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Abstract
This paper is concerned with the inverse scattering of time-harmonic waves by a
penetrable structure. By applying the integral equation method, we establish the
uniform Lpα (1 < p ≤ 2) estimates for the scattered and transmitted wave fields
corresponding to a series of incident point sources. Based on these a priori estimates
and a mixed reciprocity relation, we prove that the penetrable structure can be
uniquely identified by means of the scattered field measured only above the structure
induced by a countably infinite number of quasi-periodic incident plane waves.
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1 Introduction
In this paper, we consider the inverse problem of determining a penetrable periodic struc-
ture in R

3 from the scattered data measured only above the structure. This kind of prob-
lem occurs in various applications such as in radar imaging, modern diffractive optics,
and non-destructive testing. For convenience, we write a point x in R

3 for (̃x, x3) with
x̃ := (x1, x2) ∈R

2. Assume that the penetrable profile is described by

� :=
{

x ∈R
3 : x3 = f (̃x)

}

,

where f is a periodic function with respect to the variable x̃, that is, f (̃x) = f (̃x + 2nπ ) for
n := (n1, n2) ∈ Z

2. Assume further that the homogeneous media above and below � are
described by

�+ :=
{

x ∈R
3 : x3 > f (̃x)

}

and �– :=
{

x ∈R
3 : x3 < f (̃x)

}

with the wave numbers k1 and k2, respectively.
Consider the incident plane waves in the form of

ui(x) = exp
(

iαj · x̃ – iβ+
j x3

)

, j ∈ Z
2, with αj = α + j, (1.1)
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which propagate downward from �+ with α = (α1,α2) := k1(sin θ1 cos θ2, sin θ1 sin θ2) with
the incident angle θ1 ∈ [0,π/2), θ2 ∈ [0, 2π ), and β+

j ∈C is given by

β+
j =

√

k2
1 – |αj|2 if |αj| ≤ k1, β+

j = i
√

|αj|2 – k2
1 if |αj| > k1.

Then the scattering of the incident ui by the periodic structure can be formulated in de-
termining the total field u1 := ui + us with the scattered field us and the transmitted field
u2 to the following problem:

�u1 + k2
1u1 = 0 in �+, (1.2)

�u2 + k2
2u2 = 0 in �–, (1.3)

u1 = u2,
∂u1

∂ν
= λ

∂u2

∂ν
on �, (1.4)

us(x) =
∑

n∈Z2

u+
n exp

(

iαn · x̃ + iβ+
n x3

)

, x3 > A1 := max
t∈R2

f (t), (1.5)

u2(x) =
∑

n∈Z2

u–
n exp

(

iαn · x̃ – iβ–
n x3

)

, x3 < A2 := min
t∈R2

f (t). (1.6)

Here, u±
n ∈ C are the solution sequences, λ is the transmission coefficient and the unit

normal vector ν on � is directed into the interior of �–. Notice that the incident wave
ui(·) satisfies such an α-quasi-periodic condition ui (̃x + 2nπ , x3) = ei2α·nπ ui (̃x, x3) for all
n ∈ Z

2. Then the solution ul, l = 1, 2, is also required to satisfy the same α-quasi-periodic
condition, i.e., ul (̃x + 2nπ , x3) = ei2α·nπ ul (̃x, x3) in R

3. Conditions (1.5) and (1.6) are known
as the Rayleigh expansion conditions of the scattered field us in �+ and the transmitted
field u2 in �–, respectively, with β–

n defined similarly as β+
n by the wave number k2.

The well-posedness of problem (1.2)–(1.6) can be established by the variational method
(cf. [31]) or the integral equation method (cf. [32, 33]). In the current paper we first es-
tablish the Lp

α (1 < p ≤ 2) estimates for the scattered field us and the transmitted field u2.
Based on these a priori estimates, we focus on the unique identification of the penetra-
ble periodic structure from the scattered field us measured only on a straight line above
the periodic structure induced by a countably infinite number of quasi-periodic incident
plane waves.

