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Abstract
In this paper, by variational methods and the profile decomposition of bounded
sequences in H1 we study the existence of stable standing waves for the
Schrödinger–Choquard equation with an L2-critical nonlinearity. Our results extend
some earlier results.
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1 Introduction
In this paper, we consider the existence of stable standing waves for the following nonlinear
Schrödinger–Choquard equation:

⎧
⎨

⎩

iψt + �ψ = λ1|ψ |p1ψ + λ2(Iα ∗ |ψ |p2 )|ψ |p2–2ψ , (t, x) ∈ [0, T) ×R
N ,

ψ(0, x) = ψ0(x),
(1.1)

where ψ(t, x) : [0, T)×R
N →C is a complex-valued function, 0 < T ≤ ∞, N ≥ 3, ψ0 ∈ H1,

0 < p1 < 4
N , 1 + α

N < p2 < 1 + 2+α
N–2 , λ1,λ2 ∈R, Iα : RN →R is the Riesz potential defined by

Iα(x) =
�( N–α

2 )
�( α

2 )πN/22α|x|N–α

with max{0, N – 4} < α < N , and � is the gamma function.
One of the motivations for studying this problem is that this equation is not scale in-

variant. When λ1 = 0 and p2 > 0, for the nonlinear Choquard equation

iψt + �ψ = λ2
(
Iα ∗ |ψ |p2

)|ψ |p2–2ψ , (1.2)

there is a scaling transform that leaves it invariant. More precisely, the map

ψ(t, x) �→ λ
– α+2

2p2–2 ψ

(
t
λ2 ,

x
λ

)

(1.3)

maps a solution of (1.2) to another solution of (1.2). When p2 = 1 + 2+α
N , the scaling (1.3)

leaves the mass invariant. Therefore, the nonlinearity (Iα ∗ |ψ |p2 )|ψ |p2–2ψ is called L2-
critical.
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When p2 = 2, equation (1.2) simplifies to the well-known Hartree equation. The Cauchy
problem of (1.1) has been extensively investigated in [1–12]. The local well-posedness
and asymptotical behavior of the solutions for (1.1) have been studied in [1, 5]. Chen and
Guo [2] studied the instability of standing waves. Miao et al. [10] studied the dynamical
properties of the blowup solutions with minimal mass in the L2-critical case. The soliton
dynamics has been investigated in [3].

When 0 < α < N and 1 + α
N < p2 < N+α

N–2 , under the assumption that the local well-
posedness holds for (1.2), Chen and Guo [2] derived the existence of blowup solutions
and the instability of standing waves. When 0 < α < N and 1 + α

N < p2 < 1 + 2+α
N , the

soliton dynamics of (1.1) has been investigated in [13] if the solution ψ of (1.1) is in
C([0,∞), H2)∩C1((0,∞), L2). Feng and Yuan [14] systematically studied the Cauchy prob-
lem (1.2) for general max{0, N – 4} < α < N and 2 ≤ p2 < N+α

N–2 . More precisely, they study
the local and global well-posedness, finite-time blowup, and the dynamics of blowup so-
lutions. The sharp threshold of global existence and instability of standing wave for (1.2)
with a harmonic potential have been investigated in [15].

Recently, in the L2-subcritical case, that is, where 1 + α
N < p2 < 1 + 2+α

N , Wang et al. [16]
studied the orbital stability of standing waves for (1.2) with λ1 = 0 and λ2 = –1. However,
in this paper, the study of the stability of standing waves relies heavily on the scale in-
variance for (1.2). Thus, adding an L2-subcritical perturbation to (1.2), which destroys the
scale invariance, is of particular interest. In addition, the study of orbitally stable stand-
ing waves for nonlinear Schrödinger equations is in the L2-subcritical case; see [16–21].
In the L2-critical case, the solution of (1.1) may blow up; see [1, 14, 22, 23]. It yields that
the standing waves may be unstable. This brings some essential difficulties to the study of
stable standing waves for (1.1) in the L2-critical case.

