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Maria Luminiţa Scutaru1, Sorin Vlase1,2, Marin Marin3* and Arina Modrea4

*Correspondence:
m.marin@unitbv.ro
3Department of Mathematics,
Transilvania University of Braşov,
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Abstract
An important stage in an analysis of a multibody system (MBS) with elastic elements
by the finite element method is the assembly of the equations of motion for the
whole system. This assembly, which seems like an empirical process as it is applied
and described, is in fact the result of applying variational formulations to the whole
considered system, putting together all the finite elements used in modeling and
introducing constraints between the elements, which are, in general, nonholonomic.
In the paper, we apply the method of Maggi’s equations to realize the assembly of the
equations of motion for a planar mechanical systems using finite two-dimensional
elements. This presents some advantages in the case of mechanical systems with
nonholonomic liaisons.
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1 Introduction
In the dynamic analysis of an MBS that has one or more elastic elements, the method
used mainly in the study is the finite element method (FEM). The main step in this study
is obtaining the equations of motion for the finite elements. For this purpose, there are
several methods that can be applied, but the method of Lagrange equations [1–3] remains
the most used one. The advantages of this method are:

- The generalized coordinates need not be the Cartesian coordinates;
- Use only with scalar quantities (kinetic energy, potential energy, mechanical work)

instead of vectors;
- Once the Lagrangian is determined, the problem solving is reduced to the calculation

of partial derivatives in a certain order.
- Most of the works in the field studying the mechanical response of elastic systems

with FEM use the method of Lagrange equations, mainly because the researchers are
familiar with this approach and obtaining the equations of motion is easy [4–6].

However, analytical mechanics offers alternative formalism to be applied in the analysis
of elastic mechanical systems. In recent years, there are papers that analyze the known
methods from analytical mechanics to determine the mechanical response of some MBS
with elastic elements. The Gibbs–Appell, Hamilton, Maggi, Jacobi, or equivalent formu-
lations are possible.
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Gibbs–Appell equations have started to be used lately in calculating the dynamic re-
sponse of an MBS. These equations present the main advantage that the number of oper-
ations required to be applied in this case for a system is smaller than in the case of applying
Lagrange equations. A disadvantage and explanation of the small-scale application of the
method is that researchers are less familiar with these methods.

The Gibbs–Appell method is convenient in solving the problems related to the dynam-
ics of nonholonomic systems. Developed independently by Gibbs (1879) [7] and Appell
(1899) [8], the method consists of replacing a Lagrange function by the energy of acceler-
ations and is essentially based on the Gauss principle of least constraint. In recent years,
the Gibbs–Appell formalism has begun to be applied more often to a class of MBS systems
[9–12]. For nonholonomic systems, Kane’s equations can also be used, and it seems that
in the last decade, their use has begun to be applied to problems that require the dynamic
analysis of complex systems. The latest research on applying the method to MBS systems
with elastic elements can be found in [13–17].

2 Maggi’s equations
Maggi’s equations [7, 18], although little applied, are known from (1896), and the way of
obtaining this alternative formalism from the analytical mechanics is found in numerous
works [19–23]. We will point out only the main steps and notions to understand the ap-
plication in this paper. We consider a nonholonomic mechanical system whose behavior
is described by means of n parameters. These parameters are linked by m linear relation-
ships

n∑

j=1

bij(q1, q2, . . . , qn, t)q̇j + bi(q1, q2, . . . , qn, t) = 0, i = 1, m, (1)

or, explicitly,

⎡

⎢⎢⎢⎢⎣

b11 b12 . . . b1n

b21 c22 · · · b2n
...

...
bm1 bm2 · · · bmn

⎤

⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q̇1

q̇2
...

q̇n

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

+

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

b1

b2
...

bn

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

= 0. (2)

By a virtual displacement of the n coordinates q1, q2, . . . , qn relation (2) becomes [7, 8]

⎡

⎢⎢⎢⎢⎣

b11 b12 . . . b1n

b21 b22 · · · b2n
...

...
bm1 bm2 · · · bmn

⎤

⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δq1

δq2
...

δqn

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

= 0. (3)

The m relations (1) give us the expression of all coordinates according to n-m of them,
which will be independent coordinates. We renumber these coordinates in the following
manner: the independent coordinates will be δq1, δq2, . . . , δqn–m, and the dependent ones
are renumbered as δqn–m+1, δqn–m+2, . . . , δqn. With these notations, we get the following
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relations:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δqn–m+1

δqn–m+2
...

