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Abstract
In this paper, we investigate the stability of the solutions of a viscoelastic plate
equation with a logarithmic nonlinearity. We assume that the relaxation function g
satisfies the minimal condition

g′(t)≤ –ξ (t)G(g(t)),

where ξ and G satisfy some properties. With this very general assumption on the
behavior of g, we establish explicit and general energy decay results from which we
can recover the exponential and polynomial rates when G(s) = sp and p covers the full
admissible range [1, 2). Our new results substantially improve and generalize several
earlier related results in the literature such as Gorka (Acta Phys. Pol. 40:59–66, 2009),
Hiramatsu et al. (J. Cosmol. Astropart. Phys. 2010(06):008, 2010), Han and Wang (Acta
Appl. Math. 110(1):195–207, 2010), Messaoudi and Al-Khulaifi (Appl. Math. Lett.
66:16–22, 2017), Mustafa (Math. Methods Appl. Sci. 41(1):192–204, 2018), and
Al-Gharabli et al. (Commun. Pure Appl. Anal. 18(1):159–180, 2019).
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1 Introduction
In the present paper, we consider the following viscoelastic plate problem with logarithmic
nonlinearity:

⎧
⎪⎪⎨

⎪⎪⎩

utt + �2u + u –
∫ t

0 g(t – s)�2u(s) ds = ku ln |u|, in Ω × (0,∞),

u = ∂u
∂ν

= 0, in ∂Ω × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω ,

(1)

where Ω ⊆R
2 is a bounded domain with a smooth boundary ∂Ω . The vector ν is the unit

outer normal to ∂Ω and the constant k is a small positive real number. The function g is
the kernel and satisfies some conditions to be specified later.
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1.1 Problems with logarithmic nonlinearity
The logarithmic nonlinearity appears naturally in inflation cosmology and supersymmet-
ric filed theories, quantum mechanics, and many other branches of physics such as nuclear
physics, optics, and geophysics [1, 7–9] and [10]. These specific applications in physics and
other fields attract a lot of mathematical scientists to work with such problems. Birula and
Mycielski [8] and [11] introduced the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

utt – uxx + u – εu ln |u|2 = 0, in [a, b] × (0, T),

u(a, t) = u(b, t) = 0, in (0, T),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in [a, b],

(2)

which is a relativistic version of logarithmic quantum mechanics and can also be obtained
by taking the limit p → 1 for the p-adic string equation [12, 13]. They showed that wave
equations with the logarithmic nonlinearity have stable, localized, soliton-like solutions
in any number of dimensions. In [14], Cazenave and Haraux established the existence and
uniqueness of the solution for the following Cauchy problem:

utt – �u = u ln |u|k , in R
3. (3)

Gorka [1] considered the corresponding one-dimensional Cauchy problem for equation
(3) and established the global existence of weak solutions for all (u0, u1) ∈ H1

0 ×L2 by using
some compactness arguments. In [7], Bartkowski and Gorka investigated weak solutions
and also proved existence results of classical solutions. Hiramatsu et al. [2] investigated a
numerical study of the solution of the following problem:

utt – �u + u + ut + |u|2u = u ln |u|. (4)

However, there was no theoretical analysis for this problem. In [15], Han considered the
initial boundary value problem (4) in Ω ⊂ R

3 and obtained global existence of weak so-
lutions for all (u0, u1) ∈ H1

0 (Ω) × L2(Ω). For more recent work dealing with logarithmic
nonlinearity, we refer to [16–20].

1.2 Plate problems
Regarding the plate equations, we start with the result obtained by Lagnese [21]. He
considered a viscoelastic plate equation and introduced a dissipative mechanism on the
boundary of the system, and then he proved that when the time goes to infinity, the energy
decays to zero. In [22], Rivera et al. investigated the energy of the solutions of a viscoelas-
tic plate equation and they proved that first and second order energy decays exponentially
provided that the kernel also decays exponentially. Messaoudi [23] established an exis-
tence result of the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

utt + �2u + |ut|m–2ut = |u|p–2u, in QT = Ω × (0, T),

u = ∂u
∂ν

= 0, on ΓT = ∂Ω × [0, T),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω ,

(5)
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obtained global solution in case m ≥ p, and proved blow-up when the initial energy is neg-
ative and m < p. These results, for the same problem in [23], were improved and extended
by Chen and Zhou [24]. Santos and Junior [25] studied the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt + �2u = 0, in Ω × (0,∞),

u = ∂u
∂ν

= 0, on Γ0 × (0,∞),

–u +
∫ t

0 g1(t – s)β1u(s) ds = 0, on Γ1 × (0,∞),
∂u
∂ν

+
∫ t

0 g2(t – s)β2u(s) ds = 0, on Γ2 × (0,∞),

u(0, x) = u0(x), ut(0, x) = u1(x), in Ω ,

(6)

where

β1u = �u + (1 – μ)B1u and β2u =
∂�u
∂μ

+ (1 – μ)
∂B2u
∂η

and

B1u = 2ν1ν2uxy – ν2
1 uyy – ν2

2 uxx and B2u = (ν1 – ν2)uxy + ν1ν2(uyy – uxx)

with boundary damping, and they obtained stability results. For more results in this di-
rection, see [3, 26–29].

1.3 Viscoelastic problems
The importance of the viscoelastic properties of materials has been realized because of the
rapid developments in rubber and plastic industry. Many advances in the studies of consti-
tutive relations, failure theories, and life prediction of viscoelastic materials and structures
were reported and reviewed in the last two decades [30]. Dafermos [31, 32] considered a
one-dimensional viscoelastic problem of the form

ρutt = cuxx –
∫ t

–∞
g(t – s)uxx(s) ds,

and established various existence results and then proved, for smooth monotone decreas-
ing relaxation functions, that the solutions go to zero as t goes to infinity. However, no
rate of decay has been specified. In [33], Cavalcanti et al. considered the equation

utt – �u +
∫ t

0
g(t – s)�u(x, s) ds + a(x)ut + |u|p–1u = 0, in Ω × (0,∞), (7)

where a : Ω →R
+ is a function which may vanish on a part of the domain Ω but satisfies

a(x) ≥ a0 on ω ⊂ Ω and g satisfies, for two positive constants ξ1 and ξ2,

–ξ1g(t) ≤ g ′(t) ≤ –ξ2g(t), t ≥ 0.

