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1 Introduction
This note focuses on the regularity criteria for the following 3D nematic liquid crystal fluid
flow:

qu—vAu+u-Vu+Vr =-AV-(VdO Vd), (xt)eR> x (0,+00),

0d + (u- V)d =y(Ad + |Vd|*d), (x,£) € R3 x (0, +00), W
divae =0, (x,2) € R? x (0, +00), '
(ur d)|t=0 = (MO,dO)’ X € R3,

where u(x,t) is the unknown velocity field, d(x,£) : R® x (0,+00) — S?, the unit sphere
in R?, is the unknown (averaged) macroscopic/continuum molecule orientation of the
nematic liquid crystal flow and = is the scalar pressure. v, A, y are positive constants
that represent viscosity, the competition between kinetic energy and potential energy, and
the microscopic elastic relaxation time for the molecular orientation field. The notation
Vd © Vd denotes the 3 x 3 matrix whose (i, j) entry is given by 9;d - 9;d (1 <i,j < 3).

It is well-known that Ericksen and Leslie ([3-5, 8] established the hydrodynamic theory
of liquid crystals in 1960s. Lin [9] first introduced the above liquid crystal flow (1.1). Later
Lin and Liu [11] obtained the global existence theorem for a weak solution and the local
existence for the strong solution to the system (1.1).
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We first introduce the definition of Morrey spaces.

Definition 1.1 For 1 < p < g < 00, we call Mp_q(Rg) a Morrey space, if and only if

3_3 p P%
Vlig = sip R ([ o) dy) <+oo,
B(x,R)

x€R3,0<R<00
here B(x, R) denotes the ball in R® with center x and radius R.

In 2008, Fan and Guo [4] showed that, if u satisfies one of the following conditions:

ueL(0, T;Mp,(R?))  with % +S =Lp>3,p>q=>1,

Vu e L(0, T;M,,4(R%))  with % +§ =2,p> %,p >q>1,

then (u, d) is extended beyond ¢ = T Later Liu, Zhao and Cui [12] obtained the regularity
criterion to the system (1.1) under the assumption that d3u € LF(0, T; L*) with % + 2 <
1, > 3. Recently, Wei, Li and Yao [16] proved that, if the weak solution (x, d) satisfies

uz, Vd eLﬁ(O, T;L“(R3)), with % + o<+ &,a > —,

then (u, b) can be extended beyond ¢ = T Liu and Zhao [13] proved that the solution (i, d)
to (1.1) is smooth up to time T provided that

|| (u,Vd

)||L00(0,T;B;3,OO(R3)) = #o-

When d = 0, the system (1.1) becomes an incompressible Navier—Stokes equation. There
isalarge literature on the regularity criteria on the Navier—Stokes equation; see [1, 6,7, 15].

By traditional turbulence theory, viscous incompressible flows develop in such a way that
energy is transferred from large scales to neighboring smaller scales. Hence, it is important
to study regularity for the Navier—Stokes equation based on various wave-number band
parts of weak solutions is important since it reveals in a way the relationship between
regularity of weak solutions and turbulent flows. Cheskidov and Shvydkoy [2] proved that
a Leray—Hopf weak solution u to the Navier—Stokes equation is regular in (0, 77 if

I ut ”B;O{OO(RS) <Cv,

where ¥ is high frequency part of u with Fourier models |£| > k. Kim, Kwak and Yoo [5]
proved that, if sufficiently high frequency parts of a weak solution to the Navier—Stokes
equation on a torus belong to Serrin’s class, then the weak solution is regular. Very recently,
Ri [14] proved that a Leray—Hopf weak solution u to 3D Navier—Stokes equations is reg-
ular if the L>°(0, T; B;CI’OO(R?’))-norm of a suitable low frequency part of u is bounded by a
scaling invariant constant depending on the kinematic viscosity v and initial value #(. Mo-
tivated by [2, 5, 13] and [14], we will investigate the regularity criteria for the weak solution
(u, d) to the liquid crystal fluid flows (1.1) in the critical function space L(0, T; B3} . (R%))
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based on low and medium frequency parts, respectively. Before stating our result, we shall
present some symbols and notations.
Let

k 0
Uy = / upg ds, uk = / U ds,  Upg =k —up,0<h < k< oo. (1.2)
0 k

Here

1 N
U (&%) = —— / int,&)e™* do,
21)2 Jigi=k

and # denotes Fourier transform of . Our result is stated as follows.