There are lots of results concerning the uniqueness issue for the inverse periodic trans-
mission problems (cf. [5, 7, 12, 13, 18, 19, 23, 24, 33, 34]) and for the inverse scattering by
the polygonal periodic structure (cf. [6, 11, 14]). For the special case when the medium has
the energy absorption property, a uniqueness theorem was obtained in [5] from the mea-
sured scattered field for one incident plane wave in a two-dimensional space. The result of
[5] was then extended to the three-dimensional case in [2]. It should be remarked that the
uniqueness with one incident wave does not hold true for the inverse periodic problem for
a real wave number case, that is, the medium does not has a property of energy absorp-
tion. See also [7] for a uniqueness theorem on the recovery of a smooth periodic structure
with one incident plane wave under some a priori assumptions on the structure. For the
case when a priori restrictions on the height of the grating surface are known in advance, a
uniqueness result can be found in [18] on the identification of a smooth perfectly reflecting
periodic structure from many measurements corresponding to a finite number of incident
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plane waves. The method of [18] was extended to the periodic transmission problem [13].
There also exist some numerical methods in reconstructing periodic structures. For ex-
ample, a linear sampling method was developed in [20, 22] for determining the shape of
partially coated bi-periodic structures, and in [35] a novel linear sampling method was
introduced for simultaneously reconstructing dielectric grating structures in an inhomo-
geneous periodic medium. See also [10] for a finite element method or [3, 4, 17] for the
factorization method in determining the periodic structures, or [30] for the uniquely re-
construction of a locally perturbed infinite plane. Recently, by making use of the differen-
tial sampling method, the anisotropic periodic layer can be uniquely determined in [25]
under the assumption that the complement of the periodic layer in one period is con-
nected. The analysis of sampling methods for the recovery of a local perturbation in a
periodic layer can be found in [16].

For the scattering by general periodic structures case, there are several uniqueness re-
sults. We refer to [23] for a uniqueness theorem for the inverse Dirichlet problem, and to
[21, 24, 32] for uniqueness results for the inverse transmission problem by means of all
quasi-periodic incident plane waves. The reader is referred to [19] for a partially coated
perfectly grating case with respect to infinitely many point sources, and to [34] for unique-
ness results for both the partially coated perfectly reflecting grating and the periodic trans-
mission case in a two-dimensional space, corresponding to a countably infinite number of
quasi-periodic incident plane waves. In this paper we intend to develop a novel method,
which differs from the approach used in [34], to prove the uniqueness on the identifica-
tion of the penetrable periodic structure in the three-dimensional space from the mea-
sured data only above the structure with respect to a countably infinite number of quasi-
periodic incident plane waves. The technique developed in this paper can date back to the
work [27, 36] on the inverse scattering problems of determining the support of penetrable
electromagnetic obstacles or to [28] for the fluid-solid interaction problem of identifying
the bounded solid obstacle, [29] for the cavity scattering case.

The paper is organized as follows. In Sect. 2, the a priori estimates in the sense of
Lp

α (1 < p ≤ 2) norm for the solution of the direct scattering problem in R
3 are established

by applying the integral equation method. Section 3 is devoted to the inverse problem of
uniquely determining the periodic structure from the measured data only above the struc-
ture produced by a countably infinite number of quasi-periodic incident plane waves.

2 A priori estimates
In this section we establish some a priori estimates for the solution of the direct scattering
problem by employing the integral equation method. Eliminating the incident field ui, it
is easily found that the scattered field w1 := u1 – ui in �+ and the transmitted field w2 := u2

in �– satisfy the following boundary value problem:

�w1 + k2
1w1 = 0 in �+, (2.1)

�w2 + k2
2w2 = 0 in �–, (2.2)

w1 – w2 = f1,
∂w1

∂ν
– λ

∂w2

∂ν
= f2 on �, (2.3)

w1(x) =
∑

n∈Z2

w+
n exp

(

iαn · x̃ + iβ+
n x3

)

, x3 > A1, (2.4)
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w2(x) =
∑

n∈Z2

w–
n exp

(

iαn · x̃ – iβ–
n x3

)

, x3 < A2 (2.5)

in the general case f1, f2 ∈ Lp
α(�) with 1 < p ≤ 2. Here, Lp

α(�)(p ≥ 1) denotes the Sobolev
space of scalar functions on � which is assumed to be α-quasi-periodic with respect to
the variable x̃, equipped with the norm in the usual Sobolev space Lp(�).