δqn

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎡

⎢⎢⎢⎢⎣

c11 c12 . . . c1,n–m

c21 c22 · · · c2,n–m
...

...
cm,1 cm,2 · · · cm,n–m

⎤

⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δq1

δq2
...

δqn–m

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

= [Cmx(m–n)]{δq̃}, (4)

or

[Cmx(n–m)] =

⎡

⎢⎢⎢⎢⎣

c11 c12 . . . c1,n–m

c21 c22 · · · c2,n–m
...

...
cm,1 cm,2 · · · cm,n–m

⎤

⎥⎥⎥⎥⎦
; {δq̃} =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δq1

δq2
...

δqn–m

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (5)

So the coordinate vector {δq}, using (4), can be expressed as

{δq} =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δq1

δq2
...

δqn

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

[
En–m

Cmx(n–m)

]
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δq1

δq2
...

δqn–m

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

= [Anx(n–m)]

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δq1

δq2
...

δqn–m

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

= [Anx(n–m)]{δq̃} (6)

or

δqk =
n–m∑

j=1

akjδqj, k = 1, n. (7)

If {Ma} represents the Maggi vector with the components

Ma(k) =
(

d
dt

(
∂T
∂ q̇k

)
–

∂T
∂qk

)
– Fk , k = 1, n, (8)

then Maggi’s equations are obtained if the following condition is satisfied [7–9]:

{Ma}T {δq} = 0, (9)

or, equivalently,

{δq}T {Ma} = 0. (10)

Using relation (10) in relation (7), we obtain

n∑

k=1

{[(
d
dt

(
∂T
∂ q̇k

)
–

∂T
∂qk

)
– Fk

] n–m∑

j=1

akjδqj

}
= 0. (11)

The coordinates q1, q2, . . . , qn–m being independent, this results in

n∑

k=1

akj

[(
d
dt

(
∂T
∂q̇k

)
–

∂T
∂qk

)
– Fk

]
= 0, j = 1, n – m, (12)
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or

[A]T {Ma} = 0. (13)

Relation (13) represents the Maggi equations, a system of n-m second-order differential
equations, where

[A] =

⎡

⎢⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 · · · a2n
...

...
am1 am2 · · · amn

⎤

⎥⎥⎥⎥⎦
. (14)

These equations offer the unknown independent coordinates q1, q2, . . . , qn–m and then the
dependent coordinates δqn–m+1, δqn–m+2, . . . , δqn.

3 Kinematics and kinetic energy
In the application of the methods of analytical mechanics a fundamental role is played
by the kinetic energy, which must be calculated for the studied system. Applying Maggi’s
method, the calculation of kinetic energy is the essential step. Therefore, for the study of
a solid elastic body discretized into finite elements, kinetic energy calculation is required.
Then the kinetic energy calculation for a single element is done, after which the calcu-
lation of the kinetic energy for the whole assembly is obtained by a simple summation.
The calculation is done for two-dimensional finite elements. In the analysis with finite el-
ements the displacement of a certain point of the element is described by means of nodal
displacements and, possibly, their derivatives, which are the generalized coordinates. For
this, a set of shape functions is used.

The speed of an arbitrary point of the finite element is given (see Fig. 1) by the relation
[15, 17]

{vM′ }G = {ṙM′ }G = {vO}G + [Ṙ]{r}L + [Ṙ][N]{δ}L + [R][N]{δ̇}L, (15)

where {vO}G = {ṙO}G represents the velocity vector of the origin of the mobile reference
system with components expressed in the global system, {r}L is the position vector of the

Figure 1 Two-dimensional finite element
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current point with the coordinates expressed in the mobile system, {δ}L is the vector of
nodal coordinates, [N] is the shape function matrix, [R] represents the rotation matrix
that makes the transition from the mobile reference system to the fixed reference system,
and [Ṙ] is the derivative of [R] with respect to time.