They established an exponential decay result under some restrictions on ω. For more re-
sults, we refer to [34–37]. However, in all the above mentioned works, the rates of decay
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in relaxation functions were either of exponential or polynomial type. In 2008, Messaoudi
[36, 37] generalized the decay rates allowing an extended class of relaxation functions and
gave general decay rates from which the exponential and the polynomial decay rates were
only special cases. However, the optimality in the polynomial decay case was not obtained.
Precisely, he considered relaxation functions that satisfy

g ′(t) ≤ –ξ (t)g(t), t ≥ 0, (8)

where ξ : R+ → R
+ is a nonincreasing differentiable function and showed that the rate of

the decay of the energy is the same rate of decay of g, which is not necessarily of exponen-
tial or polynomial decay type. After that a series of papers using (8) have appeared; see,
for instance, [38–44]. Inspired by the experience with frictional damping initiated in the
work of Lasiecka and Tataru [45], another step forward was done by considering relaxation
functions satisfying

g ′(t) ≤ –χ
(
g(t)

)
. (9)

This condition, with several constraints imposed on χ , was used by several authors with
different approaches. We refer to previous studies [46–50], and [51], where general decay
results in terms of χ were obtained. Here, it should be mentioned that in [52] it was the
first time where Lasiecka and Wang established not only general but also optimal results in
which the decay rates were characterized by an ODE of the same type as the one generated
by inequality (9) satisfied by g . Mustafa and Messaoudi [53] established an explicit and
general decay rate for relaxation function satisfying

g ′(t) ≤ –H
(
g(t)

)
, (10)

where H ∈ C1(R) with H(0) = 0 and H is a linear or strictly increasing and strictly convex
function C2 near the origin. In [54], Cavalcanti et al. considered a nonlinear viscoelastic
wave equation with a relaxation function satisfying (10) and some additional requirements
on H . They characterized the decay of the energy by the solution of a corresponding ODE
as in [45]. Messaoudi and Al-Khulaifi [4] treated the same problem considered in [54] with
a relaxation function satisfying

g ′(t) ≤ –ξ (t)gp(t), ∀t ≥ 0, 1 ≤ p <
3
2

. (11)

They obtained a more general stability result for which the results of [36, 37] are only
special cases. Moreover, the optimal decay rate for the polynomial case is achieved without
any extra work and conditions as in [49] and [45]. Very recently, Al-Gharabli et al. [6]
considered (1) with a relaxation function which satisfies (11), proved the existence of the
solutions locally and globally, and established a general decay result depending on the
behavior of g . Now, there are two natural questions that arose in dealing with the general
decay of viscoelastic problems:

QI. Can we extend the range of polynomial decay rate optimality from p ∈ [1, 3
2 ) to

p ∈ [1, 2) in the case of (11)?
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QII. Can we get a general decay result for a class of relaxation functions satisfying

g ′(t) ≤ –ξ (t)H
(
g(t)

)
, ∀t ≥ 0, (12)

where ξ is a positive nonincreasing differentiable defined function on [0,∞) and H
is some increasing convex function such that (12) yields (11) as a special case?
Mustafa [5] answered these questions for a viscoelastic wave equation and
established an optimal decay result.

Motivated by the papers of Gorka [1], Hiramatsu et al. [2], Mustafa [5], and Al-Gharabli
et al. [6], we intend to establish a two-fold objective:

(1) extend the work for the wave equation in [1, 2], and [5] to a viscoelastic plate
equation with logarithmic nonlinearity. We believe this is a natural extension done
for many problems such as thermoelastic plate.

(2) consider a more general damping instead of the one considered in [6]. In fact, the
results of [6] are special cases of this work when G(s) = sp and our assumption
allows p to cover the full admissible range [1, 2).

Remark 1.1 Let us note here that though the logarithmic nonlinearity is somehow weaker
than the polynomial nonlinearity, both the existence and stability result are not obtained
by straightforward application of the method used for polynomial nonlinearity. We need
to make some extra condition on the nonlinearity coefficient k (see condition (A3)).

This paper is organized as follows. In Sect. 2, we present some notation and material
needed for our work. In Sect. 3, we present the local and global existence of the solutions
of the problem. The stability results are presented in Sect. 4.

2 Preliminaries
In this section, we present some notations and material needed for the proof of our results.
We use the standard Lebesgue space L2(Ω) and the Sobolev space H2

0 (Ω) with their usual
scalar products and norms. Throughout this paper, c is used to denote a generic positive
constant, and we consider the following hypotheses:

(A1) g : R+ → R
+ is a C1- nonincreasing function satisfying

g(0) > 0 and 1 –
∫ ∞

0
g(s) ds = � > 0. (13)

(A2) There exists a positive nonincreasing differentiable function ξ : R+ →R
+ with

ξ (0) > 0, and a C1 function G : (0,∞) → (0,∞) satisfies

g ′(t) ≤ –ξ (t)G
(
g(t)

)
, G(0) = G′(0) = 0, ∀t ≥ 0, (14)

and G is a linear or strictly increasing and strictly convex C2 function on (0, r],
0 < r < 1.

(A3) The constant k in (1) satisfies 0 < k < k0, where k0 is the positive real number
satisfying

√
2π�

k0cp
= e– 3

2 – 1
k0 (15)
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and cp is the smallest positive number satisfying

‖∇u‖2
2 ≤ cp‖�u‖2

2, ∀u ∈ H2
0 (Ω),

where ‖ · ‖2 = ‖ · ‖L2(Ω).