Before going further we first introduce the basic notations that are used in the rest of
this paper. For simplicity, we use �± and � again to denote the same sets restricted to one
period 0 < x1, x2 < 2π . For each h > 0, denote by �+(h) := {x ∈ �+ : x3 < A1 + h}, �–(h) :=
{x ∈ �– : x3 > A2 – h}, �+(h) := {x ∈ �+ : x3 = A1 + h}, and �–(h) := {x ∈ �– : x3 = A2 –
h}, respectively. Then, let H1

α(�±(h)) and Lp
α(�±(h))(p ≥ 1) denote the Sobolev spaces of

scalar functions on �±(h) which are assumed to be α-quasi-periodic with respect to the
variable x̃, equipped with the norms in the usual Sobolev spaces H1(�±(h)) and Lp(�±(h)),
respectively. Let H1/2

α (�±(h)) denote the trace space of H1
α(�±(h)), and H–1/2

α (�±(h)) is the
dual space of H1/2

α (�±(h)).
We introduce the free space α-quasi-periodic Green function

G1(x, y; k1) =
i

8π2

∑

n∈Z2

1
β+

n
exp

(

iαn · (̃x – ỹ) + iβ+
n |x3 – y3|

)

, x �= y (2.6)

and the α-quasi-periodic layer-potential operators S1, K1, K ′
1, and T1 defined by

S1ξ (x) =
∫

�

G1(x, y; k1)ξ (y) ds(y), x ∈ �, (2.7)

K1ξ (x) =
∫

�

∂

∂ν(y)
G1(x, y; k1)ξ (y) ds(y), x ∈ �, (2.8)

K ′
1ξ (x) =

∂

∂ν(x)

∫

�

G1(x, y; k1)ξ (y) ds(y), x ∈ �, (2.9)

T1ξ (x) = –
∂

∂ν(x)

∫

�

∂

∂ν(y)
G1(x, y; k1)ξ (y) ds(y), x ∈ �. (2.10)

Noting that G1(x, y; k1) – �(x, y; k1) is smooth, it follows from [8] that the operators
S1 : H– 1

2
α (�) → H

1
2
α (�), K1 : H

1
2
α (�) → H

1
2
α (�), K ′

j : H– 1
2

α (�) → H– 1
2

α (�), and T1 : H
1
2
α (�) →

H– 1
2

α (�) are all bounded, where �(x, y; k1) = 1
4π

eik1 |x–y|
|x–y| is the fundamental solution of the

Helmholtz equation �� + k2
1� = –δy in the free space R

3.

Theorem 2.1 For f1, f2 ∈ Lp
α(�) with 1 < p ≤ 2, there exists a unique solution (w1, w2) ∈

Lp
α(�+(h)) × Lp

α(�–(h)) to the transmission problem (2.1)–(2.5) satisfying the estimate

‖w1‖Lp
α (�+(h)) + ‖w2‖Lp

α (�–(h)) ≤ C
(‖f1‖Lp

α (�) + ‖f2‖Lp
α (�)

)

, (2.11)

where C > 0 is a constant independent of f1, f2, and depending on Gj(·, y; kj),�+(h) with
j = 1, 2 and the boundedness of the operators Sj, Kj, K ′

j , j = 1, 2, and T2 – T1 in Lp
α(�).

Moreover, if f1, f2 ∈ Lp
α(�) with 4

3 < p ≤ 2, we have

‖w1‖L2
α (�+(h)) + ‖w2‖L2

α (�–(h)) ≤ C
(‖f1‖Lp

α (�) + ‖f2‖Lp
α (�)

)

(2.12)
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with a positive constant C > 0, which is independent of f1, f2, and depending on Gj(·, y; kj),
�+(h) with j = 1, 2 and the boundedness of the operators Sj, Kj, K ′

j , j = 1, 2 and T2 – T1 in
Lp

α(�).

