Rui and Wang Boundary Value Problems (2020) 2020:77 @ BOU n da ry Va I ue PrO b I ems
https://doi.org/10.1186/513661-020-01374-9 a SpringerOpen Journal

RESEARCH Open Access

Invariant tori of full dimension for

Check for
updates

higher-dimensional beam equations with
almost-periodic forcing

Jie Rui'” and Yi Wang?

“Correspondence: rjhygl@163.com
'College of Science, China
University of Petroleum, Qingdao,
People’s Republic of China

Full list of author information is
available at the end of the article

@ Springer

Abstract

In this paper, we focus on the class of almost-periodically forced higher-dimensional
beam equations

Ur + A+ 02U+ Ywtu=0, w>0teRxeR?,

subject to periodic boundary conditions, where 1 (wt) is real analytic and
almost-periodic in t. We show the existence of almost-periodic solutions for this
equation under some suitable hypotheses. In the proof, we improve the KAM
iteration to deal with the infinite-dimensional frequency @ = (w1, w;, .. .).
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1 Introduction

Recently, many researchers focus on some physical models appeared in dynamics of the
suspension bridge, nonrelativistic quantum mechanics, supersymmetric field theoriesk
and inflation cosmology [1-11]. For those models, there are many remarkable results on
the global existence or the blowup of solutions for wave equations [2—4], elliptic equa-
tions [5, 6], and some semilinear evolution equations [7]. As in the fundamental models,
the dynamical behavior of the solutions is studied. The decay estimate of the solution at
both subcritical and critical initial energy levels was obtained by Xu [2]. Nguyen [8] con-
sidered the compactness and stability for the Maxwell equations. Goubet and Manoubi
[9] investigated the asymptotic convergence of the solutions.

For one-dimensional Hamiltonian systems, the existence of quasiperiodic solutions or
almost-periodic solutions is also very significant in physics. It is well known that the
infinite-dimensional KAM theory is powerful to obtain it (see [12-21]). However, the
standard KAM theory fails to study higher-dimensional Hamiltonian PDEs because of
the multiplicity of the eigenvalues.
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It is worth noting that the first breakthrough in higher-dimensional PDEs is due to
Bourgain. Bourgain [22] obtained quasiperiodic solutions for two-dimensional nonlin-
ear Schrodinger equations via the developed Craig—Wayne methods. The Craig—Wayne—
Bourgain methods can overcome the difficulty of the asymptotical multiplicity of eigen-
values in higher-dimensional PDEs. However, it should also be pointed out that the KAM
theory has some important advantages. We can construct a local normal form in a neigh-
borhood of the solutions using the KAM theory, which turns out the behavior and dynam-
ics of the equation of motion. Thereafter, the infinite KAM theorem was extended to the
existence of finite-dimensional tori for higher-dimensional Hamiltonian systems. Geng
and You [23, 24] constructed KAM theorems for the higher-dimensional beam equation.
Yuan [25] obtained a KAM theorem to apply to partial differential equations of higher
dimensions.

However, there is a crucial condition in the KAM theorems in [23] and [24] that the
nonlinearity f(«) does not explicitly contain the time variable ¢ and the space variable x.
Thus their KAM approaches failed in the case of the nonlinearity depending on ¢ or x.
Physically, it requires no external force acting when the string is at rest, tending to distort
its equilibrium of # = 0. Up to now there are very few results on the reducibility in higher
dimensions. Eliasson and Kuksin [26] (also see [27]) showed the reducibility for the linear
Schrodinger equations in higher dimension

= —i(Au —eV(po + tw,x; a))u), xe T

Eliasson, Grébert, and Kuksin [28] also considered the d-dimensional beam equation,
which is a good model for the Klein—-Gordon equation. Rui and Liu [29] proved the
existence of quasiperiodic solutions for a linear d-dimensional beam equation with a
quasiperiodic in time potential.

Comparing with the case of quasiperiodic solutions in higher dimensions, as far as we
know, the reducibility results for almost-periodic solutions in higher dimensions have not
been previously regarded in the literature. In this paper, we focus on the reducibility of the
linear d-dimensional beam equation with almost-periodic forcing

U+ (A + W) lu+ Y (u=0, wu>0,teR,xeR?, (1.1)
with periodic boundary conditions
u(t,x1 + 27, ..., %4) = - = u(t, %1,...,%4 + 27) = u(t,x1,...,%4), (1.2)

where v (wt) is real analytic and almost-periodic in ¢. Our aim is to construct almost-
periodic solutions of small amplitude for the beam equation (1.1). This equation is an
important model of mathematical physics. It is of great interest in applying to many engi-
neering fields.

Our beam equation (1.1) is quite different from the equations mentioned. There is
almost-periodic forcing in higher dimensions, because the reducibility is complex and
doubtful. Unfortunately, all those KAM theorems fail to handle infinite-dimensional fre-
quency = (w1, wy,...) in Eq. (1.1). Using the method of Pdschel [19] and Xu and You
[30], we succeed in decomposing infinite-dimensional frequency in the reducibility. Our
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nonresonance condition of an infinite-dimensional frequency benefits a lot from Poschel
[14]. The main difficulty in this problem is estimating measures of small divisors, since the
infinite-dimensional frequency will handle at each step of the KAM iteration. The KAM
theory in Kuksin [12] and Pdschel [13] cannot be directly applied to the d-dimensional
beam equation with almost-periodic forcing, and we will improve the KAM iteration (see
Sect. 3). A new strategy to overcome the difficulty are the techniques of decomposing in-
finitely many frequencies and expanding Hamiltonian into proper series, which are the
main achievements of this paper. The author of this paper in [31] and [32] obtained the
existence of almost-periodic solutions with almost-periodic forcing using similar tech-
niques. However, Eq. (1.1) is a higher-dimensional equation, and therefore the analysis of
Birkhoff normal forms and more precise estimation of new perturbation is very difficult
because of the effects of infinite-dimensional frequency,

To state the main results of our paper, we need the following assumptions and sets.
To dispose the infinite-dimensional frequency, we construct a sequence {b,},>¢ satisfying
bo=2b>2,b,,1 >b,,and b, € Z*. We choose the index set

T, ={ij:j<bujij€Z"}, v=0,1,.... (1.3)

The frequencies can be split up as o = (0”,w/) = (i) "’wibu’withrl"“)‘ Let 0 = wt. For

fixed o € (0,1), by [14] the frequency w satisfies the following nonresonance conditions

O:= {a) = (o™, 0)) € 0" x O, € [0,20]*" :

|(k, )| ,keZ“\mq, (1.4)

a
> -
~ exp(4|k|¥/@)

where 0 < & < 1 is arbitrary and fixed, |k| = Y, |ki|, O" is a closed set in R®", and O/, is
a closed set. The frequencies w” will be chosen properly by the KAM iteration. We also

need the following notation:

Qb” = (6[1,..«;9ib")y elbo = (eilyonieiho)! Olbv+l = (eibl,+1"”’9ibv+1)’

bo byy1
w,° = (“)51"""‘)1'1;0)’ W = (wihv+1""’wibv+1)’ v=0,1,....