Remark 2.1 If G is a strictly increasing and strictly convex C2 function on (0, r], with G(0) =
G′(0) = 0, then it has an extension G, which is a strictly increasing and strictly convex C2

function on (0, +∞). For instance, if G(r) = a, G′(r) = b, G′′(r) = C, we can define G for t > r
by

G(t) =
C
2

t2 + (b – Cr)t +
(

a +
C
2

r2 – br
)

. (16)

For simplicity, we will use G for both G and G.

Remark 2.2 Since G is strictly convex on (0, r] and G(0) = 0, then

G(θz) ≤ θG(z), 0 ≤ θ ≤ 1, and z ∈ (0, r]. (17)

Remark 2.3 The function f (s) =
√

2π�
cps – e– 3

2 – 1
s is a continuous and decreasing function on

(0,∞) with

lim
s→0+

f (s) = ∞ and lim
x→∞ f (x) = –e– 3

2 .

Then there exists unique k0 > 0 such that f (k0) = 0. Moreover,

e– 3
2 – 1

s <

√
2π�

cps
, ∀s ∈ (0, k0), (18)

which implies that the selection of k in (A3) is possible.

The modified energy functional associated with problem (1) is given by

E(t) =
1
2

(

‖ut‖2
2 +

(

1 –
∫ t

0
g(s) ds

)

‖�u‖2
2 +

k + 2
2

‖u‖2
2

)

–
1
2

∫

Ω

u2 ln |u|k dx +
1
2

(go�u)(t), (19)

where

(go�u)(t) =
∫ t

0
g(t – s)

∥
∥�u(s) – �u(t)

∥
∥2

2 ds.

Direct differentiation of (19), using (1), leads to

E′(t) =
1
2
(
g ′o�u

)
(t) –

1
2

g(t)‖�u‖2
2 ≤ 1

2
(
g ′o�u

)
(t) ≤ 0. (20)
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Lemma 2.1 ([55, 56] (Logarithmic Sobolev inequality)) Let u be any function in H1
0 (Ω)

and a be any positive real number. Then

∫

Ω

u2 ln |u|dx ≤ 1
2
‖u‖2

2 ln‖u‖2
2 +

a2

2π
‖∇u‖2

2 – (1 + ln a)‖u‖2
2. (21)

Corollary 2.1 Let u be any function in H2
0 (Ω) and a be any positive real number. Then

∫

Ω

u2 ln |u|dx ≤ 1
2
‖u‖2

2 ln‖u‖2
2 +

cpa2

2π
‖�u‖2

2 – (1 + ln a)‖u‖2
2. (22)

3 Local and global existence
In this section, we state the existence results of [6] for problem (1).

Definition 3.1 Let T > 0. A function

u ∈ C
(
[0, T], H2

0 (Ω)
) ∩ C1([0, T], L2(Ω)

) ∩ C2([0, T], H–2(Ω)
)

is called a weak solution of (1) on [0, T] if, for any w ∈ H2
0 (Ω) and t ∈ [0, T],

⎧
⎪⎪⎨

⎪⎪⎩

∫

Ω
utt(x, t)w(x) dx +

∫

Ω
�u(x, t)�w(x) dx +

∫

Ω
u(x, t)w(x) dx

–
∫

Ω
�w(x)

∫ t
0 g(t – s)�u(s) ds dx =

∫

Ω
u(x, t)w(x) ln |u(x, t)|k dx,

u(x, 0) = u0(x), ut(x, 0) = u1(x).

(23)

Theorem 3.1 Assume that (A1) and (A3) hold and let (u0, u1) ∈ H2
0 (Ω) × L2(Ω). Then

problem (1) has a weak solution

u ∈ C
(
[0, T], H2

0 (Ω)
) ∩ C1([0, T], L2(Ω)

) ∩ C2([0, T], H–2(Ω)
)
. (24)

For the global existence, we introduce the following functionals:

J(t) =
1
2

((

1 –
∫ t

0
g(s) ds

)

‖�u‖2
2 + ‖u‖2

2 + (go�u)(t) –
∫

Ω

u2 ln |u|k dx
)

+
k
4
‖u‖2

2 (25)

and

I(t) =
(

1 –
∫ t

0
g(s) ds

)

‖�u‖2
2 + ‖u‖2

2 + (go�u)(t) – 3
∫

Ω

u2 ln |u|k dx. (26)

From (25) and (26), one can easily see that

J(t) =
1
3

[(

1 –
∫ t

0
g(s) ds

)

‖�u‖2
2 + ‖u‖2

2 + (go�u)(t)
]

+
k
4
‖u‖2

2 +
1
6

I(t). (27)

Lemma 3.1 The following inequalities hold:

–kd0

√

|Ω|c3∗‖�u‖ 3
2
2 ≤

∫

Ω

u2 ln |u|k dx ≤ kc3
∗‖�u‖3

2, ∀u ∈ H2
0 (Ω), (28)
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where d0 = sup0<s<1
√

s| ln s|, |Ω| is the Lebesgue measure of Ω , and c∗ is the smallest em-
bedding constant

(∫

Ω

|u|3 dx
) 1

3 ≤ c∗‖�u‖2, ∀u ∈ H2
0 (Ω) (29)

(c∗ exists thanks to the embedding of H2
0 (Ω) in L∞(Ω), Ω ⊂R2).

Proof Let

Ω1 =
{

x ∈ Ω :
∣
∣u(x)

∣
∣ > 1

}
and Ω2 =

{
x ∈ Ω :

∣
∣u(x)

∣
∣ ≤ 1

}
.