Theorem 1.2 Let (1, d) be a weak solution to (1.1) with (ug, do) € H*(R®) x H*(R3), divyg =
0. Assume that, for 0 < T < 00, there exists § € (0, T) such that if (u,d) is regular in (0, T)
the inequalities

| e Vd/?)HLOO(T—a,T;Bgém) <G (1.3)
and
“ (Wisa i Vi) ” LOO(T—-8,T;B3L o)
< Colluol2 + 1Vdoll2) 7 (| Ve | 1o + | A o) (14)
hold. Then (u,d) is regular on (0, T, where k>0is defined by
k=Co(| Vg o + | AdE],2)’,
and the C;,i = 1,2,3, are absolute constants.

Remark 1.1 Theorem 1.2 can be regarded as the generalization of Theorem 1.1 in [13] and
Theorem 1.1 in [14].

The rest of this paper is organized as follows. Some useful facts are presented in Sect. 2.
The proof of Theorem 1.2 is given in Sect. 3.

2 Preliminaries and some basic facts
In order to define Besov spaces, we first introduce the Littlewood—Paley decomposition
theory. Let S(R”) be the Schwartz class of rapidly decreasing functions.

For given f € S(R"), its Fourier transform F(f) = f and its inverse Fourier transform
F7Yf) = f are given by

jer= [ eieas

and

1

S = )

/ ¢ () d,
Rn
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respectively. Let us choose two nonnegative radial functions x,¢ € S(R”) satisfying
suppx CB={§ eR": || < 2} and suppp C C = {£§ € R": 3 < |§| < §} such that

Y ¢(278) =1, forany&eR"\(0}

jeZ

and

x (&) + Zgo(T’é‘) =1, forany& eR".

j=0

For j € Z, the homogeneous Littlewood—Paley projection operators S; and A j are defined
by

Sif = x(27D)f = 2'”/ h(2y)f(x ~y)dy, whereh=F"y,
Rn
and
Af =¢(27D)f = 2nj/ h(2y)f(x—y)dy, whereh=F"o.
RYI

A,» is a frequency projection to the annulus {|&| ~ 2/}, and S,» is a frequency projection
to the ball {|€| < 2/}. Let s € R,p,q € [1,00]. The homogeneous Besov space B;’q(R”) is
presented by the distributions f € S} such that

- 1
DOPUALL, ) <o,
JEZ

with the norm

. 1
ez 2 AL, 1<g<oo,

1 A (2.1)
sup;ez {2811 Af e}, g =o00.

I, ey =

On the other hand, we recall some facts that can be found in [14]. If u € L?(R3), then it
follows from the definition of u; and u* that

(uk, uk) =0, Vk>0. (2.2)
Moreover, for 0 < r <, by Plancherel’s theorem,

okl izs = |16 e o < K77 1€ B0k 2 = K7 Nkl

| | = N1EF o] 2 = K716V | 2 = K Nl
Since || Aul;2 ~ || V2ul| 2, Vu € H*(R?), we have

k| V|, < |V2ut| . <cl|aut],,,  YueH*(RY), (2.4)
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with some ¢ > 0. Moreover, it can be easily seen that
(uev)™ =0, Vu,vel? (R3),Vk, [>0,Vm>k+1, (2.5)
because the Fourier transform of u;v; is supported in {£ e R3: || < k + [}.