To apply the KAM theory, we introduce the following assumptions:
(H1) The function ¥ (wt) is real analytic and almost-periodic with w € O.

(H2) The function ¥ (0) has a special series expansion of the form

wO) = by (6)),

j=0
which is absolutely convergent. There exists an absolute constant C such that

O <C ) <C | (6l) <C jeT,

o (0)| <€, jE€TNT1,j =L,
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By assumption (H1) we can expand Vi, (9? ) =0,1,...) into the converging Fourier—
Taylor series

Vo (0 Zwb‘“” Z w“” i=1,.... (1.5)

kezbo kezbi~b-1

Theorem 1.1 (Main Theorem) Assume that vy (0) in (1.1) satisfies assumptions (H1) and
(H2). For o = (@1,...,w),...)jez € O, there exists ¢ small enough and a positive Lebesgue
measure set O* C O such that meas(O\O*) < Ces. Moreover, for all w* = (w;,,.. JijeZ €
O, the higher-dimensional beam equation (1.1) with periodic boundary conditions (1.2)
admits a family of almost periodic solutions of the form

w(t,x)= Y u(x)e

keZ3°

—bo
where 1* = (-« , Apoos -+ Jpezd and hpoo = |1|* + 11 + sbo% +O(gh),

Remark 1.2 Assumption (H2) is crucial to have a successful KAM iteration. We will split
the Hamiltonian and add some proper parts of perturbations to increase the number of
frequencies in the next KAM step. Moreover, for the reducibility, we need to ensure that
the new perturbation in the next KAM step is smaller than the previous one. Thus v (6)
needs a special series expansion, and the form of the series is decided by KAM iteration.

Remark 1.3 The function ¥(0) in (1.1) depends only on ¢ to conserve the partial zero-
momentum property in the KAM iteration. Otherwise, in the case of higher dimension
the estimate of the new perturbations becomes doubtful, and the terms of new normal
form cannot be handled. It is harder than one-dimensional equations in [31] and [32].

The rest of the paper is organized as follows. In Sect. 2, we discuss the Hamiltonian
setting corresponding Eq. (1.1). Section 3 is devoted to the reducibility of proving the
existence of almost-periodic solutions for the linear d-dimensional beam equation using
an improved KAM iteration. The small divisors estimate in reducibility is given in the
Appendix.

2 The Hamiltonian of the higher-dimensional beam equation
In this section, we analyze the Hamiltonian of the higher-dimensional beam equation,
which will be transformed into the KAM iteration.

We first introduce some notations. Let [“? be the Banach spaces of complex-valued
sequences ¢ = (- ,qu,...)cz4 and its complex conjugate g = (- ,Gn,...),cz4 With the
weighted norm

Igllap = ) laullnl*e"?,

nezd
where a > 0,0 >0, |n| = \/ni+--,n%n = (n,...,n5). Let & = (-, p,...) ez, B =
(- B>+ Jpezdr ons Br € N, with finitely many nonzero components of positive integers.
The product 4°G? denotes IT,q**g".
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In the following, we reduce the Hamiltonian of the higher-dimensional beam equation
(1.1). The Hamilton systems (1.1)—(1.2) are equivalent to the systems

Uy =v, v, = —A%u — Y (wt)u, Au=(-A+p)u.

By a simple computation, A, = ||? + i are the eigenvalues of the operator A = —A +

subject to periodic boundary conditions with eigenfunctions ¢,(x) = meu”"”, neZl.

Letting g = %A% u-— i%A’% v, we have

g = i(Aq + %w(wt)A’l (q\;E(_I))' 2.1)

Let q(x) = Y_,czd 4n®n(x). Equation (2.1) is equivalent to the nonautonomous lattice

Hamiltonian system
S G qn¢n + qn¢n
qn = l(knqn + T) Glg,9) = —I/f(wt)/ ( — ] dx (22)
with the corresponding Hamiltonian function
H=" huduln + w (w?) / ( M) dx. (2.3)
nezd n
Letting 6 = wt, we introduce a pair of action-angle variables (/,6) € R* x T* with

. . oH oH
920), ]Z__v q‘nziTy neZd«
9Gn

Thus the corresponding Hamiltonian function of system (2.2) may be rewritten as
GnPn + qn¢n
H = AnGnqn + = —— | dx 24
re 2 b o, (Z Nire ) 24
ne

with the symplectic structure df A d0 +1i)_, ;4 dq, A dg,.
By Assumption (H2) the Hamiltonian (2.4) can be split into the following form

H=A+P=Hy+Hi+---+H+--

=(Ag+Ro) + (A1 +R)+--+(Aj+R)+---, (2.5)
where forj=1,...,

H& =Ao+Ro = ’]0 Z )»n%ﬂn

neZd

Zgho qnbn + qn¢n
w /]1‘ <Z 2 ) dx, (2.6)

_ AL L b bj - qn¢n+qn¢n)
Hj=Aj+ R = (o], J))+ S’I/fh /1;(27«/7” dx.

74
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Furthermore, for j = 0,1,..., R; may be rewritten in detail as follows:
200, P 026 _
Rj= Z (R]nmlqﬂqm nm’qnqm + Rjnm’qnqm) (2.7)
nmeZl
with
llbj ,wb 20b,' 11#17
N ww / Pubm s R = 4W o P

02t &, (91j)

g DB dx.
W wll i

Let b_y = 0. By q(x) = >, .y¢ 9u®n(%) We can rewrite Rj(ij,q, 4),j=0,1,..., as follows:

R(6).4.3) = Rup®)q@ =Y 2 5=

a,p aﬂkZ}/l

ik, 0

/kﬂe qq

where A = (-+-,Ay,...),cza. It is easy to see that Rj(ij,q, 4),j =0,1,..., admit the partial

zero-momentum property

Riap =0 whenever » (o, — B)n #0. (2.9)

neZd

Remark 2.1 Property of (2.9) is important for higher-dimensional Hamiltonian systems.
It ensures the form of perturbations and the obtained normal form in the KAM iteration.
There is a crucial difference from the one-dimensional case. Thus, to conserve this prop-
erty at each KAM step, we require that ¢ does not explicitly depend on space variable
x.