To study the stability of standing waves of (1.1), we first make the following assumption
for the local well-posedness for (1.1).

Assumption 1 Let ψ0 ∈ H1, N ≥ 3, 0 < p1 < 4
N , and 1 + α

N < p2 < 1 + 2+α
N–2 . Then there exists

T = T(‖ψ0‖H1 ) such that (1.1) admits a unique solution ψ ∈ C([0, T], H1). Let [0, T∗) be the
maximal interval on which the solution ψ(t) is well-defined: if T∗ < ∞, then ‖ψ(t)‖H1 →
∞ as t ↑ T∗. Moreover, for all 0 ≤ t < T∗, the solution ψ(t) satisfies the conservation of
mass and energy:

∥
∥ψ(t)

∥
∥

L2 = ‖ψ0‖L2 ,

E
(
ψ(t)

)
= E(ψ0),

where E(ψ(t)) is defined by

E
(
ψ(t)

)
:=

1
2

∫

RN

∣
∣∇ψ(t, x)

∣
∣2 dx +

λ1

p1 + 2

∫

RN

∣
∣ψ(t, x)

∣
∣p1+2 dx

+
λ2

2p2

∫

RN

(
Iα ∗ |ψ |p2

)
(t, x)

∣
∣ψ(t, x)

∣
∣p2 dx. (1.4)

Remark When 0 < p1 < 4
N and 2 ≤ p2 < 1 + 2+α

N–2 , this assumption can be easily proved by
Strichartz’s estimates and a fixed point argument [1, 14]. When 1 + α

N < p2 < 2, we deduce
from inequality (2.1) that

∫

RN (Iα ∗ |ψ |p2 )|ψ |p2 dx is well-defined for ψ ∈ H1. Thus, we
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assume that the local well-posedness of (1.1) holds for N+α
N < p2 < 2. However, we cannot

prove this result because the nonlinearity (Iα ∗|ψ |p2 )|ψ |p2–2ψ is singular when N+α
N < p < 2.

Consequently, the case of N+α
N < p2 < 2 will be the object of a future investigation.

Under this assumption, by using variational methods and the profile decomposition of
bounded sequences in H1 we can obtain the following theorem.

Theorem 1.1 Let N ≥ 3, λ1 = –1, λ2 = –1, 0 < p1 < 4
N , p2 = 1 + 2+α

N , and ‖ψ0‖L2 < ‖Q‖L2 ,
where Q is a ground state of

–�Q + Q =
(
Iα ∗ |Q|p2

)|Q|p2–2Q in R
N . (1.5)

If Assumption 1 holds, then the standing waves of (1.1) are orbitally stable.

This paper is organized as follows: in Sect. 2, we first collect some lemmas such as
the Hardy–Littlewood–Sobolev inequality and the profile decomposition of bounded se-
quences in H1. In Sect. 3, we study the orbital stability of standing waves of (1.1).

2 Preliminaries
In this section, we will recall some preliminary results. We first recall the Hardy–
Littlewood–Sobolev inequality.

Lemma 2.1 Let 0 < λ < N and s, r > 1 be constants such that

1
r

+
1
s

+
λ

N
= 2.

Assume that f ∈ Lr and g ∈ Ls. Then

∣
∣
∣
∣

∫

RN

∫

RN
f (x)|x – y|–λg(y) dx dy

∣
∣
∣
∣ ≤ C(N , s,λ)‖f ‖Lr ‖g‖Ls . (2.1)

See Lieb [24] for the proof.
Next, we recall a useful result, which gives the best constant in a Gagliardo–Nirenberg-

type inequality; see [14].

