, 2, . . . .

In the following, we will identify the Hopf bifurcation points hH that satisfy the necessary
and sufficient condition (H1) in [20]:

(H1) There exists k ∈N0 = N∪ {0} such that

Tk
(
hH)

= 0, Dk
(
hH)

> 0 and

Tj
(
hH) �= 0, Dj

(
hH) �= 0 for j �= k,

(3.1)

and the following transversality condition holds:

α′(hH) �= 0. (3.2)
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Since

T0
(
hH

0
)

= 0, and Tk
(
hH

0
)

= –k2(d1 + d2) < 0 for any k ≥ 1

and

Dk
(
hH

0
)

= d1d2k4 – B∗C∗ > 0

for any k ∈N0 = N∪ {0}. Hence h = h̄ = hH
0 is a Hopf bifurcation point which corresponds

to the spatially homogeneous periodic orbits.
And then we discuss the spatially nonhomogeneous Hopf bifurcation for k ≥ 1 (H1). In

the following, we assume that the condition of Theorem 2.2 (a(1), b(1), b(3)) is satisfied.
The case of the conditions of Theorem 2.2 (a(2), b(2), b(4)) is similar, thus they are omitted
here. From Tk = 0, we have

h(k) = hH
0 +

k2(d1 + d2)(α + σ )(c + σ )2

σ (α – c)
,

then

h′(k) =
2k(d1 + d2)(α + σ )(c + σ )2

σ (α – c)
> 0.

Obviously, h(k) is increasing for all k > 0 if a > c.
For j ≥ 1, define

hH
j = hH

0 +
j2(d1 + d2)(α + σ )(c + σ )2

σ (α – c)
, (3.3)

then Tj(hH
j ) = 0 and Ti(hH

j ) �= 0 for any i �= j. These hH
j satisfy the following inequality:

0 < hH
0 < hH

1 < · · · < hH
m < h∗,

so that hH
0 = h̄ < hH

m < h∗, where m is the largest integer.
We next testify Di(hH

j ) �= 0 for all i ∈ N0. Since (A∗)′(h) = (α–c)σ
(c+σ )2(α+σ ) > 0, hence A∗(h) can

achieve a local maximum at hH
m. Let A∗(hH

m) = M∗ > 0, when i ≥ 1, then

Di(h) = d1d2i4 – d2A∗(h)i2 – BC

≥ –d2M∗i2 + d1d2i4 := g
(
i2).

Apparently, if

(C2) M∗ < d1

holds, then for all x ≥ 1, g(x) = –d2M∗x + d2d2x2 is positive.
Finally, we verify that the transversality condition holds:

α′(hH
j
)

=
(α – c)σ

2(c + σ )2(α + σ )
> 0.
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By applying the Hopf bifurcation theorem [20] and our analysis, we get the following re-
sults.

Theorem 3.1 Suppose that d1, d2,β ,β1,α, c, m > 0 and satisfy the conditions of Theo-
rem 2.2, (C1) and (C2). Then there exist m+1 points h satisfying 0 < hH

0 < hH
1 < · · · < hH

m < h∗

such that system (1.5) undergoes a Hopf bifurcation near h = hH
j (1 ≤ j ≤ m). In addition,

(a) the bifurcating periodic solutions are spatially homogeneous if they are bifurcated
from h = hH

0 . The direction of Hopf bifurcation is supercritical (subcritical), and the
bifurcating periodic solutions are asymptotically stable (unstable) if Re(c1(λH

0 )) < 0
(Re(c1(λH

0 )) > 0);
(b) the bifurcating periodic solutions are spatially nonhomogeneous if they are bifurcated

from h = hH
j (1 ≤ j ≤ m).

Proof Above we have already discussed the existence of Hopf bifurcation. In the following,
we will calculate the direction of Hopf bifurcation and the stability of spatially homoge-
neous periodic solutions by using the method in [20, 29]. Take

q :=

(
a0

b0

)

=

(
1

iω0/B∗

)

, and q∗ :=

(
a∗

0

b∗
0

)

=

(
1/2π

B∗i/2ω0π

)

, (3.4)

where ω0 =
√

–B∗C∗ (–B∗C∗ > 0). Define the inner product in XC by

〈U1, U2〉 =
∫ π

0
(ū1u2 + v̄1v2) dx,

where Ui = (ui, vi) ∈ XC (i = 1, 2).
Let f (u, v) = u(1 – u) – βuv

α+u – hu
c+u and g(u, v) = β1uv

α+u – mv, at a positive constant solution
(σ , vσ ), by calculation, we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

fuu = A20 = βαvσ

(α+σ )3 + hc
(c+σ )3 – 1, fuv = A11 = – βα

(α+σ )2 ,

fuuu = A30 = – βαvσ

(α+σ )4 – hc
(c+σ )4 , fuuv = A21 = βα

(α+σ )3 ,

guu = B20 = – β1αvσ

(α+σ )3 , guv = B11 = β1α

(α+σ )2 ,

guuu = B30 = β1αvσ

(α+σ )4 , guuv = B21 = – β1α

(α+σ )3 .