02b;
Remark 2.2 By (2.9) we get R Iknm = Rjtap, & = €y + €y, f = 0; Rknm = Rjtap o =0, 8 = e, +e;

and lenm
11b;

Rjknm

will not be coupled. Moreover, there are no terms of the forms ), Rix(e,+e_,)04ng-n and

> n Rixoense_n)@nd-n-

= Rikap» = €y, B = ey,. The perturbation R,(O1 ,q,q) satisfying (2.9) means that

=0 if n # m. Then the normal variables g,,g,, with n # m in the new normal form

Lemma 2.3 For a > 0 and p > 0, the gradient R; is a real analytic map from a neighbor-
hood of the origin of I into 1"V, with

1 Xzllz,o = O(lqllayp), a=a+1.
For the proof of Lemma 2.3, see [33].
Remark 2.4 We require that a > a, which means that the weight of vector fields is a little

heavier than that of g,g. The regularity of || Xz||5, ensures that Xz sends a decaying g-
sequence to a faster decaying sequence.
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3 Reducibility

In this section, we state the important Theorem 3.2 and give a detailed proof of the re-
ducibility to obtain the Theorem 1.1. The main program of proof comes form the KAM
iteration, which involves an infinite sequence of change of variables. Thus, at each step of
KAM iteration the estimates of the coordinate transformation and the Lebesgue measure
of a small devisor are necessary (see Sects. 3.2—-3.4). Because of our infinite frequencies
in beam equations, we need to improve the program of the KAM iteration (see Sect. 3.5).
Since at each KAM step the perturbation must become more smaller than at the previous
KAM step, we estimate the new perturbation (see Sect. 3.6). For a high-dimensional beam
equation, we need to verify the partial zero-momentum property at each KAM step (see
Sect. 3.7). The normal form is obtained by the infinite transforms. Thus the convergence

of the infinite transforms needs to be considered (see Sect. 3.8).

3.1 A theorem of reducibility
We further give a theorem of reducibility for the Hamiltonian systems (2.5). To this end,
we firstly introduce some notations and spaces.

We choose a proper sequence {b,}° defined by by =2b>2,b,,1 =b,+b=(v+3)b,b, €
Z*.Lete, =¢e?,v=0,1,....For given o > 0 and r > 0, we define the sequences {0,}5°, and

{rv}32,, as follows:

i
23502 ,
1

1 256(b, +4)\ " 3
ro=r, vyl = ES%Vb+T12b((¥> (Gv - 0v+1)2bu%) ry.

oyp=0, avza()(l—

e

We easily to see that og > - -+ > 0, > 6,41 > - - > 6/2. Denote

D, = D(varv) = {(9,],61, é) : |Im9| <Oy, |]| < 1”5, ”q”a,p <7y, ”q”a,p < I"v},

where | - | denotes the sup-norm for complex vectors or matrixes. Forv =0, 1,..., we define
that
O, ={0:0:=(0",0") = 0h,...,0;,,,04, . 1»-- ) IO <0vj = i1, sy ipyse- s
bv -— bU
(’)u:{w:w:: (w ,w').—(wil,...,wibv,a)ib ) €O X O, € },
by bv+
I = (]ipon:]ibv ):]1 (]Lp :]zbo ! (]1 (by+1) )]l (by+2)? 7]1;, (w+1) )

We assume that the given analytic function has the following form:

F6,],9.9) = )_ Fup(6.))9°7" (3.1)
o,p

with the weighted norm

IFlpeno= sup Y lFuglloxolq®||d’], (3.2)

llglla, p<rv||qHa A B
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where
Fop = Z szaﬁ]lei<k,9>
keZ,leN
and
Fuslloxo = Z|Fk2aﬂ ()] , ek,
ki
(3.3)

aFk?aﬁ
w

)

Let w* = (0,],4,q) € D(o,r). The weighted norm of w* is

| Fap(@)] o = sup (Isza,sl +

. 11 1
Loy = 101+ U1+~ Il + ~ 1

For B(n; w) : D(o,7) — D(o,r) and (n; ) € D(o,r) x O, we denote the operator norms

|B(Tl;w)W*|aP
B(n; ) = sup o sup —— Tt
| |D(cr,r)><(9 (n;0)€D(0 1) x O w* 0 [w*l,
x
B 0) )00 = Max{ [BO: ), )00 |00B0) |, 0

For the Hamiltonian vector field Xr = (Fj, —Fy, {iF,, }, {-iF;,}) associated with a function F
on D(o,r) x O, its weighted norm is defined as

| XF ”D(o,r)yo

1
= |Fllpe.n.o + ,_z”F@ Ip(,n,0

1 _ _
+o (Z 1Eq, b nolnl®e™ + > |, ||D<a,r>,o|n|“e"'P).

neZd neZd

Lemma 3.1 For ¢* > 0 sufficiently small and r = &*, if |]| < r* and ||ql|4, < 1, then for & =
e(e*), we have

Xzl p@,n,0 < & a=a+1. (3.4)

For the proof, see [24].
Now we state our theorem.

Theorem 3.2 Suppose that the Hamiltonian H in (2.5) satisfies assumption (H1)—(H2).
Then there exist € > 0 small enough and a Cantor set O* C O such that meas(O\O*) = Y
and (the smallness condition)

I Xzl D@0 <& a=a+l.

Moreover, we have:
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(i) Foreach w € O, there exists a real analytic linearly symplectic coordinate
transformation

X :D(6/2,0) x O — D(o,r).
The symplectic coordinate transformation X is close to the identity:

b
|z ld|Do/20><O* <Ce’,
where C > 0 is an absolute constant.
(i) The symplectic coordinate transformation X°° transforms the Hamiltonian (2.5) into

0
H*=Ho X% = Z Wyfm + Z AnooGnns (3.5)

m=i] nezd

,hO
where w* = (w;,, sy, ...) € O%,ij € Lo, and hpoo = 1> + p + sh‘)i% + O(gh).

Remark 3.3 The forced term v (wt) is almost periodic with an infinite-dimensional fre-
quency = (wy,...). A significantly difficult problem is estimating the small divisors at
each KAM step because of treating infinite frequencies at the same time. To overcome
this difficulty, we split the infinite frequencies to the sum of some finite frequencies, which
means that at each KAM step, we only treat some finite frequencies.

Remark 3.4 By the chosen finitely many frequencies at each KAM step the Hamiltonian
H in (2.5) needs to be expanded into the proper series of H = H} + Hy + -+ H; + - -+ . We
will transform them in a proper order at the KAM iteration. Thus, in the reducibility, we
construct the proper Hamiltonian iteration sequences {H;}7°) and {H}?l’}}’fo, j=l+1,....