So, using (29), we have

∫

Ω

u2 ln |u|k dx =
∫

Ω2

u2 ln |u|k dx +
∫

Ω1

u2 ln |u|k dx

≤ k
∫

Ω1

u2 ln |u|dx ≤ k
∫

Ω1

|u|3 dx ≤ k
∫

Ω

|u|3 dx ≤ kc3
∗‖�u‖3

2,

this gives the right inequality in (28). On the other hand, using Hölder’s inequality and
(29), we find

–
∫

Ω

u2 ln |u|k dx = –
∫

Ω2

u2 ln |u|k dx –
∫

Ω1

u2 ln |u|k dx

≤ –k
∫

Ω2

u2 ln |u|dx = k
∫

Ω2

u2∣∣ln |u|∣∣dx

≤ kd0

∫

Ω

|u| 3
2 dx ≤ kd0

√|Ω|
(∫

Ω

|u|3 dx
) 1

2

≤ kd0

√

|Ω|c3∗‖�u‖ 3
2
2 ,

which implies the left inequality in (28). �

Lemma 3.2 Assume that (A1)–(A3). Let (u0, u1) ∈ H2
0 (Ω) × L2(Ω) such that

I(0) > 0 and
√

54kc3
∗

(
E(0)
�

) 1
2

< �. (30)

Then

I(t) > 0, ∀t ∈ [0, T). (31)

Proof From (26), we have

∫

Ω

u2 ln |u|k dx =
1
3

(

1 –
∫ t

0
g(s) ds

)

‖�u‖2
2 +

1
3
‖u‖2

2 +
1
3

(go�u)(t) –
1
3

I(t). (32)
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Substituting (32) in (25), we find

J(t) =
1
3

[(

1 –
∫ t

0
g(s) ds

)

‖�u‖2
2 + ‖u‖2

2 + (go�u)(t)
]

+
k
4
‖u‖2

2 +
1
6

I(t). (33)

Since I(0) > 0 and I is continuous on [0, T], there exists t0 ∈ (0, T] such that I(t) > 0 for all
t ∈ [0, t0). Let us denote by t0 the largest real number in (0, T] such that I > 0 on [0, t0).
If t0 = T , then (31) is satisfied. We assume by contradiction that t0 ∈ (0, T). Thus I(t0) = 0
and

∥
∥�u(t)

∥
∥2

2 ≤ 3
�

J(t) ≤ 3
�

E(t) ≤ 3
�

E(0), ∀t ∈ [0, t0). (34)

If ‖�u(t0)‖2
2 = 0, then (28) and (29) give

0 = I(t0) = (go�u)(t0) =
∫ t0

0
g(s)

∥
∥�u(s)

∥
∥2

2 ds. (35)

Consequently, if g > 0 on [0, t0), we get

∥
∥�u(s)

∥
∥

2 = 0, ∀s ∈ [0, t0).

Then

I(t) = 0, ∀t ∈ [0, t0),

which is not true since I > 0 on [0, t0). If g is not positive on [0, t0), then let t1 ∈ [0, t0) be the
smallest real number such that g(t1) = 0. Because g(0) > 0 and g is positive, nonincreasing,
and continuous on R

+ (condition (A1)), then t1 > 0 and g = 0 on [t1,∞). Therefore, from
(35), we deduce that

0 =
∫ t0

0
g(s)

∥
∥�u(s)

∥
∥2

2 ds =
∫ t1

0
g(s)

∥
∥�u(s)

∥
∥2

2 ds,

then ‖�u(s)‖2 = 0 for any s ∈ [0, t1), which implies that I(t) = 0 for any t ∈ [0, t1). As before,
this is a contradiction to the fact that I > 0 on [0, t0). Then we conclude that ‖�u(t0)‖2

2 > 0.
On the other hand, we have

I(t0) ≥ �
∥
∥�u(t0)

∥
∥2

2 – 3
∫

Ω

u(t0)2 ln
∣
∣u(t0)

∣
∣k dx.

By using (34) and Lemma 3.1, we have

I(t0) ≥
[

� – 3kc3
∗

(
6E(0)

�

) 1
2
]
∥
∥�u(t0)

∥
∥2

2.

By recalling (30), we arrive at I(t0) > 0, which contradicts the assumption I(t0) = 0. Hence,
t0 = T and then

I(t) > 0, ∀t ∈ [0, T). �
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4 Stability
In this section, we state and prove our stability results. We start by establishing several
lemmas needed for the proof of our main result.

Lemma 4.1 ([6]) Assume that g satisfies (A1). Then, for u ∈ H2
0 (Ω),

∫

Ω

(∫ t

0
g(t – s)

(
u(t) – u(s)

)
ds

)2

dx ≤ c(go�u)(t),

and

∫

Ω

(∫ t

0
g ′(t – s)

(
u(t) – u(s)

)
ds

)2

dx ≤ –c
(
g ′o�u

)
(t).

Lemma 4.2 Assume that (A1)–(A3) and (30) hold. Then the functional

ψ1(t) =
∫

Ω

uut dx

satisfies, along the solutions of (1),

ψ ′
1(t) ≤ ‖ut‖2

2 –
�

2
‖�u‖2

2 – ‖u‖2
2 +

∫

Ω

u2 ln |u|k dx + c(go�u)(t). (36)

Proof By using (1), we easily see that

ψ ′
1 = ‖ut‖2

2 – ‖�u‖2
2 – ‖u‖2

2 +
∫

Ω

�u
∫ t

0
g(t – s)�u(s) ds dx

+
∫

Ω

u2 ln |u|k dx. (37)

We now use Lemma 4.1 and Young’s inequality to obtain, for any μ > 0,

∫

Ω

�u(t)
(∫ t

0
g(t – s)�u(s) ds

)

dx

≤
(

1 – � +
μ

2

)

‖�u‖2
2 +

1
2μ

(1 – �)(go�u)(t).
(38)

By choosing μ = � and combining (37) and (38), we obtain (36). �

Lemma 4.3 Assume that (A1)–(A3) and (30) hold. Then the functional

ψ2(t) = –
∫

Ω

ut

∫ t

0
g(t – s)