In the following, the quantities that are expressed in the global reference frame will be
indexed by G, and those expressed in the local reference frame will be indexed by L. In the
case of a vector the transformation from one reference system to another is done through
the matrix [R]:

{t}G = [R]{t}L, (16)

where

[R] =

[
cos θ – sin θ

sin θ cos θ

]
. (17)

The transformation matrix [R] is orthonormal, thereby

[R][R]T = [R]T [R] = [E] =

[
1 0
0 1

]
, (18)

where [E] is the unit matrix. By differentiating (18) we get

[Ṙ][R]T + [R][Ṙ]T = [Ṙ]T [R] + [R]T [Ṙ] = [0], (19)

where

[ω]G = [Ṙ][R]T = –[R][Ṙ]T =

[
0 –ω

ω 0

]
(20)

is the skew symmetric operator angular velocity expressed in the global coordinate system,
corresponding to the vector angular velocity ω. We have the relation

[ω]G = –[ω]T
G. (21)

The operator angular acceleration is

[ε]G = [ω̇]G =

[
0 –ω̇

ω̇ 0

]
= [R̈][R]T + [Ṙ][Ṙ]T =

[
0 –ε

ε 0

]
. (22)

The following relations are valuable too:

[R]T [R̈] = [ε]L – [Ṙ]T [Ṙ] = [ε]L + [ω]L[ω]L =

[
–ω2 –ε

ε –ω2

]
(23)

and

[Ṙ]T [Ṙ] = –[ω]L[ω]L = ω2

[
1 0
0 1

]
. (24)
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The kinetic energy is (see the expanded form in Appendix A)

T =
1
2

∫

V
ρ{vM′ }T

G{vM′ }G dV . (25)

The relation between the independent coordinate vector in the mobile and global refer-
ence frames is obtain by the relations [6]

{δ}G = [S]{δ}L, {δ}L = [S]T {δ}G, (26)

where [S] provides this transformation.
The kinetic energy for an arbitrary element e becomes, after some elementary calculus

(Appendix A),

Te =
1
2

mv2
O + {vO}T

G[Ṙ]{SO}L + {vO}T
G[Ṙ]

[
mi

O
]
[S]T {δ}G + {ṙO}T

G[R]
[
mi

O
]
[S]T {δ̇}G

+
1
2
ω2[JO] + ω2([m1x] + [m2y]

)
[S]T {δ}G + ω

(
[m2x] – [m1y]

)
[S]T {δ̇}G

+
1
2
ω2{δ}T

G[S][m][S]{δ}G + ω{δ}T
G[S]

(
[m12] – [m21]

)
[S]T {δ̇}G

+
1
2
{δ̇}T

G[S][m][S]T{δ̇}G. (27)

The notations and intermediate calculus are presented in Appendix B. For ease of presen-
tation, we do not put the index e in expression (27) since all the quantities are expressed
for the eth finite element. The index e will be further added in the chapter dedicated to
Maggi equations. The following notations will be further used:

Te0 = {vO}T
G[Ṙ]

[
mi

O
]
[S]T {δ}G + ω2([m1x] + [m2y]

)
[S]T{δ}G

+
ω2

2
{δ}T

G[S][m][S]T{δ}G (28)

represents the part of kinetic energy that contains {δ} but not {δ̇}G.

Te10 = ω{δ}T
G[S]

(
[m12] – [m21]

)
[S]T {δ̇}G (29)

is the term that contains both {δ} and {δ̇}G.

Te1 = {ṙO}T
G[R]

[
mi

O
]
[S]T {δ̇}G – ω

(
[–m1y] + [m2x]

)
[S]T {δ̇}G + {δ̇}T

G[S][m][S]T{δ̇}G (30)

represents the part of kinetic energy that contains {δ̇}G but not {δ}, and Ter is the term that
contains neither {δ} nor {δ̇}G. Then

Te = Te0 + Te1 + Te01 + Ter . (31)

To determine the equations of motion for the finite element, Lagrange equations will be
applied. The Lagrangian for the element is

Le = Te – Ve + W ext
e + W liaison

e . (32)
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We first calculate
{

∂Te

∂{δ}G

}
=
{

∂(Te0 + Te01)
∂{δ}G

}

= {vO}T
G[Ṙ]

[
mi

O
]
[S]T –

{
Qi

e(ω)
}

–
[
Ke

(
ω2)] +

1
2

[Ce]{δ̇}G, (33)
{

∂Te

∂{δ̇}G

}
=
{

∂(Te01 + Te1)
∂{δ̇}G

}

= {ṙO}T
G[R]

[
mi

O
]
[S]T + ω

(
[–m1y] + [m2x]

)
[S]T

+ [S][m][S]T{δ̇}G + ω[S]
(
[m12] – [m21]

)
[S]T {δ}G, (34)

d
dt

{
∂Te

∂{δ̇}G

}
=

d
dt

{
∂(Te01 + Te1)

∂{δ̇}G

}

=
[
Mi

Oe
]{r̈O}T

G +
{

Qi
e(ε)