Remark 3.5 Assumption (H2) is crucial. The KAM iteration is successful because of the
new perturbation reducing speedily after each KAM step. The new added perturbation

gpp1 P> defined in (3.34) at the next KAM step should be smaller than the previous

(v+1)(v+1)
one. The coefficients &% of ¥ (6) = foo & wb]( ) will be decided by the estimations of
the small divisor measure and the new perturbation in reducibility.

In Sects. 3.2-3.8, we will prove Theorem 3.2 via an improved KAM reducibility.

3.2 Construction of iterative series and verification of the first KAM iteration
We iteratively construct Hamiltonian series {H} }7°) as follows:

H} = Aj+e/P}(q,q,0%,¢), 1=0,1,...,v, (3.1)
where

A ="+ k(&) i,

neZd

Pl Zplaﬂ le) “q ﬂ = Z (Pif;?bl(ebl)qnqm +P;},;lﬂlbl (ebl)QH‘_]m +P3,9,,2bl (le)Z]nZ]m),
B

nmeZd
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ith p120b0 _ p20b0 plllby _ pllby 1026y _ 102
With P ° = Rys Pram ° = Roys Pum ° = Ry defined in (2.7) and

1 1 ob
bz 1 (k%)
on,,e 9 E ? Plkozﬁe s

kezbl

1 .
P}lﬁlmZbl = Z PIMIWIZblel(k,@hl): (mlr mZ) = {(2, 0): (1) 1)’ (0) 2)}

knm
kezbt Ponom

Moreover,

Plos =0 whenever Y (a,—p)n#0, [=0,1,...,v, (3.2);

nezd

||P11(q;é;a)hl,5)”@lxohl SC, l=0,1,...,\), &:g+1, (33)1

Mo =n=n 41, Aw=hat Y eshasle), 1=1, (3.4),
where

> bol/f 111b;  ~
gohno(e) = T &, ahns(e) = —Po,m S s=1,...,0-1.

n

We also need another Hamiltonian series {Hﬁ}fjo, j=1+1,..., of the form

b
- b ,
Hy= Y o, +5P)(@q0).), j=1+1, (3.5)

m:b/_l +1

where

q’ 9 wl ,g Z 1laﬁ ! = Z ( ]lnmq"qm 3izinqném + P?l?x%néném)

n,meZd
with
p3 (k9 >
]laﬂ Z m /lkozﬁe

keZl -

3m1m261(k61 >: (ml’ ng) = {(2’ 0)! (1’ 1)! (01 2)}

3m1m2
/lnm z : \/— ]lknm

kezbli~bi-1
Moreover,
Pflkaﬂ:O, whenever Z(an—ﬂ,,)n#o, [=0,1,...,v, (3.6);
nezd
12,3 07, <C j=l+11=01,.,v, a=a+l (3.7)
1‘[ q;q: 1> OXOb/_ ]_ b= Uy Lyeeer - . . 1

We easily verify that H} = H [1 li=0, that s, (3.1) is satisfied. It is easy to obtain A, by (2.7),
that is, (3.4)o is satisfied. Let H; = Hﬁ li=0, that is, (3.5)0, be satisfied. From Assumption (H2)

Page 10 of 27
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and Lemma 3.1 we obtain that

- _ b
”PO(q’ q’ebl'g) H@gxobo =G HPI'SO(q’q’wlj’g) 0jx 0" =G
which means that (3.3)y and (3.7), are satisfied. From (2.9) by Piagli=0 = ROkaﬂ’Pjslkaﬁ li=0 =

Rirap We get (3.2)o and (3.6)o.

3.3 Solve the homological equations

Ateach step of the KAM iteration, we will meet the small divisors in finding the coordinate
transforms. Now we first estimate the measure of the small divisor about the frequency
o € O, which will be proved in Appendix.

Lemma 3.6 ForkeZb, nyme 7%, 1=0,1,...,v, there exist closed subsets
b b . b ,
O*l = {a) . w”l = (a),-l,...,a)il.,...,a)ibl),l/ GI]}

such that, for all ®"! € O%, we have the following inequalities:

1
g}
1+ BY(k| + 1)br+2’

oo )] =

i
") £ (o + Ay & ) (3.6)

|(ka)> (At + l)|2(1+l3)(|k|+1)bz+2

1

h

)(K| +1)Pr+2

o) + ot =) = k| + |1l - |m]| #0,

where A, and L, are defined in (3.4),.
Moreover, letting
O = {a):a) = ( h",a)’) = (i, 01y, Wiy s--) € Obv x 0., EI‘,},

v

0 -5 (7)
v=0

we get

* * *
ngo,}_lg"'googav

25%
meas(O;\Or,) < ——L—— meas(0,\0})
(1+w+1)3)-a
51
2¢ey 1
< gil,meas((’)\(?*) < Css,
(1+v3)l-a

where C is a constant depending on . and o.

We look for a change of variables S, defined in a domain D,,; by the time-one map
X }_-V of the Hamiltonian vector field Xr,. Let Xt}-u be the time-¢£ map of the flow of the



Rui and Wang Boundary Value Problems (2020) 2020:77 Page 12 of 27

Hamiltonian vector field Xr, given by the Hamiltonian
]:u = 8vFv

_ . —\ ikaby
=ev O D (Foowanm + Foo Gnm) + Fklj,'i,"qnqm>e("’9 . (38)

keZbv nmeZd |k|+| |72 =[m||#0
For w? € O, S, transforms system (3.1), into
H3+1 = Hl} oS,
= Al +6,P! + SV{A}),F‘,}
1 1
+ eﬁ/ A -{{ALF}E} o Xy dt+ sﬁ/ {P),F,} o X% dt, (3.9)
0 0

and for j > v + 1, Hamiltonian (3.5), is transformed into

bj bj
Hyyi=Hy oS = Y wi i, +&,P + sv{ > wim]im:Fv}

m=bj_1+1 m=bj_1+1
1 b
+g§/ (l—t)H > wim],-m,FU],Fv} o X% dt
0 m=b};1+l
1
+&; / {P},F.} o X%, dt. (3.10)
0

Now the unknown function F, needs to satisfy the following equation:

1 )
PL{ALE = Y =Py duin, (3.11)

n
neZd

which is equivalent to

1
b 20b,, : 1200,
(<k’a) v> —An = )‘m)Fknm = lm knm ?
1
b 02b, . 102b,,
(<k’w v> + }”" + )"’”)Fknm = lm knm
1
(k@) = ho + M) E2EY = PRk 4 [ 1n) = Imi| #0. (3.12)
Ao
Inserting F into (3.8), we have
. »120b,,
F20by _ Z P, ei(k,ebv>
nm ’
keZhy Ak (K, a)b”) — (A + X))
iPlOZbV b
F02b,, _ knm ei(k,9 V)’ (313)
" kgl;v v Ak (K, wbv) + Ay + Ay))
.pllldy,
Flb - Z Lpbknm ik6?)
v )\n)\m((kr w V) - )\nv + )‘mu))

keZbv,[k|+||n|-|m| |0
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Since j > v + 1, we obtain b; > b,,;. From the definition of F,(6%) in (3.8) and 6% =
CP ..,Hibv) we obtain that 9y, F, =0,m = b;_; +1,...,b;. Thus

by
{ Z wim]im’Fv}

m=bj_1+1

b/ r b] h
= afm< > wisfis> [9s,,(F.)]
m=1L s=bj_1+1 .
= 3Jm< Z wiJ;g) [90,,(F))] + Z |:31m( Z wis]is>:| [9,,(F))]
m=1L s=bj_1+1 _ m=bj_1+1 s=bj_1+1
=0.
Thus (3.10) can be rewritten as
bj
Hy oy =H oS, = Y ), +&P+ svs,/ {P%,F,} o X%, dt. (3.14)
m=bi,1+1

3.4 Estimation on the coordinate transformation
We proceed to estimate X r, and ¢§_-U.

Lemma 3.7 Let D, = D(0y41 + £(0y — 0y11), £11), 0 < i < 4. Then

3 1256(b, +4)\ 2" _op 5
IX7, 1l g3 o < Cev <f> (0y = 0y01) 2073, (3.15)

Proof Recall that by »” € O, (3.6), and (3.12) we get, for (m;,m5) = {(2,0), (0,2)},

1 _1
sup |F,:"nlmm2b” < C‘— i;"rimzb” et (1+ V) (1k| + l)b‘ﬁ2 (3.16)
wbveogv )"n)\m by
1 _1
sup |F,§ifn” <C e (14 v3) (1 + l)b”+2
waEO*" Ankm
|kl +||n| = |m]| #0. (3.17)
Recalling (3.4),, we get
gho
|90 A ()] < " (3.18)
n

Thus, in view of (3.12), (3.18), and (3.3),, for (8?;w?) € ©,,1 x Of”, we deduce that for
|kl + ||n| = |m]| #0,

19, FLL: 10, Pl i(1K] + Ce™)Py,,,"
W S | = | (@) + 2o — o) | | (s @50 + Doy — o)



Rui and Wang Boundary Value Problems (2020) 2020:77

< c‘ L puinl  oh (103 (k) + 1)

Tt knm

Similarly, we get, for (m1, m3) = {(2,0),(0,2)},

1 1mimob,

Ton o knm

m1m2b
|8 3 knm '

ent (14 03)(IK] + 1),

v
*

S ‘

Thus by (3.16)—(3.20) we get, for (m1,m;) = {(2,0),(1,1),(0,2)},

mymaby
|Fkr1m

ent (14 03)(IK| + 1),

bl; < C‘ lelmZbu
Oy

Nl

ofv

By the definition of the weighted norm, o,,1 + %(O’v —Oy41) =0y —
and (3.21) it follows that

1
E ||89va\1”D§'Oi’v
1 11b X|( _
== X Ealonlali@nlike e iemna
Y 1k|+]ln]~|m| |70
205 02 o ot
Z }Fknmv @£V|qn||qm| + }Fknmu @i’u|qn||qm|)|k|€‘ [(ov—7 (ov=0141))
V k,n,m

Lert (L) (K] + 1) e

IA

ry
x [ Yo =P | , 1ullZule"”
nm
b
|k|+I|m|~m]|#0 Anhom (@e
1 20D 02b - - K
+ Z( oA knrr:) » |qn||qm|+ T Pknn: , |qn||qm| e\ lov
k,n,m ntm O*V nm obv

o (256(% +4)
— ¢cv e

by+4 5
_ob,_3
) (UU - O'\)+1) v2 ||XP$ ”D%,Of”

_1/256(b, +4)\ 2"
f C8v4 (£> (Uv - Uv+1)_2bv_%

e

By the definition of F, we easily see that 9, F, = 0 and
” aanv ||D‘%,Ofl’

Hbu i<k,6bv > 2 20bv 1<k,9bV >
rzm qme + knm qme

b
D307

: plib

<& t(1+v%)( |k|+1b”+42‘ﬂ fnm

| qm |e‘k‘(‘7u—%(0u—av+l))

L oop,
knm
}‘«n)"m O

4>\'—‘

|gmle

+e (1 +v )(|k| + l)b”+4z

k,m

Ikl(ov =5 (0v=0v41))

(3.19)

(3.20)

(3.21)

i(o'v - 0v+1)’ (33)\)1

(3.22)

(3.23)

Page 14 of 27



Rui and Wang Boundary Value Problems (2020) 2020:77 Page 15 of 27

Similarly,
” aanv ”D%,Of”

_1 1
<oyt (1+v3) (k| + 1) ‘ pliby
— v ( v )(' | ) %ﬂ: m kmn o

|qm |e‘k‘(‘7v—%(0u—”v+l))
2”

L oo,
knm
}‘n)“m O

+ 8;‘1‘ (L+v)(1k] + l)b”+42

k,m

, |ém|e‘k|(0v—é(0v_av+l))' (3.24)

Similarly to the proof of (3.22), by the definition of F, in (3.8), (3.22)—(3.24), and (3.3),, we
obtain

_17256(b, +4
IX7, 1l 3 oo < €080 (¥

3 1 256(b, + 4)\
< Ce/ <7(e : )) (00— o) 28 0

by+4 5
Y -1
e ) (OV - Gv+1) VT2 ”Xpll, ||D:|3HO£U

Now we give some estimates for ¢ . We obtain that our coordinate transformation is
well defined by the following formula (3.25). We will use inequality (3.26) to check the
convergence of the iteration.

1 . .
3, D" = D(oys1 + (0w -

1 1 7
Lemma 3.8 Let n, = 8"+ b((BLutthybitd(o, _ g, )22 !
)

Oui1) Em), 0<i < 4. If e, < (B0L)-ho—d(g, — 0v,1)?2v*3)3, then we have

¢, D - DY, -1<t<lL. (3.25)

Moreover,
3 1256(b, +4)\ 2"
|Dé%, —1d] i < Cel <¥) (00— ) 28 (326)
v e
Proof Let
GUil+Hlil+lel+I8]
n = e — 1 1 =m >
|D ]:v|Dv,(9£v maX{ o) 067 dgq° a(-]ﬂfv D‘,,Of",m + i + o] + | B] m_2}.