3 Proof of Theorem 1.2
For convenience, we assume ¢ = A = 1 throughout the proof of Theorem 1.2.

Proof Assume that a weak solution (u, d) of (1.1) is regular in (0, T), but not in (0, T']. Then
limg, 7o | Vu(t)|l ;2 + [|Ad(E) || 2 = 0o. Notice that, for all smooth solutions to system (1.1),
one has the following basic energy law (see [10]):

t
Hubiﬂﬁz+HthtW§+3£(HVuthEz+H(Ad+IVdFﬂvaZ)df

(3.1)
< lluoll72 + IV dolI72,
for all 0 < £ < 00. By (1.2), one has
[V ]2 + [ Ad@)] 72 < Kol + RIVAol + |V @) + [ ad* O] -
Thus,
tim [Vt )]}, + | ad“@)] 3, = oo. (3.2)

We can see from [13] that, if there exists a positive constant &y > 0 such that

|| (u,Vd

)”Loo(o,T;ngm) = €0

then the solution (i, d) is smooth up to time 7.
Now we multiply the first equation of (1.1) with —Az* and integrate over R® to get by
(2.2)

1d 1
5 gV T+ A = (- Vi, 8) + <Ad~ Vd + vadﬁ,mk). (3.3)

Applying V to the second equation of (1.1) and making an L? inner product with respect
to VAd*, we can verify

1d

5 g lad I3+ | VAdE |}, =(V(u - Vd), VAdY) + (V(1Vd|*d), V AdY). (3.4)

Adding (3.3) and (3.4) gives rise to

1d

5 2 Ul + 1ad ) + (1au] 2 + |V ad] )

= (u- Vu, Aub) + (Ad - Vd, AuF) + %(V|Vd|2,Auk)
+(V(u-Vd),VAdY) + (V(1Vd|*d), v Ad")

2211 +12 +13 +I4+15.
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Next we estimate I; —I5, respectively. From [14], we have

L] = |(u- Vi, Au®)|
< CRluo 122 Nty 4 70 + Cllasell || As [ 72 (3.6)

1
+ CK3 | Vil | o Ak, + 218zl
Since d = d + d¥, we write
(Ad-V)d = (Ady - V)di + (Ad* - V)di + (Ady - V)d* + (Ad* - V)dE.

Then

L= (Ad-Vd, AuF)
= ((Ady - V)di, AdX) + ((AdE - V)d*, Aub) + ((Ady - V)d¥, Au®)
+((Ad* - V)dy, Aub)

= 121 + 122 + ]23 + 124.

Note that d; = d/% + dé,k and the Fourier transform of (Ady - V)dy is supported in {|&| < 2k},

thus we deduce

(Ady - V)dy, Au)
[(Adk V)dk]kzkrAuk,2k)

= (
= (
([(Adk - V)dy + (Adic- V) ], o0 Attico)
(

[(Adk . dk + (Adk I )dé + (Ady - V)dévk]mk, Autyeok)
= ((Adk . V)d’g,k’ Auk,zk) + ((Ad’%,k . V)dé, Auk,zk)
=Dy + b,

where we used the fact [(Ad k- V)d k lk 2k = 0. Thanks to the Holder inequality, the Young
inequality and (3.1), we get

Il < | Adkll2 IVl l| Augorll 2
< CklI Va2 IV dia il | Akl 2

1 (3.9)
= CRAIVAI Vg 2 + gl Attarl o

1
= CRIVdy 1z (Iuoll 2 + 1V dolIL2) + 2l Autiarl -

Page 6 of 17
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Similarly,

b1zl < 1Ak Nl IV il 2 | Avtgkl 2

< CKIIVdy 101Vl ll 2 Ao 2

) ) , 1 ) (3.10)
< CR| Vel 17 IV eg I + 5 Al 2
1
= CRIVAy iz (Iuoll 7z + 1V AolIL2) + 2l Attiarl 2
which along with (3.9) implies
1
|| < CkzIIVdg,kH%oo(lluoHiz +1IVdoll7) + L_L”Auk,zk”ir (3.11)