}
+ [Me]{δ̈}G +

[
Ke(ε)

]{δ}G +
1
2

[Ce]{δ̇}G. (35)

Using the notations presented in Appendix B, after some calculus, from (33), (34), and (35)
we get

d
dt

{
∂Te

∂{δ̇e}G

}
–
{

∂Te

∂{δe}G

}

= [Me]{δ̈e}G + [Ce]{δ̇e}G +
([

Ke(ε)
]

+
[
Ke(ω)

]){δe}G

+
{

Qi
e(ε)

}
+
{

Qi
e(ω)

}
+
[
Mi

Oe
]{r̈Oe}G, (36)

where the following notations are used:

[Me] = [S][m][S]T ; [Ce] = 2ω[S]
(
[m12] – [m21]

)
[S]T ;

[
Ke(ε)

]
= [S]

(
[m12] – [m21]

)
[S]T ;

[
Ke(ω)

]
= ω2[S][m][S]T ;

[
Mi

Oe
]

= [S]
[
mi

O
]T [R]T ;

{
Qi

e(ω)
}

= ω2([m1x] + [m2y]
)
[S]T ;

{
Qi

e(ε)
}

= ε
(
[–m1y] + [m2x]

)
[S]T .

(37)

By { ∂T
∂{δ} } and { ∂T

∂{δ̇} } we denote

[
∂T
∂δ1

∂T
∂δ2

. . . . . . ∂T
∂δse

]T

and
[

∂T
∂δ̇1

∂T
∂δ̇2

. . . . . . ∂T
∂δ̇se

]T
,

respectively.
Taking into account the expression of the potential energy and the work of the concen-

trated and distributed forces, in this case, Lagrange equations give the following equations
of motion of the finite element:

[Me]{δ̈e}G + [Ce]{δ̇e}G +
(
[K] +

[
Ke(ε)

]
+
[
Ke(ω)

]){δe}G

=
{

Qext
e
}

+
{

Qliaison
e

}
+
{

Qi
e(ε)

}
+
{

Qi
e(ω)

}
+
[
Mi

Oe
]{r̈Oe}G. (38)
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4 Maggi’s formalism applied to MBS
To apply Maggi’s methodm it is necessary to write the kinetic energy for the whole system.
This kinetic energy is the sum of the kinetic energies written for each element (rel. (22)).
It follows that

T =
1
2

Ne∑

e=1

Te, (39)

where Ne is the number of elements, and T0 represents the part of kinetic energy that
contains the coordinates of the nodes but not their derivatives:

T0 =
Ne∑

e=1

(
{vOe}T

G[Ṙe]
[
mi

Oe
]
[Se]T {δe}G + ω2

e
(
[m1x,e] + [m2y,e]

)
[Se]T {δe}G

+
ω2

e
2

{δe}T
G[Se][me][Se]T {δe}G

)
. (40)

T10 represents the terms that contain both the coordinates and their derivatives:

T10 =
Ne∑

e=1

ωe{δe}T
G[Se]

(
[m12,e] – [m21,e]

)
[Se]T {δ̇e}G. (41)

T1 represents the part of kinetic energy containing no coordinates but containing their
derivatives, and Tr is the term that does not contain coordinates and their derivatives:

T1 =
Ne∑

e=1

[{ṙOe}T
G[Re]

[
mi

Oe
]
[Se]T {δ̇e}G – ωe

(
[–m1y,e] + [m2x,e]

)
[Se]T {δ̇e}G

+ {δ̇e}T
G[Se][me][Se]T {δ̇e}G

]
. (42)

Note that

[
A(Bi)

]
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

B1

B2 0
. . .

0
Bn

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

;
{

A(Bi)
}

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

B1

B2
...

Bn

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (43)

To apply the Maggi equations, we first calculate

{
∂T

∂{�}
}

=
Ne∑

e=1

{
∂(T0,e + T01,e)

∂{δe}G

}

=
Ne∑

e=1

(
{vOe}T

G[Ṙe]
[
mi

Oe
]
[Se]T –

{
Qi

e(ωe)
}

–
[
Ke

(
ω2

e
)]

+
1
2

[Ce]{δ̇e}G

)
, (44)
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d
dt

{
∂T

∂{�̇}
}

=
Ne∑

e=1

d
dt

{
∂(Te01 + Te1)

∂{δ̇e}G

}

=
Ne∑

e=1

([
Mi

Oe
]{r̈O}T

G +
{

Qi
e(ε)

}
+ [Me]{δ̈}G +

[
Ke(ε)