Proof We seek a solution of problem (2.1)–(2.5) in the form of combined single- and
double-layer potential

w1(x) =
∫

�

G1(x, y; k1)ϕ1(y) ds(y) + λ

∫

�

∂G1(x, y; k1)
∂ν(y)

ϕ2(y) ds(y), (2.13)

w2(x) =
∫

�

G2(x, y; k2)ϕ1(y) ds(y) +
∫

�

∂G2(x, y; k2)
∂ν(y)

ϕ2(y) ds(y), (2.14)

where G2(x, y; k2) is defined as (2.6) with the wave number k1 replaced by k2.
With the aid of the jump relations of the layer potentials (see [26] for the case in the Lp

norm), we obtain that the transmission problem (2.1)–(2.5) can be reduced to the system
of integral equations

(

ϕ2

ϕ1

)

+ L

(

ϕ2

ϕ1

)

=

(

2
1+λ

f1

– 2
1+λ

f2

)

in Lp
α(�) × Lp

α(�), (2.15)

where the operator L is given by

L :=

(

2
1+λ

(λK1 – K2) 2
1+λ

(S1 – S2)
2λ

1+λ
(T2 – T1) 2

1+λ
(λK ′

2 – K ′
1)

)

.

It is easily shown that (2.15) is of Fredholm type due to the compactness of the operators
Sj, Kj, K ′

j , j = 1, 2, and T2 – T1 in Lp
α(�). This, together with the uniqueness of the scattering

problem (1.2)–(1.6), implies that (2.15) has a unique solution (ϕ2,ϕ1)T ∈ Lp
α(�) × Lp

α(�)
with the estimate

‖ϕ2‖Lp
α (�) + ‖ϕ1‖Lp

α (�) ≤ C
(‖f1‖Lp

α (�) + ‖f2‖Lp
α (�)

)

. (2.16)

We next prove the Lp
α , 1 < p ≤ 2 estimates for the solution of the transmission problem

(2.1)–(2.5). In fact, it can be checked that

∥

∥

∥

∥

∫

�

�+(h)G1(·, y; k1)ϕ1(y) ds(y)
∥

∥

∥

∥

Lp
α (�+(h))

= sup
g∈Lq

α ,‖g‖Lq
α (�+(h))=1

∣

∣

∣

∣

∫

�+(h)

∫

�

G1(x, y; k1)ϕ1(y) ds(y)g(x) dx
∣

∣

∣

∣

= sup
g∈Lq

α ,‖g‖Lq
α (�+(h))=1

∣

∣

∣

∣

∫

�

∫

�+(h)
G1(x, y; k1)g(x) dxϕ1(y) ds(y)

∣

∣

∣

∣

≤ |�| 1
q sup

g∈Lq ,‖g‖Lq
α (�+(h))=1

sup
y∈�

∥

∥G1(·, y; k1)
∥

∥

Lp
α (�+(h))‖g‖Lq

α (�+(h))‖ϕ1‖Lp
α (�)

= |�| 1
q sup

y∈�

∥

∥G1(·, y; k1)
∥

∥

Lp
α (�+(h))‖ϕ1‖Lp

α (�) ≤ C‖ϕ1‖Lp
α (�) (2.17)
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and

∥

∥

∥

∥

∫

�

∂G1(·, y; k1)
∂ν(y)

ϕ2(y) ds(y)
∥

∥

∥

∥

Lp
α (�+(h))

= sup
g∈Lq

α ,‖g‖Lq
α (�+(h))=1

∣

∣

∣

∣

∫

�+(h)

∫

�

∂G1(x, y; k1)
∂ν(y)

ϕ2(y) ds(y)g(x) dx
∣

∣

∣

∣

= sup
g∈Lq

α ,‖g‖Lq
α (�+(h))=1

∣

∣

∣

∣

∫

�

∂

∂ν(y)

∫

�+(h)
G1(x, y; k1)g(x) dxϕ2(y) ds(y)

∣

∣

∣

∣

≤ sup
g∈Lq

α ,‖g‖Lq
α (�+(h))=1

∥

∥

∥

∥

∂

∂ν(y)

∫

�+(h)
G1(x, ·; k1)g(x) dx

∥

∥

∥

∥

Lq
α (�)

‖ϕ2‖Lp
α (�)