With the help of Holder’s inequality, (2.4), Gagaliardo—Nirenberg’s inequality, Sobolev’s
embedding and Young’s inequality, one has
o] = [ Ad] 5 | VA" o An']] 2
1 1
< clad b vad} Ve st a
< Ck 2| VAd |, | adt | At

= 0| o (|2 + [ VA ).
By the definition of the B;m—norm, we have
il < Chllugllz _, Yk >0. (3.13)
From the Holder inequality, (3.13) and the Young inequality, we can conclude that

3| < 1Al | VA | o A
< Ck|[ Vel | Va*| o | aut]| 2
< G| Vdiligy  |Vd"] .|| At (3.14)
< CIVdilizn  [VAd] ] A,

< ClI Vil g, (86| 2 + [V A2 12).
Similarly,

bl < || Ad¥| 5 1 Vil | Au¥])
< CkII Vel [ Ad*| ]| Aut]
(3.15)
< ClIVdiligz  [VAG o] Ak

< CIVdilyy (| 8672 + [V A ).

Page 7 of 17
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Combining (3.7), (3.11), (3.12), (3.14) and (3.15), one arrives at

Il < Ck 2 Ad] o (| At + [V Ad )

+ClI Vil (|87 + [ VA7)

1
+ CkzIIVdg,kllfoo(lluolliz + | Vdoll?,) + EHAUk,Zk”ir
To estimate I3, we make the following decomposition:

%V|Vd|2 - %V|Vd" + V| < V|V + V|V,

=2Vd~k . V2d* + 2vd, - V3d,.

Then

\I3] < 2|(Va* - Va5, Au)| + 2| (Vi - Vi, Aub)| = Iy + L.

Applying the same method to the bound (3.12) gives rise to
Iy < [ V| 15 | V2] s | ] 2
= vy [ad ] [ aut] 2
1 1
= C| V| L Va| gl ad] | Aut]
1 1
= C|va| L adt| L v ad . aut] .
< Ck 2| AdH o |V Ad o | At .
< Gk ad| (IVad| + | A7),
Similarly to (3.8), we have
Iy = 2|(Vdyx - Vdy, Au)|
=2[(Vdi - V2dy o Auiar) + (Vi i - V2, M) |
<2|(Vdy - v2d§,k, Augok)| +2] (Ve - Vzdé, Auto) |

= I3p1 + I39o.

Using Holder’s inequality, (2.4), Young’s inequality and (3.1), one can verify

Lo = 2|Vl 2 (1 Ad g gl || Avgell 2

= CklIVdi Nl IVell2 | Auicorll 2

1
= CRIVAy iz (Ioll 2 + 1V dolIL2) + 2l Attarl -

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

Page 8 of 17
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Similarly,
I < 20 Ady 121 Vel 1 | Aol
< Ck||Vd§ ll.2 ||Vd§k||L°° | Autg k]l 2 (3.21)

< Ck2||Vd/§<,k||%oc>(”u0||%2 +[1Vdol}) + %”Auk,zk”iz,
which along with (3.20) implies
Ly < CI*|[ Ve I (Iluoll72 + IV doll72) + inAuk,aniz. (3.22)
From (3.17), (3.18) and (3.22), we can deduce

II5] < k2 | Adt| o (| a7, + [V Ad|7,)
) (3.23)
+ Ck2||Vd§,k||%oc(||u0||iz + | Vdoll?,) + Z”Auk,zk”iz«

We now address the term /. We decompose I, into the following form:
L= ((Vu-V)d,VAd") + ((u-V)Vd, VA := I + L. (3.24)
Since
(Vu-V)d = (Vb - V)d" + (Vib - V)di + (Vug - V)dE + (V- V)dy,
we can get

I = (Vb - v)d", VAGY) + (Vb - V)di, VAY) + (Vi - V)d¥, V AdY) (395)
3.25
+ ((Vug - V)dy, VAAY) = Ly + Tt + Laas + Iaga.

Similar to the estimate (3.12), one has

ani] = [Vl [V o[V Ad"]
1 1
= C V| [V | V| 7 |V A1) 12 626
< Gk Ad o A [V ad .