(
u(t) – u(s)

)
ds dx

satisfies, along the solutions of (1) and for any ε0 ∈ (0, 1) and δ > 0,

ψ ′
2(t) ≤ δ‖�u‖2

2 +
c
δ

(go�u)(t) +
c
δ

(
–g ′o�u

)
(t) +

(

δ –
∫ t

0
g(s) ds

)

‖ut‖2
2

+ cε0,δ(go�u)
1

1+ε0 (t). (39)
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Proof Direct computations, using (1), yield

ψ ′
2(t) =

∫

Ω

�u
∫ t

0
g(t – s)

(
�u(t) – �u(s)

)
ds dx +

∫

Ω

u
∫ t

0
g(t – s)

(
u(t) – u(s)

)
ds dx

+
∫

Ω

∫ t

0
g(t – s)

(
�u(t) – �u(s)

)
ds

∫ t

0
g(t – s)�u(s) ds dx

–
∫

Ω

u ln |u|k
∫ t

0
g(t – s)

(
u(t) – u(s)

)
ds dx

–
∫

Ω

ut

∫ t

0
g ′(t – s)

(
u(t) – u(s)

)
ds dx –

(∫ t

0
g(s) ds

)∫

Ω

u2
t dx. (40)

Similar to (37), we estimate the right-hand side terms of (40). So, by using Young’s inequal-
ity, the first term gives, for any δ > 0,

∫

Ω

�u
∫ t

0
g(t – s)

(
�u(t) – �u(s)

)
ds dx ≤ δ

4
‖�u‖2

2 +
c
δ

(go�u)(t). (41)

Using Lemma 4.1, Young’s and Poincaré’s inequalities, the second and fifth terms lead to

∫

Ω

u
∫ t

0
g(t – s)

(
u(t) – u(s)

)
ds dx ≤ δ

4
‖�u‖2

2 +
c
δ

(go�u)(t) (42)

and

–
∫

Ω

ut

∫ t

0
g ′(t – s)

(
u(t) – u(s)

)
ds dx ≤ δ‖ut‖2

2 –
c
δ

(
g ′o�u

)
(t). (43)

Similarly, the third term can be estimated as follows:

∫

Ω

∫ t

0
g(t – s)

(
�u(t) – �u(s)

)
ds

∫ t

0
g(t – s)�u(s) ds dx

≤ δ

4
‖�u‖2

2 + c
(

1 +
1
δ

)

(go�u)(t).
(44)

Let ε0 ∈ (0, 1) and h(s) = sε0 (| ln s| – s). Notice that h is continuous on (0,∞) and its limit
at 0 is 0, and its limit at ∞ is –∞. Then h has a maximum dε0 on [0,∞), so the following
inequality holds:

s| ln s| ≤ s2 + dε0 s1–ε0 , ∀s > 0. (45)

Applying (45) to u ln |u|, using the Cauchy–Schwarz inequality, the embedding of H2
0 (Ω)

in L∞(Ω), and performing the same calculations as before, we get, for any δ1 > 0,

∫

Ω

u ln |u|k
∫ t

0
g(t – s)

(
u(t) – u(s)

)
ds dx

≤ k
∫

Ω

(
u2 + dε0 |u|1–ε0

)
∣
∣
∣
∣

∫ t

0
g(t – s)

(
u(t) – u(s)

)
ds dx

∣
∣
∣
∣

≤ c
∫

Ω

|u|2
∣
∣
∣
∣

∫ t

0
g(t – s)

(
u(t) – u(s)

)
ds

∣
∣
∣
∣dx
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+ δ1

∫

Ω

u2 dx + cε0,δ1

∫

Ω

∣
∣
∣
∣

∫ t

0
g(t – s)

(
u(t) – u(s)

)
ds

∣
∣
∣
∣

2
1+ε0

dx

≤ cδ1‖�u‖2
2 +

c
δ1

∫

Ω

∣
∣
∣
∣

∫ t

0
g(t – s)

(
u(t) – u(s)

)
ds

∣
∣
∣
∣

2

dx

+ cε0,δ1

∫

Ω

∣
∣
∣
∣

∫ t

0
g(t – s)

(
u(t) – u(s)

)
ds

∣
∣
∣
∣

2
1+ε0

dx.

Then, putting δ
4 = cδ1 and using Hölder’s inequality and Lemma 4.1, we find

∫

Ω

u ln |u|k
∫ t

0
g(t – s)

(
u(t) – u(s)

)
ds dx ≤ δ

4
‖�u‖2

2 +
c
δ

(go�u)(t)

+ cε0,δ(go�u)
1

1+ε0 (t). (46)

The above inequalities imply (39). �

Lemma 4.4 Assume that (A1)–(A3) and (30) hold, and let ε0 ∈ (0, 1). Then, for k small
enough, there exist positive constants ε1, ε2, m, and t0 such that the functional

L(t) = E(t) + ε1ψ1(t) + ε2ψ2(t)

satisfies

L ∼ E (47)

and

L′(t) ≤ –mE(t) + c(go�u)(t) + cε0 (go�u)
1

1+ε0 (t), ∀t ≥ t0. (48)

Proof For the proof of (47), we see that, using similar calculations as before,

∣
∣L(t) – E(t)

∣
∣ =

∣
∣ε1ψ1(t) + ε2ψ2(t)

∣
∣

≤ c(ε1 + ε2)
(‖ut‖2

2 + ‖�u‖2
2 + (go�u)(t)

)
,

therefore, from (31) and (33), we obtain

∣
∣L(t) – E(t)

∣
∣ ≤ c(ε1 + ε2)

(
1
2
‖ut‖2

2 + J(t)
)

= c(ε1 + ε2)E(t),

then

(
1 – c(ε1 + ε2)

)
E(t) ≤ L(t) ≤ (

1 + c(ε1 + ε2)
)
E(t).