≤ sup
g∈Lq

α ,‖g‖Lq
α (�+(h))=1

C‖g‖Lq
α (�+(h)) · ‖ϕ2‖Lp

α (�) = C‖ϕ2‖Lp
α (�) (2.18)

with 1
p + 1

q = 1. Here, we have used the fact that the volume potential operator is bounded
from Lq

α(�+(h)) into W 2,q
α (�+(h)) with 2 ≤ q ≤ 4 (see [15, Theorem 9.9]), and the bound-

ary trace operator is bounded from W 1,q
α (�+(h)) into Lq

α(�) with 2 ≤ q ≤ 4 (see [1, The-
orem 5.36]). It is noted that (2.17)–(2.18) still holds true, with G1(x, ·; k1) replaced by
G2(x, ·; k2) and �+(h) replaced by �–(h), respectively. Now the desired estimate (2.11) fol-
lows from (2.13)–(2.14) and (2.16)–(2.18). Furthermore, if f1, f2 ∈ Lp

α(�) with 4
3 < p ≤ 2, by

the similar arguments as those in (2.17)–(2.18), one can derive the required result (2.13).
This completes the proof of the theorem. �

Corollary 2.2 For y0 ∈ �, define the sequence yj := y0 – 1
j ν(y0) ∈ �+, j ∈ N. Let (u1j, u2j)

be the solution of the scattering problem (1.2)–(1.6) with the incident point source ui =
G1(x, yj; k1). Then, for any h ∈R, we have

‖u1j‖L2
α (�+(h)) + ‖u2j‖L2

α (�–(h)) ≤ C (2.19)

uniformly for j ∈N+, where C > 0 is a constant depending on Gj(·, y; kj),�+(h) with j = 1, 2.

Proof It is obvious that (us
1j, u2j) satisfies problem (2.1)–(2.5) with the boundary data

f1(j) := –G1(x, yj; k1), f2(j) := –
∂G1(x, yj; k1)

∂ν
j ∈N.

It is easy to see that f1(j), f2(j) ∈ Lp
α(�) are uniformly bounded for j ∈N with 4

3 < p < 3
2 . Then

the required result (2.19) follows from Theorem 2.1. This proves the corollary. �

Theorem 2.3 Let (u1j, u2j) be the solution of the scattering problem (1.2)–(1.6) correspond-
ing to the incident point source ui = G1(x, yj; k1) with yj defined in Corollary 2.2. Then, for
any h ∈R, it holds that

‖u2j‖H1
α (�–(h)\B) ≤ C (2.20)
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uniformly for j ∈ N+. Here, C > 0 is a constant depending on Gj(·, y; kj),�+(h) with j = 1, 2
and the uniform boundedness of S�\B(j) and K�\B(j) in the corresponding Hilbert spaces, B
is a ball satisfying that B ⊃ Bδ , and Bδ is a small ball centered at y0 with the radius δ > 0.

Proof Define ỹj := y0 + 1
j ν(y0) ∈ �–, let w1(j) := us

1j – G1(x, ỹj; k1) and w2(j) := u2j, it follows
that (w1(j), w2(j)) satisfies problem (2.1)–(2.5) with the boundary data

f1(j) := –G1(x, yj; k1) – G1(x, ỹj; k1),

f2(j) := –
∂G1(x, yj; k1)

∂ν
–

∂G1(x, ỹj; k1)
∂ν

.

Obviously, f1(j) ∈ Lp
α(�) is uniformly bounded for j ∈N, where 1 < p < 2. Furthermore, it is

seen from [9, Lemma 4.2] that f2(j) ∈ C(�) is uniformly bounded for j ∈N. So f2(j) ∈ Lp
α(�)

is uniformly bounded for j ∈ N, where 1 < p < 2. Then, by (2.16) in Theorem 2.1, one
obtains that the solution (ϕ1,ϕ2)T of (2.15) satisfies

‖ϕ1‖Lp
α (�) + ‖ϕ2‖Lp

α (�) ≤ C
(‖f1j‖Lp

α (�) + ‖f2j‖Lp
α (�)

)

, 1 < p < 2. (2.21)

We next prove that the operator S1j : Lp
α(�) → L2

α(� \ B) is uniformly bounded for j ∈ N,
where 1 < p < 2. Indeed, by direct calculations, we can deduce that