Then

c0 = 2A20 + 2A11b0, d0 = 2B20 + 2B11b0,

e0 = 2A20 + A11(b0 + b̄0), f0 = 2B20 + B11(b0 + b̄0),

g0 = 6A30 + 2A21(2b0 + b̄0), h0 = 6B30 + 2B21(2b0 + b̄0).

Then we get the following formulas by simple calculation:

g20 =
〈
q∗, (c0, d0)�

〉
= (A20 + B11) +

(
A11ω0

B∗ –
B20B∗

ω0

)

i,

g02 = ḡ20,
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g11 =
〈
q∗, (e0, f0)�

〉
= A20 –

B20B∗

ω0
i,

g21 =
〈
q∗, (g0, h0)�

〉
= (3A30 + B21) +

(
A21ω0

B∗ –
3B30B∗

ω0

)

i.

Therefore,

Re
(
c1

(
hH

0
))

= Re

{
i

2ω0

(

g20g11 – 2|g11|2 –
1
3
|g02|2

)

+
g21

2

}

=
A20B20B∗

ω2
0

+
B11B20B∗

2ω2
0

–
A20A11

2B∗ +
3A30 + B21

2
.

According to the results of [20, 29], we know that the Hopf bifurcation is supercritical
(subcritical) and the bifurcating periodic solutions are stable (unstable) when Re(c1(λH

0 )) <
0 (Re(c1(λH

0 )) > 0). In Sect. 4, we test and verify the direction of Hopf bifurcation and the
stability of the spatially homogeneous periodic solutions by numerical simulations. �

3.2 Bifurcation analysis with k as the parameter
In this section, we investigate bifurcation analysis arising at the positive constant steady-
state solution by using k as the parameter. Based on (2.8) and the conclusions in [20, 30–
32], we have the following results.

Theorem 3.2 Suppose d1, d2,β ,β1,α, c, m > 0, there exist k0, k1 ∈ N such that
(1) when k = 0, if h = hH

0 , Eq. (2.8) has a pair of purely imaginary roots, and all other
roots of Eq. (2.8) have negative real parts. Then system (1.5) undergoes a Hopf
bifurcation at h = hH

0 ;
(2) when k > 0,

(a) we denote k0 =
√

A∗
d1+d2

. If k4
0d2

2 + B∗C∗ < 0 and j > k0, Eq. (2.8) has a pair of
purely imaginary roots, and all other roots of Eq. (2.8) have negative real parts.
System (1.5) undergoes a Hopf bifurcation at k0;

(b) if k0 =
√

A∗
d1+d2

, and take the appropriate parameters such that k4
0d2

2 + B∗C∗ = 0,
j > k0, and d1 ≥ d2, Eq. (2.8) has a double zero root, and all other roots of
Eq. (2.8) have negative real parts. System (1.5) undergoes a Bogdanov–Takens
bifurcation at k0.

Proof (1) Based on (2.8), we know that there is k0 = 0 such that Tk0 = A∗, Dk0 = –B∗C∗ > 0.
According to the analysis of Sect. 3.1, we know that when h = hH

0 , then Tk0 = A∗ = 0. For
j �= k0, Tj(hH

0 ) = –j2(d1 + d2) < 0, Dj(hH
0 ) = d1d2j4 – B∗C∗ > 0, hence, when h = hH

0 , Eq. (2.8)
has a pair of purely imaginary roots, and all other roots of Eq. (2.8) have negative real parts.
System (1.5) undergoes a Hopf bifurcation at h = hH

0 .
(2) (a) There exists k0 > 0, when k2

0 = A∗
d1+d2

, k4
0d2

2 + B∗C∗ < 0, then Tk0 = 0, Dk0 > 0. For
j �= k0, when j > k0,

Tj = k2
0(d1 + d2) – j2(d1 + d2) < 0,

Dj = d1d2j4 – k2
0(d1 + d2)d2j2 – B∗C∗

> d1d2j4 – k2
0d1d2j2 – d2

2k2
0 j2 + d2

2k4
0

> d2
2k2

0
(
j2 – k2

0
)

> 0.
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Hence, Eq. (2.8) has a pair of purely imaginary roots, and all other roots of Eq. (2.8) have
negative real parts. Following [20, 31], system (1.5) undergoes a Hopf bifurcation at k0,
which completes the proof.