Hence, for ε1, ε2 > 0 satisfying

1 – c(ε1 + ε2) > 0, (49)

equivalence (47) holds.
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Now, we prove inequality (48). Since g is positive and g(0) > 0, then, for any t0 > 0, we
have

∫ t

0
g(s) ds ≥

∫ t0

0
g(s) ds = g0 > 0, ∀t ≥ t0.

By using (20), (36), (39), and the definition of E(t), for t ≥ t0 and any m > 0, we have

L′(t) ≤ –mE(t) –
(

ε2(g0 – δ) – ε1 –
m
2

)

‖ut‖2
2

–
(

�

2
ε1 – ε2δ –

m
2

)

‖�u‖2
2 –

(

ε1 –
(k + 2)m

4

)

‖u‖2
2

+
(

kε1 – k
m
2

)∫

Ω

u2 ln |u|dx +
(

cε1 + ε2
c
δ

+
m
2

)

(go�u)(t)

+
(

1
2

–
cε2

δ

)
(
g ′o�u

)
(t) + ε2cε0,δ(go�u)

1
1+ε0 (t). (50)

Using the logarithmic Sobolev inequality, for 0 < m < 2ε1, we get

L′(t) ≤ –mE(t) –
(

ε2(g0 – δ) – ε1 –
m
2

)

‖ut‖2
2

–
(

�

2
ε1 – ε2δ –

m
2

– k
(

ε1 –
m
2

)
cpa2

2π

)

‖�u‖2
2

–
(

ε1 –
m(k + 2)

4
+ k

(

ε1 –
m
2

)

(1 + ln a) + k
(

m
4

–
ε1

2

)

ln‖u‖2
2

)

‖u‖2
2

+
(

cε1 + ε2
c
δ

+
m
2

)

(go�u)(t)

+
(

1
2

–
cε2

δ

)
(
g ′o�u

)
(t) + ε2cε0,δ(go�u)

1
1+ε0 (t). (51)

At this point we choose δ so small that

g0 – δ >
1
2

g0 and δ <
�g0

16
.

Whence δ is fixed, the choice of any two positive constants ε1 and ε2 satisfying

g0

4
ε2 < ε1 <

g0

2
ε2 (52)

will make

k1 := ε2(g0 – δ) – ε1 > 0 and k2 :=
�

2
ε1 – ε2δ > 0.

Then we choose ε1 and ε2 so small that (49) and (52) remain valid and, further,

1
2

–
cε2

δ
> 0.
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Consequently, we get (47) and

L′(t) ≤ –mE(t) –
(

k1 –
m
2

)

‖ut‖2
2

–
(

k2 –
m
2

– k
(

ε1 –
m
2

)
cpa2

2π

)

‖�u‖2
2

–
(

ε1 –
m(k + 2)

4
+ k

(

ε1 –
m
2

)

(1 + ln a) + k
(

m
4

–
ε1

2

)

ln‖u‖2
2

)

‖u‖2
2

+ c(go�u)(t) + cε0,δ(go�u)
1

1+ε0 (t). (53)

Thanks to (A3), we choose

e– 3
2 – 1

k < a <

√
2π�

kcp
. (54)

This selection will make

� –
ka2cp

2π
> 0 and

k + 2
2

+ k(1 + ln a) > 0.

Then, using (54) and selecting m and k so small that

α1 = k1 –
m
2

> 0, α2 = k2 –
m
2

– k
(

ε1 –
m
2

)
cpa2

2π
> 0

and

α3 = ε1 –
m(k + 2)

4
+ k

(

ε1 –
m
2

)

(1 + ln a) + k
(

m
4

–
ε1

2

)

ln‖u‖2
2 > 0,

we arrive at the desired result (48). �

Remark 4.1 Using (13), (19), (25), (31), and (33), we have

E(t) = J(t) +
1
2
∥
∥ut(t)

∥
∥2

2 ≥ J(t) ≥ 1
3

(go�u)(t).

Then, using (20),

(go�u)(t) ≤ 3E(t) ≤ 3E(0). (55)

Using (55), we obtain

(go�u)(t) = (go�u)
ε0

1+ε0 (t)(go�u)
1

1+ε0 (t)

≤ c(go�u)
1

1+ε0 (t). (56)
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Remark 4.2 In the case of G is linear and since ξ is nonincreasing, we have

ξ (t)(g ◦ �u)
1

1+ε0 (t) =
(
ξ ε0 (t)ξ (t)(g ◦ �u)(t)

) 1
1+ε0

≤ (
ξ ε0 (0)ξ (t)(g ◦ �u)(t)

) 1
1+ε0

≤ c
(
ξ (t)(g ◦ �u)(t)

) 1
1+ε0

≤ c
(
–E′(t)

) 1
(1+ε0) . (57)

Lemma 4.5 If (A1)–(A2) are satisfied, then we have the following estimate:

(go∇u)(t) ≤ t
q

G–1
(

qI(t)
tξ (t)

)

, ∀t > 0, (58)

where q is small enough and G is defined in Remark (2.1) and the functional I is defined by

I(t) :=
(
–g ′o∇u

)
(t) ≤ –cE′(t). (59)

Proof To establish (58), let us define the following functional:

λ(t) :=
q
t

∫ t

0

∥
∥�(t) – �(t – s)

∥
∥2

2 ds, ∀t > 0. (60)

Then, using (19), (20), and the dentition of λ(t), we have

λ(t) ≤ 2q
t

(∫ t

0

∣
∣
∣
∣

∣
∣�(t)

∣
∣

∣
∣
∣
∣

2

2
+

∫ t

0

∣
∣
∣
∣

∣
∣�(t – s)

∣
∣

∣
∣
∣
∣

2

2
ds

)

.