< Ck 2| ad (| Aut 72 + | Vad 7).
The Holder inequality, the Young inequality and (3.13) imply

Lz < | V| 5 IVl | VAGY
< CkIIVdil|1 [V 2 VAGY 15
(3.27)
< ClVdillpa | Ak .| Vadt],,

< CIVdilay (| 8672 + [V A ,).
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Similarly,

Lz < [ Vugllz | V¥ |, | VA L,
< Ckllugllz | Va* || .| v Ad¥]
< CRlukl| | V| o | VA 5

< Clluelza | VA,
Arguing as (3.8), we have
Ipna = ((Vuk : V)d’g,k + (Vulé,k : V)d/%, VAdk,zk) i=Ina + lago.
By Holder’s inequality, (2.4) and Young’s inequality, we get

Harar| < IVurll 2 1V Nl IV Adiorl 2

= Ckllull 21V Moo IV Adicoill 2

2 2 2 2
< Ck*|lu I} ||Vd/§<,k||L<>O + IV Adiaxll ;>

L
16

1
< Ck2||Vd§,kllfoo(||Molliz + | Vdoll?,) + R”VAdk,zk”ir
Similarly,

o] < 1 Vatg gl | Vg 121V Adisl 2
< Chllug 4l [V 121V Adil 2

1
< Ckzllug,kllfooIIVdg 7. + 1—6||VAdk,zklliz

1
=< Ckzllug,kllfoo(lluollfz + | VdollZ,) + 1_6||VAdk,2k||%2,

which together with (3.29) reads

1
[a1a] < Ckz(llug,kllioo + IIVdg,kII%oc)(IIuollﬁz + | Vdoll7,) + gIIVAdk,zkllfz.

Combining (3.26)—(3.28) and (3.31) yields

1
[l < IV Adial 2 + Ch 2| Ad€| o (| A [ + |V ad] )
+ Clllmellz + 1Vl ) (| Aub] 7, + | Vadh|})

+ G (llug 7o + 1V 7o) (ltol72 + 1V doll72)-

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

Page 10 of 17
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To handle Iy, we split Iy, into

Lip = ((ur - V)VA, VAY) + ((uF - V)VdF, v AdY) + ((uF - V) Vdy, VAT
+ (i - V)Vdy, VAG") (3.33)

= Lag1 + Lygo + Lyo3 + Iyng.
By Holder’s inequality and (2.4), we get

o1 | < luaellooo | V2d¥| o | VAG 2

2l

< llullze||Aad ], |V AdY (3.34)

2

2
< clueligy VA
Similarly to (3.12), one has

Mol = [ o[ V2] 5 [V AGE] 2
= Clu| sl adt] s vad,,

< Clvi| | ad'] | ad i [V ad] . (335)

1/2
2

= C|vat| | adt], o

[vadt][vad],

< G| Vil o[ VAd .
Holder’s inequality, (2.4), and Young’s inequality guarantee

sl =[] 2 | V2l e | VAG] 12
< [|u*] 2l Adili | VA
< ck||uf|| L IVakllLe ||V AGY] (3.36)
< | At o1Vl [VAd

< Vel (18 s + [V ).
Similarly to (3.8), we write
Lioa = ((uc - V)leigk, V Ady k) + ((ngk : V)Vd/%, V Ady ) = Inpar + Lo
From the Holder inequality and the Young inequality, we conclude

2
Mot | < lloaell g2 | V2 [ oo IV Al 12
< Cllull2 I Ay 12211V Addiel 2

) (3.37)
< Ckllugll 21V gl [V Ad |

1
< CRIVdy i (luollf + 1V o) + < [V Ad |7,
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and

2
4242 < ||u§,k||L°° ”V d% ”Lz”VAdk,zk”L?
< Cllug i | Ad 211V Ao 2

< ckllug gl 1Vl 121V Adiael 2

1 2
< Ckz””é,k”%w(”uo”iz +Vdoll?,) + Te |vadt|;,.
Therefore, by (3.24)—(3.38), we have