∥

∥

∥

∥

∫

�

G1(·, y; k1)ϕ1(y) ds(y)
∥

∥

∥

∥

L2(�\B)

= sup
ψ∈L2

α ,‖ψ‖L2
α (�\B)=1

∣

∣

∣

∣

∫

�\B

∫

�

G1(x, y; k1)ϕ1(y) ds(y)ψ(x) dx
∣

∣

∣

∣

= sup
ψ∈L2

α ,‖ψ‖L2
α (�\B)=1

∣

∣

∣

∣

∫

�

∫

�\B
G1(x, y; k1)ψ(x) dxϕ1(y) ds(y)

∣

∣

∣

∣

≤ |�| 1
q sup

ψ∈L2
α ,‖ψ‖L2

α (�\B)=1
sup

y∈�\B

∥

∥G1(·, y; k1)
∥

∥

L2
α (�\B)‖ψ‖L2

α (�\B)‖ϕ1‖Lp
α (�)

= |�| 1
q sup

y∈�\B

∥

∥G1(·, y; k1)
∥

∥

L2
α (�\B)‖ϕ1‖Lp

α (�) ≤ C‖ϕ1‖Lp
α (�). (2.22)

Here, we have used the fact that G1(·, y; k1) is smooth on the boundary � \ B in the first
inequality. Then we have that S1j : Lp

α(�) → L2
α(� \ B) is uniformly bounded for j ∈ N+.

Moreover, by using similar arguments as those in the proof of (2.22), it is seen that the
operators Sij, Kij, K ′

ij, and Tij are all uniformly bounded from Lp
α(�) into L2

α(�\B) for j ∈N+,
i = 1, 2. Also notice that f1(j), f2(j) ∈ L2

α(� \ B) are uniformly bounded for j ∈ N+. This,
combined with equation (2.15), gives that the unique solution (ϕ1,ϕ2)T of (2.15) satisfies
that (ϕ1,ϕ2)T ∈ L2

α(� \ B) × L2
α(� \ B). It is noted from (2.14) that the solution u2j of the

transmission problem (2.1)–(2.5) can be rewritten in the form of

u2j(x) =
∫

�\B
G2(x, y; k2)ϕ1(y) ds(y) +

∫

�∩B
G2(x, y; k2)ϕ1(y) ds(y)

+
∫

�\B

∂G2(x, y; k2)
∂ν(y)

ϕ2(y) ds(y) +
∫

�∩B

∂G2(x, y; k2)
∂ν(y)

ϕ2(y) ds(y). (2.23)
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Define

S�\B(j)ϕ1 :=
∫

�\B
G2(x, y; k2)ϕ1(y) ds(y).

It is easily seen that S�\B(j) : H– 1
2

α (� \ B) → H
1
2
α (� \ B) is uniformly bounded for j ∈N. This

in combination with the fact that ϕ1 ∈ L2
α(� \B) implies that q1j(x) := S�\B(j)ϕ1 satisfies the

following Dirichlet problem:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�w + k2
2w = 0 in �– \ B,

w = q1j ∈ H
1
2
α (�̃) on �̃,

w(x) =
∑

n∈Z2 w–
n exp(iαn · x̃ – iβ–

n x3) x3 < A2,

(2.24)

where �̃ = (� \ B) ∪ (∂B ∩ �–). Then the well-posedness of the Dirichlet problem (2.24)
yields that, for any h ∈R, q1j ∈ H1(�–(h) \ B) uniformly for j ∈N+.

We now define

q2j(x) :=
∫

�∩B
G2(x, y; k2)ϕ1(y) ds(y).

Since the region �– \ B has a positive distance from y0, it is found that q2j(x) ∈ H1(�–(h) \
B) uniformly for j ∈ N+. We further define

K�\B(j)ϕ2 :=
∫

�\B

∂G2(x, y; k2)
∂ν(y)

ϕ2(y) ds(y).