Lemma 2.2 The best constant in the Gagliardo–Nirenberg-type inequality

∫

RN

(
Iα ∗ |u|p)|u|p dx ≤ Cα,p

(∫

RN
|∇u|2 dx

) Np–N–α
2

(∫

RN
|u|2 dx

) N+α–Np+2p
2

(2.2)

is

Cα,p =
2p

2p – Np + N + α

(
2p – Np + N + α

Np – N – α

) Np–N–α
2 ‖Q‖2–2p

L2 ,

where Q is the ground state solution of (1.5). In particular, in the L2-critical case p = 1+ 2+α
N ,

Cα,p = p‖Q‖2–2p
L2 .
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We further summarize some results about the ground state of (1.5), which is very im-
portant in the study of the dynamics of blowup solutions to (1.1).

Lemma 2.3 ([13, 25]) Let α ∈ (0, N) and 1 + α
N < p < 1 + 2+α

N–2 . Then (1.5) admits a ground
state solution Q in H1. Every ground state Q of (1.5) is in L1 ∩ C∞, it has fixed sign, and
there exist x0 ∈ R

N and a monotone real function v ∈ C∞(0,∞) such that, for every x ∈R
N ,

Q(x) = v(|x – x0|). Moreover, the L2-norm of any ground state Q of (1.5) is the same.

Next, we recall the profile decomposition of bounded sequences in H1 proposed by
Hmidi and Keraani [26], which is important in studying the stability of standing waves
to (1.1).

Lemma 2.4 Let {un}∞n=1 be a bounded sequence in H1. Then there exist a subsequence of
{un}∞n=1 (still denoted by {un}∞n=1), a family {xj

n}∞j=1 of sequences in R
N , and a sequence {Uj}∞j=1

in H1 such that
(i) for every k 
= j, |xk

n – xj
n| → +∞ as n → ∞;

(ii) for every l ≥ 1 and every x ∈R
N , we have

un(x) =
l∑

j=1

Uj(x – xj
n
)

+ rl
n (2.3)

with lim supn→∞ ‖rl
n‖Lq → 0 as l → ∞ for every q ∈ (2, 2N

N–2 ). Moreover,

‖un‖2
L2 =

l∑

j=1

∥
∥Uj∥∥2

L2 +
∥
∥rl

n
∥
∥2

L2 + ◦(1), (2.4)

‖∇un‖2
L2 =

l∑

j=1

∥
∥∇Uj∥∥2

L2 +
∥
∥∇rl

n
∥
∥2

L2 + ◦(1), (2.5)

∫

RN
Iα ∗

∣
∣
∣
∣
∣

l∑

j=1

Uj(· – xj
n
)
∣
∣
∣
∣
∣

p∣∣
∣
∣
∣

l∑

j=1

Uj(x – xj
n
)
∣
∣
∣
∣
∣

p

dx

=
l∑

j=1

∫

RN
Iα ∗ ∣

∣Uj(· – xj
n
)∣
∣p∣∣Uj(x – xj

n
)∣
∣p dx + ◦(1), (2.6)

where ◦(1) = ◦n(1) → 0 as n → ∞.

Remark (2.6) has been proved in [14].

Finally, we have the following global existence of (1.1).

Theorem 2.5 Let ψ0 ∈ H1, λ1 = –1, λ2 = –1, 0 < p1 < 4
N , and p2 = 1 + 2+α

N . Assume that Q
is the ground state solution of (1.5) and ‖ψ0‖L2 < ‖Q‖L2 . If Assumption 1 holds, then the
solution ψ(t) of (1.1) exists globally.

Proof Recall the Gagliardo–Nirenberg inequality

∫

RN

∣
∣u(x)

∣
∣p1+2 dx ≤ C‖u‖p1+2– Np1

2
L2 ‖∇u‖

Np1
2

L2 for u ∈ H1. (2.7)
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Hence we deduce from (1.4) and (2.2) that

E(ψ0) = E
(
ψ(t)

)

=
1
2

∫

RN

∣
∣∇ψ(t, x)

∣
∣2 dx –

1
p1 + 2

∫

RN

∣
∣ψ(t, x)

∣
∣p1+2 dx

–
1

2p2

∫

RN

(
Iα ∗ |ψ |p2

)
(t, x)

∣
∣ψ(t, x)

∣
∣p2 dx

≥
(

1
2

–
‖ψ0‖2p2–2

L2

2‖Q‖2p2–2
L2

)
∥
∥∇ψ(t)

∥
∥2

L2 – C‖ψ0‖p1+2– Np1
2

L2

∥
∥∇ψ(t)

∥
∥

Np1
2

L2 .