≤ 4q
�t

(∫ t

0

(
E(t) + E(t – s)

)
ds

)

≤ 8q
�t

∫ t

0
E(s) ds

≤ 8q
�t

∫ t

0
E(0) ds =

8q
�

E(0) < +∞. (61)

Thus, q can be chosen so small so that, for all t > 0,

λ(t) < 1. (62)

Without loss of the generality, for all t > 0, we assume that λ(t) > 0, otherwise we get an
exponential decay from (48). The use of Jensen’s inequality and using (59), (2.2), and (62)
give

I(t) =
1

qλ(t)

∫ t

0
λ(t)

(
–g ′(s)

)
∫

Ω

q
∣
∣�(t) – �(t – s)

∣
∣2 dx ds

≥ 1
qλ(t)

∫ t

0
λ(t)ξ (s)G

(
g(s)

)
∫

Ω

q
∣
∣�(t) – �(t – s)

∣
∣2 dx ds

≥ ξ (t)
qλ(t)

∫ t

0
G

(
λ(t)g(s)

)
∫

Ω

q
∣
∣�(t) – �(t – s)

∣
∣2 dx ds
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≥ tξ (t)
q

G
(

q
t

∫ t

0
g(s)

∫

Ω

∣
∣�(t) – �(t – s)

∣
∣2 dx ds

)

=
tξ (t)

q
G

(
q
t

∫ t

0
g(s)

∫

Ω

∣
∣�u(t) – �u(t – s)

∣
∣2 dx ds

)

, (63)

hence (58) is established. �

Theorem 4.1 Let (u0, u1) ∈ H2
0 (Ω) × L2(Ω). Assume that (A1)–(A3) and (30) hold. Then

there exist positive constants C1, C2, t0, and t1 such that the solution of (1) satisfies, for all
t ≥ t1,

E(t) ≤ C1

(

1 +
∫ t

t0

ξ 1+ε0 (s) ds
) –1

ε0
, if G is linear, (64)

E(t) ≤ C2t
1

1+ε0 K2
–1

(
k2

t
1

1+ε0
∫ t

t1
ξ (s) ds

)

, if G is nonlinear, (65)

where K2(s) = sK ′(ε1s) and K(t) = ([G–1]
1

1+ε0 )–1(t).

Proof Case 1: G is linear.
We multiply (48) by ξ (t) and use (56) and (57) to get

ξ (t)L′(t) ≤ –mξ (t)E(t) + c
(
–E′(t)

) 1
1+ε0 , ∀t ≥ t0. (66)

Multiply (66) by ξ ε0 (t)Eε0 (t) and recall that ξ ′ ≤ 0 to obtain

ξ ε0+1(t)Eε0 (t)L′(t) ≤ –mξ ε0+1(t)Eε0+1(t) + c(ξE)ε0 (t)
(
–E′(t)

) 1
ε0+1 , ∀t ≥ t0.

Use of Young’s inequality, with q = ε0 + 1 and q∗ = ε0+1
ε0

, gives, for any ε′ > 0,

ξ ε0+1(t)Eε0 (t)L′(t) ≤ –mξ ε0+1(t)Eε0+1(t) + c
(
ε′ξ ε0+1(t)Eε0+1 – cε′E′(t)

)

= –
(
m – ε′c

)
ξ ε0+1(t)Eε0+1 – cE′(t), ∀t ≥ t0.

We then choose 0 < ε′ < m
c and use that ξ ′ ≤ 0 and E′ ≤ 0 to get, for c1 = m – ε′c,

(
ξ ε0+1Eε0 L

)′(t) ≤ ξ ε0+1(t)Eε0 (t)L′
1(t) ≤ –c1ξ

ε0+1(t)Eε0+1(t) – cE′(t), ∀t ≥ t0,

which implies

(
ξ ε0+1Eε0 L + cE

)′(t) ≤ –c1ξ
ε0+1(t)Eε0+1(t), ∀t ≥ t0.

Let L1 = ξ ε0+1Eε0 L + cE. Then L1 ∼ E (thanks to (47)) and

L′
1(t) ≤ –cξ ε0+1(t)Lε0+1

1 (t), ∀t ≥ t0.

Integrating over (t0, t) and using the fact that L1 ∼ E, we obtain (64).
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Case 2: G is nonlinear.
Using (48), (56), and (58), we obtain, ∀t ≥ t0,

L′(t) ≤ –mE(t) + ct
1

1+ε0

[

G–1
(

qI(t)
tξ (t)

)] 1
1+ε0

. (67)

Combining the strictly increasing property of G and the fact that 1
t < 1 whenever t > 1, we

obtain

G–1
(

qI(t)
tξ (t)

)

≤ G–1
(

qI(t)

t
1

1+ε0 ξ (t)

)

, (68)

and then (67) becomes, for ∀t ≥ t1 = max {t0, 1},

L′(t) ≤ –mE(t) + ct
1

1+ε0

[

G–1
(

qI(t)

t
1

1+ε0 ξ (t)

)] 1
1+ε0

. (69)

Set

K(t) =
([

G–1] 1
1+ε0

)–1(t), χ (t) =
qI(t)

t
1

1+ε0 ξ (t)
. (70)

In fact,

K ′ = (1 + ε0)G′(G–1)
ε0

1+ε > 0 on (0, r],

K ′′ =
ε0

(G–1)1+ε0
+ (1 + ε0)

(
G–1)

ε0
1+ε G′′ > 0 on (0, r].