L] < Ck3 (| Vadk | o + | Ad¥| o) (| A, + [ VAGH|2)
+ CIVkllpa (| A, + | VAdH},)

+ Cllullza | VAGE |, + CR(lluol 2, + Vo 2,))

x (ot iz + 11V ll7oc) + invmk,z;(niz.
It is left to deal with the last term, I5. Using the fact that
V(IVd|*d) = 2V*dVdd + |Vd|*Vd,
we can rewrite I5 as follows:
Is =2(V?dVdd,VAd") + (IVd|*Vd,V Ad") := I5; + I5,.
Since
2V2dvdd = (2V*dVdy + 2V2dVd* + 2V2d*Vd + 2V2d*Vd)d,

we have

Iy = 2(V2d Vdid, V AdY) + 2(V2diVd*d, vV AdY) + 2(V2d*V did, V Ad")
+2(V2d"vd'd, v Ad)

:=Is11 + Isi + Is13 + Isig.
Reasoning as (3.8), one has

I = (V2diVdy  d,V Adrok) + (Vdx Vi d, V Ady )
27 2 2

= I5111 + I5110.

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

Page 12 of 17
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Using |d| = 1, Holder’s inequality, inequality (2.4) and Young’s inequality, we have

Usial < 2| V2| 21 Vg gl IV Addiaill 2
< ClAdill2 Vg gllz |V Adill 2

(3.43)
= CklIIVArl 21V Ml IV Adioill 2

1
< Ck2||Vd§,k||%oo(||Mo||iz + | Vdoll?,) + 3 IV Adal?.
Similarly,
[Is112] < ||V2d17<,k | o ||Vd1% 21V Adi okl 2

< CklIVd Ml IVl 2 IV Adiall 2 (3.44)

1
= CRIVdy gl (ol + IV doll}2) + IV Adiall T2,

which all taken together implies

1
si1| = CRAIVdy s (1ol 72 + 1V AolI}2) + 2 IV Adiail - (3.45)
By the fact |d| = 1, the Holder inequality, (2.4) and (3.13), we can get

ool <2| V] [V o [V A
< Clladglie [V | V]
< Ck||\ Vil | Vd*] 2 |V AdY| (3.46)
< CR Vel [ VA o |V ad] .

< ClIVdilga | VA
Similarly,

Is13] < 2| V2@ | 5 1 Vel | VAGY

) (3.47)
< ClIVdrligy  |VAd .

Reasoning as (3.12) again, one has

sal <2 V2d" | 5 | V| | VA
1 1
= IV | 9 g |92 -
1 1 :
< Clad"| L] vad |, |ad . |vad],,

< Ck | A, |V At
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Therefore, inequalities (3.45)—(3.48) yield

2
si| < CK*|Vdy g lI70e (ol 72 + Vol F2) + ClI Vil | VAdS 5

1
+ O3 | Ad | 5 |V AG 7 + LIV Adial 2.

(3.49)

It is easy to get Ad - d = —|Vd|* due to |d| = 1. Then |Vd|*Vd = ~Ad - dVd. Hence we

decompose Is; in the following way:

Iy = —(Ad - dVd, V AdF)
=—(Ad" - dvd,VAd") - (Ad" - dVdy, V AdY)
— (Ady - dVd',VAd) - (Ady - dVdy, V AdY)

i=Iso + Isx + Isos + I5o4.
Repeating the methods to prove (3.12), we obtain

sar| = [ Ad"] 5[ Ve[ s | VAG] 2
1 1
= Clad| Ll adt| 4 [V ] |V ad,,
1 1
= Cladt| [vadty | adt | vadt,,

< cict|adt| o[V a2
Similarly to (3.46), we have
\saa| + Isas| < Cl| Vg |V AGE .
Similarly to (3.45), one has
Is2a| < Ck2||Vd§,kllioo(lluolliz +[IVdoll72) + ;L”VAdkzk”iz'

Thus
o] < Ck2 | AdY ||, | VAGE|2, + CII Vx| s |vadt 1%
1
+ CkzIIVdg,kllfoo(lluolliz + IIVdolliz) + ZHVAdk,zk”ib
From (3.49) and (3.54), we deduce

2
5] < CkzIIVdg,kllioo(lluollfz +IVdolI3,) + ClIVaxliz [V Ad

1
+ CK3 | AdY| |V AdE|2, + S IV Adiarl .