Since 0 < p1 < 4
N , it follows that Np1

2 < 2. Thus, we infer from Young’s inequality that, for
all 0 < ε < 1

2 , there exists a constant C(ε, M) such that

C‖ψ0‖p1+2– Np1
2

L2

∥
∥∇ψ(t)

∥
∥

Np1
2

L2 ≤ ε
∥
∥∇ψ(t)

∥
∥2

L2 + C
(
ε,‖ψ0‖L2

)
.

This implies that

E(ψ0) ≥
(

1
2

–
‖ψ0‖2p2–2

L2

2‖Q‖2p2–2
L2

– ε

)
∥
∥∇ψ(t)

∥
∥2

L2 – C
(
ε,‖ψ0‖L2

)
.

This, together with ‖ψ0‖L2 < ‖Q‖L2 , implies that there exists a constant C such that
‖∇ψ(t)‖L2 ≤ C for all t > 0. Therefore, the solution ψ(t) of (1.1) exists globally. �

3 Orbital stability of standing waves
First, let N ≥ 3, λ1 = –1, λ2 = –1, 0 < p1 < 4

N , p2 = 1 + 2+α
N , and 0 < M < ‖Q‖2

L2 , where Q is
the ground state solution of (1.5). We can define the variational problem

dM := inf
{u∈H1;‖u‖2

L2 =M}
E(u), (3.1)

where E(u) is the energy functional defined in (1.4). In the following theorem, we apply
the profile decomposition of bounded sequences in H1 to solve the variational problem
(3.1).

Theorem 3.1 Let N ≥ 3, λ1 = –1, λ2 = –1, 0 < p1 < 4
N , p2 = 1 + 2+α

N , and 0 < M < ‖Q‖2
L2 ,

where Q is the ground state solution of (1.5). Then there exists u0 ∈ H1 such that dM =
E(u0).

Proof First, we show that the variational problem (3.1) is well-defined and there exists
C0 > 0 such that

dM ≤ –C0 < 0. (3.2)
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Indeed, we deduce from (1.4), (2.2), and (2.7) that there exists a constant C such that

E(u) :=
1
2

∫

RN

∣
∣∇u(x)

∣
∣2 dx –

1
p1 + 2

∫

RN

∣
∣u(x)

∣
∣p1+2 dx

–
1

2p2

∫

RN

(
Iα ∗ |u|p2

)
(x)

∣
∣u(x)

∣
∣p2 dx

≥
(

1
2

–
‖u‖2p2–2

L2

2‖Q‖2p2–2
L2

)

‖∇u‖2
L2 – C‖u‖p1+2– Np1

2
L2 ‖∇u‖

Np1
2

L2 .

Since Np1
2 < 2, it follows from Young’s inequality that, for all 0 < ε < 1

2 , there exists a con-
stant C(ε, M) such that

C‖u‖p1+2– Np1
2

L2 ‖∇u‖
Np1

2
L2 ≤ ε‖∇u‖2

L2 + C(ε, M).

This implies that

E(u) ≥
(

1
2

(

1 –
‖u‖2p2–2

L2

‖Q‖2p2–2
L2

)

– ε

)

‖∇u‖2
L2 – C(ε, M). (3.3)

Therefore we deduce from the hypothesis ‖u‖2
L2 = M < ‖Q‖2

L2 that E(u) has a lower bound
and the variational problem (3.1) is well-defined.