So, (69) reduces to

L′
1(t) ≤ –mE(t) + ct

1
1+ε0 K–1(χ (t)

)
, ∀t ≥ t1. (71)

Now, for ε1 < r and using (71) and the fact that E′ ≤ 0, K ′ > 0, K ′′ > 0 on (0, r], we find that
the functional L2, defined by

L2(t) := K ′
(

ε1

t
1

1+ε0

· E(t)
E(0)

)

L1(t),

satisfies, for some α1,α2 > 0,

α1L2(t) ≤ E(t) ≤ α2L2(t), (72)

and, for all t ≥ t1,

L′
2(t) ≤ –mE(t)K ′

(
ε1

t
1

1+ε0
· E(t)

E(0)

)

+ ct
1

1+ε0 K ′
(

ε1

t
1

1+ε0
· E(t)

E(0)

)

K–1(χ (t)
)
. (73)

Let K∗ be the convex conjugate of K in the sense of Young (see [57]), then

K∗(s) = s
(
K ′)–1(s) – K

[(
K ′)–1(s)

]
, if s ∈ (

0, K ′(r)
]
, (74)



Al-Gharabli Boundary Value Problems        (2019) 2019:194 Page 18 of 21

and K∗ satisfies the following generalized Young inequality:

AB ≤ K∗(A) + K(B), if A ∈ (
0, K ′(r)

]
, B ∈ (0, r]. (75)

So, with A = K ′( ε1

t
1

1+ε0
· E(t)

E(0) ) and B = K–1(χ (t)), we arrive at

L′
2(t) ≤ –mE(t)K ′

(
ε1

t
1

1+ε0
· E(t)

E(0)

)

+ ct
1

1+ε0 K∗
(

K ′
(

ε1

t
1

1+ε0
· E(t)

E(0)

))

+ ct
1

1+ε0 χ (t)

≤ –mE(t)K ′
(

ε1

t
1

1+ε0
· E(t)

E(0)

)

+ c
E(t)
E(0)

K ′
(

ε1

t
1

1+ε0
· E(t)

E(0)

)

+ ct
1

1+ε0 χ (t). (76)

Then, multiplying (76) by ξ (t) and using (59), (70), we get

ξ (t)L′
2(t) ≤ –mξ (t)E(t)K ′

(
ε1

t
1

1+ε0

· E(t)
E(0)

)

+ cε1ξ (t) · E(t)
E(0)

K ′
(

ε1

t
1

1+ε0

· E(t)
E(0)

)

– cE′(t), ∀t ≥ t1.

Using the nonincreasing property of ξ , we obtain, for all t ≥ t1,

(ξL2 + cE)′(t) ≤ –mξ (t)E(t)K ′
(

ε1

t
1

1+ε0
· E(t)

E(0)

)

+ cε1ξ (t)
E(t)
E(0)

K ′
(

ε1

t
1

1+ε0
· E(t)

E(0)

)

.

Therefore, by setting L3 := ξL2 + cE ∼ E, we conclude that

F ′
3(t) ≤ –mξ (t)E(t)K ′

(
ε1

t
1

1+ε0
· E(t)

E(0)

)

+ cε1ξ (t) · E(t)
E(0)

K ′
(

ε1

t
1

1+ε0
· E(t)

E(0)

)

.

This gives, for a suitable choice of ε1,

L′
3(t) ≤ –kξ (t)

(
E(t)
E(0)

)

K ′
(

ε1

t
1

1+ε0
· E(t)

E(0)

)

, ∀t ≥ t1,

or

k
(

E(t)
E(0)

)

K ′
(

ε1

t
1

1+ε0
· E(t)

E(0)

)

ξ (t) ≤ –L′
3(t), ∀t ≥ t1. (77)

An integration of (77) yields

∫ t

t1

k
(

E(s)
E(0)

)

K ′
(

ε1

s
1

1+ε0
· E(s)

E(0)

)

ξ (s) ds ≤ –
∫ t

t1

L′
3(s) ds ≤ L3(t1). (78)



Al-Gharabli Boundary Value Problems        (2019) 2019:194 Page 19 of 21

Using the facts that K ′, K ′′ > 0 and the nonincreasing property of E, we deduce that the
map t �→ E(t)K ′( ε1

t
1

1+ε0
· E(t)

E(0) ) is nonincreasing; consequently, we have

k
(

E(t)
E(0)

)

K ′
(

ε1

t
1

1+ε0
· E(t)

E(0)

)∫ t

t1

ξ (s) ds

≤
∫ t

t1

k
(

E(s)
E(0)

)

K ′
(

ε1

s
1

1+ε0
· E(s)

E(0)

)

ξ (s) ds ≤ L3(t1), ∀t ≥ t1.
(79)

Multiplying each side of (79) by 1

t
1

1+ε0
, we have

k
(

1

t
1

1+ε0
· E(t)

E(0)

)

K ′
(

ε1

t
1

1+ε0
· E(t)

E(0)

)∫ t

t1

ξ (s) ds ≤ k2

t
1

1+ε0
, ∀t ≥ t1. (80)

Next, we set K2(s) = sK ′(ε1s), which is strictly increasing, and consequently we obtain

kK2

(
1

t
1

1+ε0
· E(t)

E(0)

)∫ t

t1

ξ (s) ds ≤ k2

t
1

1+ε0
, ∀t ≥ t1. (81)

Finally, for two positive constants k2 and k3, we infer

E(t) ≤ k3t
1

1+ε0 K2
–1

(
k2

t
1

1+ε0
∫ t

t1
ξ (s) ds

)

. (82)

This finishes the proof. �

The following examples illustrate our results.

Example 4.2 Let g(t) = ae–b(1+t), where b > 0 and a > 0 is small enough so that (A1) holds.
Then g ′(t) = –ξ (t)G(g(t)), where G(t) = t and ξ (t) = b. Therefore, we can use (64) to deduce

E(t) ≤ c1

(1 + t)
1
ε0

. (83)

Example 4.3 Let g(t) = a
(1+t)q , where q > 1 + ε0 and a is chosen so that hypothesis (A1) is

satisfied. Then

g ′(t) = –bG
(
g(t)

)
, with G(s) = s

q+1
q ,

where b is a fixed constant. Since Φ(s) = s
(ε0+1)(q+1)

q , then (65) gives

E(t) ≤ c

t
q–1–ε0

(1+ε0)2(q+1)

. (84)
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