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)
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Combining (3.6), (3.16), (3.23), (3.39) and (3.55), we have
ld k|2 k|2 k|2 k|2
sVl +[ad ) + (|au [z + [Vadty.)
< Gk (g g 7o + 1V 7o) (o]l 72 + 11 Vo 72)
+ Co(luelliz, + IVl ) (| 60 2 + [V 2a] ) (356)
# Gk 2 (Vi o+ A 2) (A [ + [ VA ) + ZIIAuk,zklliz

3
) IV Adiil?

and
U+ |2 2)
< [Clkz(lluollfz + Vol 72) (Iltrrzicl Foo + | Vil o)
_ é(”Auk”Lz + ||VAdk||L2)] <cz(||uk(t) ”Bsé,oo + ||de||3&%’00) - %) (3.57)
< (il 2+ [vd|2)
(kT v Do) - G ) 2 e 92 )
Let
k =128 x 4¢3(| Vil | o + | 2| 2)*- (3.58)
Then
3

[Visilz + [ Ad],2 < fe

Since lim;_, 79 ||Vu’~<(t)||Lz + ||Ad'~‘(t)||Lz = 00, there is some § € (0, T') such that

- - i(l
| V(T - 8)| 2 + | AdH(T - 8) 2 = 16;, (3.59)
/}l
[Vt @], + | Ad D) > — (3.60)
1663

From (3.60), we get for any t € (T -5, T)
~ 1 " -
ek (luglF2 + IV o) (g pliF + 1V fli7) = 5 (| au [ + [ VAd* )
~ 1 ~ -
<k [cl(nuon; + Vo) (el + 1V ) = 2 (] Vi1 + | Ad"lljz)]

i 1k
</2 2 vd 2 - 200 Vd; . 200 PV
<k [cl(lluolle + Vo) (g llfoe + 1V elg pllzee) = 72 256¢2
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<0,

provided

Nl

k
)00 < ’
O, 32¢cs/cr(lluollz2 + |V doll2)

”ué]}(t)”Loo + | Vi Vie(T-4,T). (3.61)

In view of (3.58), the inequality (3.61) is equivalent to

DG I )

<€y !
k232¢s/ci(lluollz2 + Vol r2)
1 (3.62)
<cC
167/2¢3([ Vol 2 + [| Adoll 2) x 32¢3/er(lluolly> + Vol 2)
1
<

C = = .
512262 /c1(lluoll 2 + Vol 2) (I Vbl 2 + | Adhll2)

Thus, if (3.62) and

1
ot oo 5,551 ) + IV ioo s st ) = 4 (3.63)
hold, we can infer from (3.57) that
d T2 T2
Vel + [ adt] )
(3.64)

-1 ; ; 1 ; ;
< (k (vl + 2 ) - ) (18 + [ VA& L)

Since ek 3 (| Vu* (T = 8)ll2 + |1 AdN(T = 8)ll2) — & = csk 2 &2 — 1 < 0, there is a right

1
16¢ 8
neighborhood I of t = T'— § such that ’
8 . . 1
ek 2 (| Vi @) o + | Ad )] ) - 5 <0, Veel

Hence, it follows by (3.64) that the function ¢ — || A7 2 + I AdF |l;2 decreases in I, which
contradicts (3.59) and (3.60). Thus, when (3.62) and (3.63) are satisfied, u and Vd cannot
blow up at £ = T, and u and Vd are regular in (0, T']. The proof of the theorem is com-
pleted. d
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