]{δ}G +
1
2

[Ce]{δ̇}G

)
. (45)

This results in

d
dt

{
∂T

∂{�̇}
}

–
{

∂T
∂{�}

}

=
Ne∑

e=1

(
[Me]{δ̈e}G + [Ce]{δ̇e}G +

([
Ke(ε)

]
+
[
Ke(ω)

]){δe}G

+
{

Qi
e(ε)

}
+
{

Qi
e(ω)

}
+
[
Mi

Oe
]{r̈Oe}G

)
. (46)

Considering the notations from Appendix B and

[M] =
[
A(Me)

]
, [C] =

[
A(Ce)

]
, [K] =

[
A(Ke)

]
,

[
K(ε)

]
=
[
A(Ke(εe)

]
,

[
K(ω)

]
=
[
A(Ke(ωe)

]
, {Q} =

{
A(Qe)

}
,

{
Qi(ε)

}
=
{

A
(
Qi

e(εe)
)}

,
{

Qi(ω)
}

=
{

A
(
Qi

e(ωe)
)}

,
{

Qi
O
}

=
{

A
([

Mi
Oe
]{r̈Oe}G

)}
,

{�} =
{

A
({δe}G

)}
, {�̇} =

{
A
({δ̇e}G

)}
, {�̈} =

{
A
({δ̈e}G

)}
,

(47)

we can write:

Ne∑

e=1

[Me]{δ̈e}G =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

M1

M2 0
. . .

0
MNe

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{δ̈1}G

{δ̈2}G
...

{δ̈Ne}G

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

= [M]{�̈}, (48)

Ne∑

e=1

[Ce]{δ̈e}G =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

C1

C2 0
. . .

0
CNe

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{δ̇1}G

{δ̇2}G
...

{δ̇Ne}G

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

= [C]{�̇}, (49)

and so on. Finally, we obtain

d
dt

{
∂T

∂{�̇}
}

–
{

∂T
∂{�}

}
= [M]{�̈} + [C]{�̇} +

(
[K] +

[
K(ε)

]
+
[
K(ω)

]){�}

+
{

Qi(ε)
}

+
{

Qi(ω)
}

+
{

Qi
O
}

. (50)

The finite elements are connected to each other. Some nodes may belong to several
elements. In this case the displacements for the elements connected through a common
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node are equal. These liaisons between nodes can be expressed by linear relationships of
form (51), which, in this case, are written as:

{�} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�1

�2
...
...

�M

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

= [A]{q}; {�̇} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̇1

�̇2
...
...

�̇M

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

= [A]{q̇}; {�̈} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̈1

�̈2
...
...

�̈M

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

= [A]{q̈}. (51)

Here {q} is the vector of independent coordinates of the whole system. Considering (50),
it is possible to write

d
dt

{
∂T
∂�̇

}
–
{

∂T
∂�

}
–
{

Qext} –
{

Qliaison}

= [M]{�̈} + [C]{�̇} +
(
[K] +

[
K(ε)

]
+
[
K(ω)

]){�}
–
{

Qi(ε)
}

–
{

Qi(ω)
}

–
{

Qi
O
}

–
{

Qext)
}

–
{

Qliaison)
}

. (52)

Applying the Maggi equations (A.1) and (A.2) using relation (52), we finally obtain:

[A]T [M]{�̈} + [A]T [C]{�̇} + [A]T([K] +
[
K(ε)

]
+
[
K(ω)

]){�}
– [A]T{Qi(ε)

}
– [A]T{Qi(ω)

}
– [A]T{Qi

O
}

– [A]T{Qext)
}

– [A]T{Qliaison)
}

= 0. (53)

The work of the liaison forces is null [17]:

[A]T{Qliaison} = 0. (54)

Taking into account relation (54), the Maggi equations become

[A]T [M][A]{q̈} + [A]T [C][A]{q̇} + [A]T([K] +
[
K(ε)

]
+
[
K(ω)

])
[A]{q}

= –[A]T{Qi(ε)
}

– [A]T{Qi(ω)
}

– [A]T{Qi
O
}

– [A]T{Qext}. (55)

Using the notations

[M̃] = [A]T [M][A]{q̈}, [C] = [A]T [C][A],

[K̃] = [A]T [K][A],
[
K̃(ε)

]
= [A]T[K(ε)

]
[A],

(56)

we arrive at the final form of the motion equations:

[M̃]{q̈} + [C̃]{q̇} +
(
[K̃] +

[
K̃(ε)