Note that F, is a polynomial of degree 2 in g, g. By (3.15), the weighted norm, and the
Cauchy inequality we get that for any m > 2,

3 (256(b, +4)\”™* 2b,-5
|Dmfv|D%.O = CS\? (+> (Uu _0v+1) 2by 2. (327)

We consider the integral equation
t
¢l =id+ / Xz, o ¢, ds,
0
so that ¢’ :D? — D3, -1 <t < 1, which directly follows from (3.13). Since

t t
D¢h =1d + / (DXF,)D¢% ds=1d + / J (D*F,) D% ds,
0 0
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where J = ( ) from the Gronwall inequality we get that

|D. ~1d| < [ D2F, el 1P°Fulids < 5| D2 7|

3 1256(b, +4)\ 2"
< C&‘f( ( - )> (0, - 0v+1)_2bv_%
e

Consequently, Lemma 3.8 follows. 0

3.5 Rewrite the new normal form and new perturbation

We expand the Hamiltonian H to deal with infinite frequencies w. Thus we need to rewrite
the new Hamiltonian to increase some new finite frequencies in the next iteration. The
map ¢ =S, transforms H, into Hy,; = H, o ¢} = A}, +&,,1P>,,. Due to the special
form of P} in (3.2),, the termsin ), Aik P(l)},f’n”qnqm with # # m are absent. Then the
new normal form A?, | is

A= aves ¥ P a0 ) (e B o (29

neZd ne’Zd

We consider the following form of P2,

1
gwlpgﬂ:gg/ (l—t){{All,,Fv},Fv}oX}_-Udt+s / (P E,} o X dt

P220by =211b,, 2202b, = ik,0%v
knm anM+an qnqm+Pknm q”’q ) i >’ (329)

nmeZd keva

where P2m1m2b” are linear combinations of the products of F,:Ziﬂmzb“ and P,i;"y}lmb“. Recalling

that bg=2b>2,b,,1=b, +b,b, € Z*,v=0,1,..., &, =8h“,weget
85 =g =g 16", v=0,1,....

Moreover, we rewrite (3.29) in the form

1 220b,,, 2Mibyer . =
P3+1 Z (Pknm lanm + Pknm lqnqm
VAnAm
nmeZ4 keZbv
+ Pigf:v+léném)ei(kv9bv>’ (330)
where
byy by
| Parbest| = ghsbv | B2t |y, ) = {(2,0), (1,1),(0,2) . (3.31)
Let

)"n,w-l(e) = }\n,v(g) + van,u(g)'

Recalling (3.11), we obtain that

= Ev o111b
EU)“H,V(E) = )\‘_POVIVI v’
n
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which means that 1,,,.1(¢) satisfy (3.4),.1. By the regularity of X;1 and Cauchy estimates

we have
M1 (€) = Au(e)| <0 [Pon| < C. (3.32)
Thus we get

H2,y = H 0 8, = A2, +2vaPly = (0, 5) 4 3 hona () + 0P,y (3.33)

neZd
Forj=v+1,..., we consider Hﬁwl) = H}gv oS, with va defined in (3.5),. From (3.14) we

can assume that

Hij,y=Hy 08, = A + iP5, = A, +¢ (va +ey / {P,E,} o X5, dt), (3.34)

b.
3 j
where Aj, =3, 1 @inJiy, and
b.
p320 4+ p3ll —~ )ei<k,91/)
/(v+1 (u+1 knmIndm j(v+1)knmqﬂqm
n, meZ4 kEZ n

b
3 = = i(ke,
+ Z Z WP ?)ilknmqnqmel( 1>)

nmEdeGZ/ j-1

3y my
jw+1)knm

From (3.33), (3.34), and the proper expansion of Hamiltonian H in (2.5), we will con-

. o b 3
are linear combinations of the products of F,"?"" and P;//2"2,

where P knm jvknm

struct a new Hamiltonian to transform by S,,,; at the next KAM step

1 2 3
Hv+1 Hv+1 +H(v+l)(v+1)
= AL+ el (93,07, 0 e)
— (wbv+1,]bv+l) + Z )&n,v+l(8)q;19n + 8v+1P3+1 + 8V+1P?U+l)(\)+1)’ (3.35)
neZd
where

(a)bv+l’]bv+1> - <a)bv’]bv> < bu+l’]bu+l>

A11;+1 ( b‘)+1,]bv+1> + Z )\-n,v+1(8)qn‘_]m
nezd
8v+1Pv+1 (q: é, 9bv+1: waI) = 8v+1P3+1 + 8v+1P(3U+1)(V+1)- (336)

Now we consider the perturbation term in H o Sy o --- 0 S,. According to (3.33) and
(3.34), we get

[
]‘[UJrl HOSOO S :<H3+Z]_[j>0500 OSV_HU+1+Z jv+l

j=1 j=v+2
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=Ap + Py (3.37)

with the new normal form

Aver = ALy + Y o 1) = 02,12 1 3 (@ T ¢ et ()i

j=v+2 j=v+2 nezd

and the new perturbation

_ _ b b
Py =0l (4,3,07,0") + Y 6P, (036, 0)). (3.38)

j=v+2

3.6 Estimation of the new Hamiltonian
Firstly, we estimate the small term P2_|. Let y,(t) = (1 - £)({AL, F,} + &, P!) + te, P.. From
(3.11) and (3.29) we have that

1 1
gmpﬁﬂzf (1-t){{A1,J-‘V},Fv}oxjfvdmf {evP), Fo} o XYy dt
0 0
1
:/ {A-0{A}, F}+ QA -0e,P) +te,P), F,} o X% dt
0

1
= /0 {3 @), F} o X5 dr. (3.39)

Hence

1
8v+1Xp3+1 2/ (X_t;—v) *X{yu(t),}'v}dt- (3.40)
0

Due to the Lemma 7.2 in [33], we obtain

L 7(256(b, +4)\>** b7
Xy, 0.7 |2 < Cr e (—ev ) (0 — 0pp1) 20070, (3.41)
From [13] we have
|(X%,) % Y| i < 1Y 2n, 0<t=<L (3.42)

Let n, = s%”b*ﬁb((ww”(av —0y.1)273)3 &« 1. For 1y = imryand a=a+ 1,
usingf (3.40), (3.41), and (3.42), we get

7 (256(bv +4)

by+4 b7
2 7 _2b,—ZL
evllXp2 b, < Cn7ev ) (0y = 0041) 72

e

1

by+4 3
< Ce;vb+l??b(<256(b” + 4)) (o — Gv+1)_2bu_;> ’
e

by+4 %
= C8v+18%vb+%b<(256(bv i 4)> (o) - 0v+1)_2b”_%)
e

< Céps1. (3.43)
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From (3.34) it follows that

1
Py =P +ey /0 (P}, F}oX% dt, j=v+1.
Similarly to the previous proof, using (3.7), we obtain
e;,-||X,,¢z ) Ip,,, <Cég, j>=v+1, a=a+l1. (3.44)
Jv+