Obviously, K�\B(j) : H– 1
2

α (� \B) → H
1
2
α (� \B) is uniformly bounded for j ∈N+. Then, by the

fact that ϕ2 ∈ L2
α(� \ B), we obtain that q3j(x) := K�\B(j)ϕ2 satisfies the Dirichlet problem

(2.24), with the boundary data w = q1j replaced by w = q3j on �̃. Then using similar argu-
ments as those in the proof of q1j ∈ H1

α(�–(h)\B) yields that q3j ∈ H1
α(�–(h)\B) uniformly

for j ∈ N+. We also define

q4j(x) :=
∫

�∩B

∂G2(x, y; k2)
∂ν(y)

ϕ2(y) ds(y).

The uniform boundedness of q4j ∈ H1
α(�–(h) \ B) for j ∈ N+ can be concluded from

the positive distance between the region (�–(h) \ B) and y0. Finally, the desired result
(2.20) follows from the discussions below (2.24). The proof of the theorem is thus com-
pleted. �

3 Uniqueness of the inverse problem
In this section we mainly focus on the inverse problem of determining the periodic in-
terface by means of the near-field data measured from one side of the periodic interface.
To address this issue, we first introduce a mixed-reciprocity relation between the incident
plane wave (1.1) and the incident point source (2.6). To accomplish this, we let α̂ := –α

and consider an incident point source located at z ∈ �+ taking the form

G1(x, z; k1) =
i

8π2

∑

n∈Z2

1
β̂+

n
exp

(

iα̂n · (̃x – z̃) + iβ̂+
n |x3 – z3|

)

, x �= z (3.1)
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with the coefficients α̂n, β̂+
n defined by αn,β+

n with α replaced by α̂, respectively. Then the
inverse scattering of the incident point source G1(·, z; k1) by the two-layered periodic in-
terface can be formulated as the following α̂-quasi-periodic problem:

�v̂1 + k2
1 v̂1 = 0 in �+ \ {z}, (3.2)

�v̂2 + k2
2 v̂2 = 0 in �–, (3.3)

v̂1 = v̂2,
∂ v̂1

∂ν
= λ

∂ v̂2

∂ν
on �, (3.4)

v̂s(x) =
∑

n∈Z2

v̂+
n exp

(

iα̂n · x̃ + iβ̂+
n x3

)

, x3 > A1, (3.5)

v̂2(x) =
∑

n∈Z2

v̂–
n exp

(

iα̂n · x̃ – iβ̂–
n x3

)

, x3 < A2. (3.6)

Here, both v̂1 in �+ and v̂2 in �– satisfy the α̂-quasi-periodic condition

v̂j (̃x + 2nπ , x3) = ei2α̂·nπ v̂j (̃x, x3), j = 1, 2.

Moreover, we write the scattered field v̂s(·, z) := v̂1(·, z) – G1(·, z; k1) indicates the depen-
dance of the wave field on the location of the point source, and let v(·; m) and us(·; m) be
the scattered solution to problem (1.2)–(1.6) with respect to the incident wave ui(x; m) =
exp(iαm · x̃ – iβ+

mx3), m ∈ Z
2. Therefore, we have the following mixed-reciprocity relation

(for a proof, we refer to [34, Lemma 4.1]).

Lemma 3.1 For z0 ∈ �+, let v̂+
n(z0) be the Rayleigh coefficients of v̂s

1(·; z0). Then it holds that

us
1(z0; m) = –8π2iβ̂+

–mv̂+
–m(z0) for all m ∈ Z

2. (3.7)

Now we are in a position to present a uniqueness theorem for our inverse problem. The
proof mainly depends on the a priori estimates established in Sect. 2 and a construction
of a well-posed transmission problem in a sufficiently small domain.

Theorem 3.2 Let us
1(·; m) and ũs

1(·; m) be the scattered fields corresponding to problem
(1.2)–(1.6) with respect to the different bi-periodic interfaces � and ˜�, respectively, in-
duced by the same incident field ui(x; m) = exp(iαm · x̃ – iβ+

mx3), m ∈ Z
2. If us

1(·; m)|�+(h) =
ũs

1(·; m)|�+(h) for all incident fields ui(x; m)m ∈ Z
2, then we have � = ˜�.