]
+
[
K̃(ω)

]){q}
= –

{
Q̃i(ε)

}
–
{

Q̃i(ω)
}

–
{

Q̃i
O
}

–
{

Q̃ext}.
(57)

These equations have the same form as those obtained by using Lagrange equations [17].
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5 Conclusions
Maggi’s equations have been used sporadically in applications, but in the case of finite
element analysis of a planar mechanism, it is their first use. In the analysis of MBS with
elastic elements, one of the steps that has to be completed is the assembly of the equa-
tions of motion, to obtain a complete system of differential equations that describes the
evolution of the considered mechanical system. To do this, several methods can be used,
equivalent to each other: Lagrange equations, Newton–Euler equations, Kane’s Mmethod,
or Maggi’s equations. Each of these methods has advantages and disadvantages that have
been highlighted, more or less, in different works presented in the Introduction. For ex-
ample, the Newton–Euler method offers the advantage of being able to obtain equations
that are formally independent of geometry, inertia, or bonds. The main disadvantage is
that the liaison forces and moments must be determined. When dealing with a system
with a reduced number of degrees of freedom, this method can proved to be very useful.
If, however, we deal with a system with a large number of degrees of freedom, then it may
be advantageous to use the Lagrange equation method. In this case, it can be difficult to
determine the generalized liaison forces, and Lagrange equations offer a useful formalism
in this stage. Another advantage is that Lagrange equations have a homogeneous form,
which suits to generalizations for large systems. This is why the method was used by soft-
ware developers (ADAMS, DADS, DYMAC).

There are other developers that offer an equivalent form from the point of view of an-
alytical mechanics, namely the use of Kane’s equations (i.e. SD-EXACT, NBOD2, SD /
FAST). In essence, Kane’s equations represent a formalism equivalent to Maggi’s equa-
tions, a development of this method. As a result, it is natural to study whether it can be
more advantageous to apply Maggi’s equations directly to MBS systems with elastic ele-
ments, resulting in a computational economy. In the paper, we presented the possibility
of using Maggi’s equations for MBS systems with two-dimensional elastic elements hav-
ing a plane motion. This type of systems meets current in engineering practice; there are
numerous mechanisms that operate in industries and belong to this category. In this way,
a unitary and simple approach of such systems can be made, which could allow the devel-
opment of software that uses this method. Maggi’s equations can provide a simple solu-
tion to the problem of assembling the equations of motion of individual finite elements.
Thus, it is sufficient to know the kinetic energy of the system and the internal and external
forces. Then the kinematic relations of liaison between the independent coordinates and
the equations of motion of the whole system can be obtained in a simple way.

We can conclude that the application of this method has an advantage over the use of
Lagrange equations because the number of unknowns involved is lower. It is no longer
need to calculate the Lagrange multipliers. For this reason, the number of equations to be
solved and computer time are reduced. It is worth mentioning that the Maggi method is
very suitable for systems with nonholonomic constraints.

Appendix A

T =
1
2

∫

V
ρ{vM′ }T

G{vM′ }G dV

=
1
2

∫

V
ρ
({ṙO}T

G{ṙO}G + 2{ṙO}T
G[Ṙ]{r}L + 2{ṙO}T

G[Ṙ][N]{δ}L
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+ 2{ṙO}T
G[R][N]{δ̇}L

)
dV +

1
2

∫

V
ρ
({r}T

L [Ṙ]T [Ṙ]{r}L

+ 2{r}T
L [Ṙ]T [Ṙ][N]{δ}L + 2{r}T

L [Ṙ]T [R][N]{δ̇}L
)

dV

+
1
2

∫

V
ρ
({δ}T

L [N]T [Ṙ]T [Ṙ][N]{δ}L

+ 2{δ}T
L [N]T [Ṙ]T [R][N]{δ̇}L + {δ̇}T

L [N]T [N]{δ̇}L
)

dV , (A.1)

Te =
1
2

∫

V
ρ
({ṙO}T

G{ṙO}G + 2{ṙO}T
G[Ṙ]{r}L + 2{ṙO}T

G[Ṙ][N][S]T{δ}G

+ 2{ṙO}T
G[R][N][S]T{δ̇}G

)
dV +

1
2

∫

V
ρ
({r}T

L [Ṙ]T [Ṙ]{r}L

+ 2{r}T
L [Ṙ]T [Ṙ][N][S]T{δ}G + 2{r}T

L [Ṙ]T [R][N][S]T{δ̇}G
)

dV

+
1
2

∫

V
ρ
({δ}T

G[S][N]T [Ṙ]T [Ṙ][N][S]T{δ}G

+ 2{δ}T
G[S][N]T [Ṙ]T [R][N][S]T{δ̇}G + {δ̇}T

G[S][N]T [N][S]T{δ̇}G
)

dV ; (A.2)
{

∂Te

∂{δ}G

}
=
{

∂(Te0 + Te01)
∂{δ}G

}

= {vO}T
G[Ṙ]