By (3.36), (3.43), and (3.44) we estimate the new perturbation at the next KAM iteration:

<Ceys1- (3.45)

Dyy1 —

Dys1 = Euil ”P\Z)Jrl ”le + &4l ||P?v+l)(V+l)|

Evtl ||Pi+1 |

By (3.38), (3.44), and (3.45) we estimate the whole perturbation after the vth step of the
KAM iteration:

< Cepyi. (3.46)

1
[IPys1 ||Dv+1 <&l ||PU+1| Dyup =

Dy T Z 8i||Pj3(V+l)‘

j=v+2

3.7 Verification of (3.3),,1 and (3.6),.1
Now we prove that P!, satisfies (3.3),,1 and P3

(v+1) satisfies (3.6),,1.
From (3.29), (3.35), and (3.34) it follows that

1 1
gmp;l:/ (1_t>{{A$,fv},fu}oXirvdHf {euPy, Fo} o X, dt
0 0
1
0
3 3 ' 3
I)f(V+1) :Pju +_[0 {Pjv’]:”} OXé-'u at, j=1,....

Recall assumption P! satisfying (3.3), and va satisfying (3.6),, we easily see that the nor-
mal form at each KAM step has the same form. From the homological equations (3.11)
it follows that {Al, F,} has the same form. Thus, to prove that P! ; satisfies (3.3),,; and
Pjs(wl)
Poisson bracket. Now we prove the following lemma.

satisfies (3.6),.1, we only need to prove that the special form is closed under the

Lemma 3.9 Suppose that

_ : bvy g = _ ik gbv —
G®,q,9) = Z Graypr €0 1P, F(6,4,3) = Z Frrayp, e X" g2
ko1 B1 k'agpa

satisfies
Grayp, =0  whenever Z(al - B1)n#0,
n

Firayp, =0  whenever Z(Otz — B2)n #0.

n
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Then

_ SOy =
B(6,4,7) = {G,F} := Z Brrayp, e 60" g3
K" a3B3

satisfies

Birgspy, =0 whenever Z(O(s - B3)n #0.

n

Proof Let

(07 [y

qﬁl ,

ik, by
Gkalﬁ1e1< ’ >q

GO.qd)= )

k:zn(aln_ﬂln)"’:o

FO.q0)= )

k/vzn("‘Zn_ﬁZn)nzo

ik 0%y g~

Fia,p,e q qﬂz‘

Since
0G oF 0G oF
Ry (s 200
d aqn 8qu 3qn aq,,
nez
i i byvy 1 gby L a
=1 Z ZGkalﬂle/&2ﬂ2€l<k’e )el(k 0 )qal enqﬂlqazqﬂz en
nezd Al
. srabvy i gby Ca o
—i Z ZGkal . Fcanpsy £l (k077) itk ,0v) gghien gea-en g
nezd A2
=i Z ZBk!/a3ﬂ36i<k+k/v9bv>q(¥1+a2—enqﬂl+ﬂ2—en,
nezd A3

Let A1 denote

((aln -1)- lgln)n + Z (0t1m — /Slm)m =-n,
meZa\ (n)
(052n —(Ban — 1))” + Z (a2m = Bam)m = n,

meZ4\ (n}

A2 denote

(aln - (,Bln - 1))” + Z (alm - ,Blm)m =n,
meZ4\(n}
((012,, -1)- /32;1)” + Z (ct2m — Pom)m = —n,

meZ4\ (n)

and A3 denote

[(aln + op — 1) - (,31;1 + ,62;1 - 1)]” + Z [(alm + aZm) - (IBIm + ,32m)]my

meZ4\{n}

Page 20 of 27

(3.47)

(3.48)

(3.49)

(3.50)
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with k" = k+ k', 03 = a1 + a3 — ey, B3 = 1 + B2 — e, By (3.48) and (3.49) we obtain that (3.48)

is equal to

[(e1n + a2y = 1) = (Biu + Bon — 1) | + Z [(@1m + €am) = (Bim + Bom) | m

meZ4\{n}
= [(aln — (B — 1))1’1 + ((0{2,, -1)- /32”)”]
* Z [(et1m — Bum)m + (0t — o))

meZ4\{n}
=n+(-n)

=0.
This means that {G, F} satisfies (3.47). a

The proof of the partial zero-momentum property of the perturbation at each KAM step

is obtained by this lemma.

3.8 Convergence of transformations

Now we consider the convergence of transformations at the KAM iteration. Firstly, we
consider the whole KAM iteration on the reducibility. Recalling (2.5), (3.33), (3.34), and
(3.37), we get

o0
H=Hy+Hy++Hj+ - =H)+ Y Hy,
j=1
o0 o0
HoSy=HyoSo+Y HioSo=Hi+» H},

J=1 Jj=1

o0
HoSyo0S8; = (H12+H131)051+Z]-I]31051
j=2

=(HéoSo+HloSo)051+ZHjoSooSI,
j=2

oo
HoSyo---08,=(H,+Hj) oS, + Y H;oS,
j=v+1

o0
=Hyo0Syo--0S,+Y HjoSpo--0S,.
j=1

Let X"*1:=Sy0---08,. Then

oo
HoSpo--0S,=Hyo X" +> Hjo 3"
j=1
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Thus we only need to prove the limiting transformation Sy 0 S; o - - - converging to a trans-
formation X'*°. Recalling (3.12), we use the KAM iteration inductively:

28504208, : D(0y41,7ve1) X OB = D(6y, 19). (3.51)
For any w € O* and M > 0 large enough, we denote
Z‘M(-;a)bM‘l) = So(-;a)ho) 0---0 SM_l(-;a)bM“) : Dpr — Dy;

as usual, X is the identity mapping. From (3.12) we get

M-1

DM <[ ps,:

| |DM><O* — | S|D‘H1><O*
s=0

3 (256(b, +4)\>™
< <1+C854<7( - )) (O's_os+l)2b33>,

e
>0

IA
)

provided that ¢ is small enough. Thus we have that

M+1 M |* M |* A%
’2 -2 ’DM+1XO* = |D2 |DM><O* ) |SM - 1d|DM+1><O*

(256(bM + 4))"1‘4+4
e

3 5
< Cey (ou — oag) 2oM3

<Ce .3 *b,
This means that the sequence { X} converges uniformly in Dy, to an analytic map
X :D(c/2,0) — D(o,7).

So (i) in this theorem is obtained.

Recalling that O* = (72, O% and meas(O\O*) < Cet, we get a countable infinite se-
quence of nonresonance frequencies w* = (w;;, @;,,...) € O*(ij € Ls;) of ¥ (6) close to the
original frequencies w = (w;,...).