(b) There exists k0 > 0, when k2
0 = A∗

d1+d2
, k4

0d2
2 + B∗C∗ = 0, then Tk0 = 0, Dk0 = 0. For j �= k0,

when j > k0, d1 ≥ d2,

Tj = A – j2(d1 + d2)

= k2
0(d1 + d2) – j2(d1 + d2) < 0,

Dj = d1d2j4 – k2
0(d1 + d2)d2j2 – B∗C∗

= d1d2j4 – k2
0(d1 + d2)d2j2 + d2

2k4
0 .

We know that Dj2 = 0 has two roots j2 = k2
0 , j2 = k2

0 d2
d1

, since d1 ≥ d2, hence, when j > k0, then
Dj > 0. Hence Eq. (2.8) has a double zero root, and all other roots of Eq. (2.8) have negative
real parts. Following [30, 32], system (1.5) undergoes a Bogdanov–Takens bifurcation at
k0, which completes the proof. �

4 Numerical simulations
In this section, we illustrate several conclusions by numerical simulations with Matlab. In
model (1.5), we choose the following parameters:

d1 = 0.7, d2 = 0.3, α = 0.29,

β = 0.26, β1 = 0.91, m = 0.43, c = 0.78.

Then model (1.5) has a unique positive equilibrium (σ , vσ ) ≈ (0.2598, 1.1585). By direct
computation, we have h∗ = 0.7697, h̄ = 0.4201. By Theorem 2.2, we know that (σ , vσ ) is
locally asymptotically stable when h̄ < h < h∗ (shown in Fig. 1), the positive solution (σ , vσ )
is unstable for 0 < h < h̄. By Theorem 3.1, we know that when h crosses h̄ = hH

0 , the positive
solution (σ , vσ ) loses its stability and Hopf bifurcation occurs (see Fig. 2).

Figure 1 When the initial values u(x, 0) = 0.8, v(x, 0) = 0.3, h = 0.45, the coexistence equilibrium is locally
asymptotically stable
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Figure 2 When the initial values u(x, 0) = 0.25, v(x, 0) = 0.65, h = 0.2, a spatial homogeneous periodic solution
is stable

In model (1.5), we choose the following parameters:

d1 = 0.4, d2 = 0.3, α = 0.4,

β = 0.65, β1 = 0.6, m = 0.23, c = 0.58, h = 0.3.

Model (1.5) has a unique positive equilibrium (σ , vσ ) ≈ (0.2486, 0.3885). By direct com-
putation, we have h∗ = 0.6226, h̄ = 0.3918. By Theorem 3.2, we know that the diffusive
system can undergo the Bogdanov–Takens bifurcation, this indicates that diffusion plays
an important role in leading to complex dynamic behaviors. In this paper, the universal
unfolding of the system near the Bogdanov–Takens bifurcation point is still not obtained,
but we found that system (1.5) can exhibit some complex dynamic behaviors by numerical
simulations such as quasi-periodic solutions (shown in Fig. 3).

5 Conclusion
In this paper, we investigated the dynamics of a diffusive phytoplankton–zooplankton
model with nonlinear harvesting. By choosing different parameters, we obtained the pa-
rameter ranges of the existence of bifurcations. We have shown that the harvesting and
the diffusion have a combined effect on the dynamic behaviors of the system.

According to the analysis of the above, we know that if the harvesting h overruns h∗, then
zooplankton will die out. It means overfishing can break the coexistence of phytoplank-
ton and zooplankton. We have also shown that the system can undergo Hopf bifurcation,
Bogdanov–Takens bifurcation, when the parameters of the harvesting and diffusion cross
certain critical values. It turns out that, by adjusting the parameters of the harvesting and
diffusion, the planktonic ecological system can develop towards a healthy direction which
can avoid “red tide”. Furthermore, we also studied the stability of Hopf bifurcation by ap-
plying the normal form theory and the center manifold theorem.

According to Sect. 3, we know that the diffusive system can exhibit Bogdanov–Takens
bifurcation (see Theorem 3.2). Meanwhile, the system may have a quasi-periodic solution
near the Bogdanov–Takens bifurcation, which has been verified by some numerical simu-
lations (see Fig. 3). This indicates that diffusion and harvesting can increase the dynamic
complexity of system (1.5). The universal unfolding of system (1.5) near the Bogdanov–
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Figure 3 When the initial values u(x, 0) = 0.25, v(x, 0) = 0.68, spatial quasi-periodic solutions

Takens bifurcation is still not obtained. This is an issue that needs to be addressed in our
further study.
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