[
mi

O
]
[S]T – ω2([m1x] + [m2y]

)
[S]T

– ω2[S][m][S]T{δ}G + ω[S]
(
[m12] – [m21]

)
[S]T {δ̇}G

= {vO}T
G[Ṙ]

[
mi

O
]
[S]T –

{
Qi

e(ω)
}

–
[
Ke

(
ω2)] +

1
2

[Ce]{δ̇}G; (A.3)
{

∂Te

∂{δ̇}G

}
=
{

∂(Te01 + Te1)
∂{δ̇}G

}

= {ṙO}T
G[R]

[
mi

O
]
[S]T + ω

(
[–m1y] + [m2x]

)
[S]T

+ [S][m][S]T{δ̇}G + ω[S]
(
[m12] – [m21]

)
[S]T {δ}G; (A.4)

d
dt

{
∂Te

∂{δ̇}G

}
=

d
dt

{
∂(Te01 + Te1)

∂{δ̇}G

}

= {r̈O}T
G[R]

[
mi

O
]
[S]T + ε

(
[–m1y] + [m2x]

)
[S]T

+ [S][m][S]T{δ̈}G + ε[S]
(
[m12] – [m21]

)
[S]T {δ}G

+ ω[S]
(
[m12] – [m21]

)
[S]T{δ̇}G =

[
Mi

Oe
]{r̈O}T

G

+
{

Qi
e(ε)

}
+ [Me]{δ̈}G +

[
Ke(ε)

]{δ}G +
1
2

[Ce]{δ̇}G; (A.5)

T =
1
2

Ne∑

e=1

Te

=
Ne∑

e=1

(
1
2

mev2
Oe + {vOe}T

G[Ṙe]{SOe}L + {vOe}T
G[Ṙe]

[
mi

Oe
]
[Se]T {δe}G

+ {ṙOe}T
G[Re]

[
mi

Oe
]
[Se]T {δ̇e}G

)

+
Ne∑

e=1

(
1
2
ω2

e [JOe] + ω2
e
(
[m1x,e] + [m2y,e]

)
[Se]T {δe}G
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+ ωe
(
[m2x,e] – [m1y,e]

)
[Se]T {δ̇e}G

)

+
Ne∑

e=1

(
1
2
ωe

e{δe}T
G[Se][me][Se]{δe}G

+ ωe{δe}T
G[Se]

(
[m12,e] – [m21,e]

)
[Se]T {δ̇e}G

)

+
1
2

Ne∑

e=1

{δ̇e}T
G[Se][me][Se]T {δ̇e}G; (A.6)

T0 =
Ne∑

e=1

(
{vOe}T

G[Ṙe]
[
mi

Oe
]
[Se]T {δe}G + ω2

e
(
[m1x,e] + [m2y,e]

)
[Se]T {δe}G

+
ω2

e
2

{δe}T
G[Se][me][Se]T {δe}G

)
;

T10 =
Ne∑

e=1

ωe{δe}T
G[Se]

(
[m12,e] – [m21,e]

)
[Se]T {δ̇e}G; (A.7)

T1 =
Ne∑

e=1

[{ṙOe}T
G[Re]

[
mi

Oe
]
[Se]T {δ̇e}G – ωe

(
[–m1y,e] + [m2x,e]

)
[Se]T {δ̇e}G

+ {δ̇e}T
G[Se][me][Se]T {δ̇e}G

]
.