Because the Hamiltonian H in (2.5) satisfies (3.1), and (3.5), with v = 0, the above iter-

ative procedure can run repeatedly. Inductively, it follows that
H*:=Ho X% :=(0"J") 4+ ) dnoolnn
nezd
where o* = (0, w,,...) € 0%, i € 1o,
- o

dnoe = |12+ 0 + 8b0270 + O(ebl) = +u+ O(sbo)(E,, + ?,,(sb)),

n

where ¢, are constants, and |7,(?)| = 0 as ¢ — 0. So (ii) in this theorem is obtained. This

completes the proof.

Page 22 of 27
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Appendix

Now we show the small divisors lemma applied in the proof of the Theorem 3.2.

Proof Lemma 3.6 From the (3.1); and (3.4); we get

ol = (a)il""’a)ib[)’

8b0 I/‘/(l;o
2Ay

Ano =Ap = |I’l|2 + W, Al = |}’l|2 + U+ + 0(81)r [>1.

Let

& (") = (k, &™) = Gns = ), |kl + |In] = |m]| #0,

2 (0") = (k") £ O+ 2)s (") = [k, 0")

and

1

o._) b. b &
R = {a) ' |<k’w l>| < (1 + B)(|k| + 1)b1+2’ }’

1

I
1) o, b €
Rt := {a) I . |<k,a) l>:|: (o +A.m[)| < 1+ Bk + 1)b1+2’ },

1

84
7-\J’inml = {wbl : |<k1wbl>_ ()\nl_)\ml)| < (1 N 13)(|]i| + l)bl+2’ |k| + ||Vl| - |Wl|| 7{0}

We can choose a vector v satisfying (k, w”!) = |k|. Thus we have that

dg® (b + tvh 1
M z|(k,v"1)z§|k|,

dt
dgl (0P + V1) 1
=z |(k, v"")| - [O(en)| = Pl
dgh (b + tvhr) b 1
S = |k )| = |Oten)| z 51K 1K1+ [1nl = [l 70,

provided that ¢ is small enough. From (1.4) for arbitrary fixed ¢ € (0, 1), we get w;; € lo,20],
ij € Z;. By the Fubini theorem we have that

RS

&

0 b;-1
meas Ry < 60 (L+ B)(|k| + 1)br+3’

1
g}
(1 + B)(|k| + 1)&i+3’

meas R}, < 60"

1
i

2 by-1 &
meas R}, < 60" L+ Bk + Do’ k| + ||| = |ml|| #0.
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Let Rf = Uyepn Ry and R = Ureztt mmezd Rigwm- Similarly to the proof in Appendix in
[32], we obtain

5
24

=

meas R} < ——, meas R} < i
1+ 1+
Thus we consider g4(w”) = (k, w”!) = (Aps — Apt), [k| + ||1] = |m|| #0.
Case 1.1f |k| #0 and ||n| - |m]|| = 0, thengé(a)bl) = (k,™). By the definition of O in (1.4)
we obtain that R}, is empty.
Case 2. We consider ||n| — |m|| # 0. Without loss of generality, we suppose that |n|* -
|m|? = a > 1. Then there exists § > 0 such that

_ 1
ot = Dot — ] < C|sP0g 0| +0(er) < O(sf Iml ™), (A1)

1
An Am

Case 2.1. We may suppose |n|> — |m|?> = a > |k||w"| + 1. Then

15(™)| = (k™) = (o = 2op)| = |(k, @) = 11> = 1t + [m]* + 11 + Oleo)]|

> a— (|(k™)] +|O(e0)]) = 1 - |Oeo)|

i
i

7 W+ Bk + b2

This means that R%,,, is empty.
Case 2.2.1f a < |k||o”| + 1, then we have

e} Lo
Rimi < Riam = {wbl o)+ al < Gy e O 5)}’

knml =

2 2 2
Moreover, Ry,..; S Rim S RkumO for |m| > |my.

Now we estimate R? . We choose a vector v”! satisfying (k, v"!) = |k|. It follows that

kam

d((k, w? + tv?1) + a)
dt

= (k,v"1) = |k| > 0.

By the Fubini theorem, since w;; € [0,20],i; € I;, we get that

1
g} .
(1+8B)(k| +1)bi+3 " |kl +1

1
2 61 =
meas Ry, < O(gf Imo|™).

1 _ 2
Let RZ - UkGZbl,n,mEZd,|n\2—|m\2:a Rkwml' We get that

meas R, = meas( U U R,mel>

keZb nmezd |n2—|m2=a,a< k|| |+1

:meas(u( U U Riml))

keZhl n,meZd,\mlg\mo\, n,meZd,\mblmo\,
In2=m2 <kl 141 |n2=m2<|Klo? +1
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<y > measRy,,, + > meas R%,,,.;

kezbl mmeZdvW\SlmO\, kezbi mmeZd,Imme\,
2=l <lkl|P] |41 12 =pm|2 <[kl |41
2 2
< E ( E measRRy,,,; + E rneas’RkamO)
keZbl n,mEZd,\m\ﬁlmo\, n,mEZd,
12— |m|2 <kl |+1 a<lklloll |41
d i
1
b |mo|%e; 1 3
52 |k||w”| +1 + Iz
( | | ) (1+l3)(|k| +1)bl+3 |k| +1 ( )
kezbi

1
|””10|0[¢‘91I %
= Z((1+13)(|k|+1)bl+2+ Ofer Imol” )>
kezbi

lmo| e !

We choose B k)P

o

= g8 |my|~?, that is,

12

_ <(1 + BY(k| + 1)bz+2) @

€

Since § > 0 and d > 2, we have

1 1 1 5 1 1
=_ >, 1- >1--.
4 12d+6 ~ 24 d+$ d
Thus it follows that
111
4 12 d+§
meas Rb < < & : )
keZbl (1 + B)(|k| + 1)bi+2) =75
i
S (o)
IANGE 13)(|k| + 1)re2)t-
5
8124

=— 7
(1+8)q

by the convergence of by —————.
Liezh (ki1 =d
Letting R' = R{ UR{ URY, R =, R/, we get

meas R < meas <U ’R?) meas + <U Ri) + meas (U Rlz)

>0 >0 >0
5

5
0 b1 0 bz
& 2¢;
Z<1+13 1>§Z

Q+Bya/) = A B)a

I A

IA
™
[=FCN

by the convergence of ) ;5 21 T
1+3) "4
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By (3.7) we get that

51
28u+1

meas(O;\Oj,,) < meas R < ———L——
(1+@w+1)3)-a

v+l ’

5
2e

meas(0,\O}) <measR’ < ——,
(1+v3)l-2

From (3.7) and &y = ¢ we get

meas(O\O*) < meas (U Rl> < Ces.

>0
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