Proof We shall prove the assertion by contradiction. Assume contrarily that � �= ˜�. With-
out loss of generality, we can choose a point z∗ ∈ � \ ˜� satisfying that f (̃z∗) >˜f (̃z∗) with
z∗ = (̃z∗, z3). Then we define the sequence

zj := z∗ –
δ

j
ν
(

z∗) for j = 1, 2, . . . · · · (3.8)

with sufficiently small δ > 0 such that zj ∈ Bε0 (z∗) ⊆ (�+ ∩ ˜�+) for all j ∈N+, where Bε0 (z∗)
is a small ball centered at z∗ with the radius ε0 > 0.
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Let (v̂1(·; zj), v̂2(·; zj)) and ( ˆ̃v1(·; zj), ˆ̃v2(·; zj)) be the solutions to problem (3.2)–(3.6) corre-
sponding to the same α̂-quasi-periodic incident point source v̂i = Ĝ(·, zj) with zj defined
by (3.8). Then one obtains from Lemma 3.1 that

us
1(zj; m) = –8π2iβ̂+

–mv̂+
–m(zj) and ũs

1(zj; m) = –8π2iβ̂+
–m

ˆ̃v+
–m(zj) (3.9)

for all m ∈ Z
2, where v̂+

–m(zj) and ˆ̃v+
–m(zj) denote the Rayleigh coefficients of the scattered

fields v̂s(·; zj) and ˆ̃vs
(·; zj), respectively. By the assumption that us

1(·; m)|�+(h) = ũs
1(·; m)|�+(h)

for all incident fields ui(x; m)m ∈ Z
2, we arrive at that v̂+

–m(zj) = ˆ̃v+
–m(zj), m ∈ Z

2. This in
combination with the Rayleigh expansions and the unique continuation principle implies
that

v̂1(·; zj) = ˆ̃v1(·; zj) in �+ ∩ ˜�+ (3.10)

for all j ∈N+.
Denote D0 := Bε0 (z∗) ∩ �– with sufficiently small ε0 > 0 such that D0 ⊆ (�– ∩ ˜�+). Let

Uj := ˆ̃v1(·; zj) and Wj := v̂2(·; zj), it is observed that (Uj, Wj) satisfies the following modified
interior transmission problem:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

�Uj – Uj = g1,j in D0,

�Wj – Wj = g2,j in D0,

Uj – Wj = h1,j on ∂D0,
∂Uj
∂ν

– λ
∂Wj
∂ν

= h2,j on ∂D0

(3.11)

with the right terms and the boundary data

g1,j := –
(

k2
1 + 1

) ˆ̃v1(·; zj), g2,j := –
(

k2
2 + 1

)

v̂2(·; zj),

h1,j := ˆ̃v1(·; zj) – v̂2(·; zj), h2,j :=
∂ ˆ̃v1(·; zj)

∂ν
– λ

∂ v̂2(·; zj)
∂ν

.

Clearly, one has that h1,j = h2,j on ∂D0 ∩�. Since Z∗ has a positive distance from ˜�, we ob-
tain that ˆ̃vs

(·; zj) ∈ H1(D0) uniformly for all j ∈N+. In view of the fact that Ĝ(·, zj) ∈ L2(D0)
uniformly for all j ∈ N+, it is deduced that g1,j ∈ L2(D0) uniformly for all j ∈ N+. The uni-
form boundedness of g2,j in L2(D0) for all j ∈N+ is a direct consequence of Corollary 2.2 in
Sect. 2. Moreover, arguing similarly as in [36, Theorem 2.9], one derives from the fact that
h1,j = h2,j on ∂D0 ∩ � that h1,j ∈ H1/2(∂D0) and h2,j ∈ H–1/2(∂D0), respectively, uniformly
for all j ∈N+. Therefore, by the well-posedness of problem (3.11), we have

∥

∥Ĝ(·, zj)
∥

∥

H1(D0) –
∥

∥ ˆ̃vs
(·; zj)

∥

∥

H1(D0) ≤ ∥

∥ ˆ̃v(·; zj)
∥

∥

H1(D0) = ‖Uj‖H1(D0) ≤ C.

However, the above inequality is a contradiction since ‖ˆ̃vs
(·; zj)‖H1(D0) is uniformly bounded

and ‖Ĝ(·, zj)‖H1(D0) → ∞ as j → ∞. Therefore, one concludes that � = ˜�. This completes
the proof of the theorem. �
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