Appendix B
Let us consider the ten terms of kinetic energy (31):

• 1
2

∫

V
ρ{ṙO}T

G{ṙO}G dV =
v2

O
2

∫

V
ρ dV =

mv2
O

2
, (B.1)

where m is the mass of the finite element;

•
∫

V
ρ{ṙO}T

G[Ṙ]{r}L dV = {ṙO}T
G[Ṙ]

∫

V
ρ{r}L dV = {vO}T

G[Ṙ]{SO}L, (B.2)

where {SO} is the static moment of the finite element;

•
∫

V
ρ
({ṙO}T

G[Ṙ][N][S]T{δ}G
)

dV = {ṙO}T
G[Ṙ]

(∫

V
ρ[N] dV

)
[S]T {δ}G

= {vO}T
G[Ṙ]

[
mi

O
]
[S]T {δ}G, (B.3)

where [mi
O] =

∫
V ρ[N] dV is the mass of the element;

•
∫

V
ρ
({ṙO}T

G[R][N][S]T{δ̇}G
)

dV = {ṙO}T
G[R]

(∫

V
ρ[N] dV

)
[S]T {δ̇}G

= {vO}T
G[R]

[
mi

O
]
[S]T {δ̇}G; (B.4)

• 1
2

∫

V
ρ
({r}T

L [Ṙ]T [Ṙ]{r}L
)

dV =
1
2
ω2

∫

V
ρ{r}T

L {r}L dV =
1
2
ω2Jo, (B.5)

where JO =
∫

V
ρ{r}T

L {r}L dV ; (B.6)
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•
∫

V
ρ
({r}T

L [Ṙ]T [Ṙ][N][S]T{δ}G
)

dV

= ω2
[∫

V
ρ
(
[N(1)]x + [N(2)]y

)
dV

]
[S]T {δ}G = ω2([m1x] + [m2y]

)
[S]T {δ}G; (B.7)

where [m1x] =
∫

V
ρ[N(1)]x dV and [m2y] =

∫

V
ρ[N(2)]y dV ; (B.8)

∫

V
ρ
({r}T

L [Ṙ]T [R][N]
)

dV =
∫

V
ρ
({r}T

L [Ṙ]T [R][N]
)

dV [S]T {δ̇}G

=
∫

V
ρ

(
{r}T

L

[
0 ω

–ω 0

]
[N]

)
dV [S]T {δ̇}G

= ω

[∫

V
ρ
(
[N(2)]x – [N(1)]y

)
dV

]
[S]T {δ̇}

= ω
[
[m2x] – [m1y]

]
[S]T {δ̇}, (B.9)

where [m2x] =
∫

V
ρ[N(2)]x dV and [m1y] =

∫

V
ρ[N(1)]y dV ; (B.10)

1
2

∫

V
ρ
({δ}T

G[S][N]T [Ṙ]T [Ṙ][N][S]T{δ}G
)

dV

=
ω2

2
{δ}T

G[S]
(∫

V
[N]T [N] dV

)
[S]T {δ}G

=
ω2

2
{δ}T

G[S][m][S]T{δ}G. (B.11)

The following notations were also used:

[m11] =
∫

V
ρ[N(1)]T [N(1)] dV ; [m12] =

∫

V
ρ[N(1)]T [N(2)]y dV ; (B.12)

[m21] =
∫

V
ρ[N(2)]T [N(1)] dV ; [m22] =

∫

V
ρ[N(2)]T [N(2)]y dV ; (B.13)

[m] =
∫

V
ρ
(
[N(1)]T [N(1)] + [N(2)]T [N(2)]

)
dV = [m11] + [m22], (B.14)

•
∫

V
ρ{δ}T

G[S][N]T [Ṙ]T [R][N][S]T{δ̇}G dV

= {δ}T
G[S]

(∫

V
ρ[N]T [Ṙ]T [R][N] dV

)
[S]T {δ̇}G

= ω{δ}T
G[S]

[∫

V
ρ
(
[N(1)]T [N(2)] – [N(2)]T [N(1)]

)
dV

]
[S]T {δ̇}G

= ω{δ}T
G[S]

(
[m12] – [m21]

)
[S]T {δ̇}G; (B.15)

• 1
2

∫

V
ρ
({δ̇}T

G[S][N]T [N][S]T{δ̇}G
)

dV

=
1
2
{δ̇}T

G[S]
(∫

V
ρ[N]T [N] dV

)
[S]T {δ̇}G =

1
2
{δ̇}T

G[S][m][S]T{δ̇}G. (B.16)

The internal energy has the classical form

Ep = {δ}T
G[Ke]{δ}G. (B.17)
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The work of the concentrated and distributed external forces is

W ext = {Q}T {δ}G +
(∫

V
{p}T

G[N] dV
)

{δ}G

=
[
{Q}T +

(∫

V
{p}T

G[N] dV
)]

{δ}G =
{

Qext}T {δ}G. (B.18)

The work of the liaison forces is

W liaison =
{

Qliaison}T {δ}G. (B.19)
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