Now, let u ∈ Hs be a fixed function, and let μ > 0. Set uμ = μ
N
2 u(μx). It follows easily

that

‖uμ‖2
L2 = ‖u‖2

L2 = M

and

E(uμ) =
μ2

2

∫

RN

∣
∣∇u(x)

∣
∣2 dx –

μ
Np1

2

p1 + 2

∫

RN

∣
∣u(x)

∣
∣p1+2 dx

–
μ2

2p2

∫

RN

(
Iα ∗ |u|p2

)
(x)

∣
∣u(x)

∣
∣p2 dx

= μ2
(

1
2

∫

RN

∣
∣∇u(x)

∣
∣2 dx –

1
2p2

∫

RN

(
Iα ∗ |u|p2

)
(x)

∣
∣u(x)

∣
∣p2 dx

)

–
μ

Np1
2

p1 + 2

∫

RN

∣
∣u(x)

∣
∣p1+2 dx.

On the other hand, by the sharp Gagliardo–Nirenberg inequality (2.2) and ‖u‖2
L2 = M <

‖Q‖2
L2 it follows that there exists C1 > 0 such that

1
2

∫

RN

∣
∣∇u(x)

∣
∣2 dx –

1
2p2

∫

RN

(
Iα ∗ |u|p2

)
(x)

∣
∣u(x)

∣
∣p2 dx ≥ C1 > 0.

Since Np1
2 < 2, we can choose μ > 0 sufficiently small such that there exists C0 > 0 such that

E(uμ) ≤ –C0 < 0. Hence (3.2) is true.
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Second, let {un}∞n=1 be a minimizing sequence of the variational problem (3.1) such that

E(un) → dM and ‖un‖2
L2 = M. (3.4)

This implies that, for n large enough, E(un) < dM + 1. Thus, for all 0 < ε < 1
2 (1 –

‖u‖2p2–2
L2

‖Q‖2p2–2
L2

),

we have

(
1
2

(

1 –
‖u‖2p2–2

L2

‖Q‖2p2–2
L2

)

– ε

)

‖∇u‖2
L2 ≤ dM + 1 + C

(
ε,‖Q‖L2 , M

)
.

This yields that {un}∞n=1 is bounded in H1.
Third, applying the profile decomposition of bounded sequences in H1, we will show

that the infimum of the variational problem (3.1) can be attained. Apply Lemma 2.4 to the
minimizing sequence {un}∞n=1, which, up to a subsequence, can be decomposed as

un(x) =
l∑

j=1

Uj(x – xj
n
)

+ rl
n, (3.5)

with lim supn→∞ ‖rl
n‖Lq → 0 as l → ∞ for every q ∈ (2, 2N

N–2 ).
Now, injecting (3.5) into the energy functional E(un), it follows from (2.4)–(2.6) that

E(un) =
l∑

j=1

E
(
Uj) + E

(
rl

n
)

+ ◦(1) (3.6)

as n → ∞ and l → ∞. For every Uj (1 ≤ j ≤ l), take the scaling transform Uj
μj = μjUj with

μj =
√

M
‖Uj‖L2

. It follows easily that

∥
∥Uj

μj

∥
∥2

L2 = M (3.7)

and

E
(
Uj

μj

)
=

μ2
j

2

∫

RN

∣
∣∇Uj(x)

∣
∣2 dx –

μ
p1+2
j

p1 + 2

∫

RN

∣
∣Uj(x)

∣
∣p1+2 dx

–
μ

2p2
j

2p2

∫

RN

(
Iα ∗ ∣

∣Uj∣∣p2)(x)
∣
∣Uj(x)

∣
∣p2 dx

= μ2
j E

(
Uj) –

μ2
j (μp1

j – 1)
p1 + 2

∫

RN

∣
∣Uj(x)

∣
∣p1+2 dx

–
μ2

j (μ2p2–2
j – 1)
2p2

∫

RN

(
Iα ∗ ∣

∣Uj∣∣p2)(x)
∣
∣Uj(x)

∣
∣p2 dx.
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This yields

E
(
Uj) =

E(Uj
μj )

μ2
j

+
(μp1

j – 1)
p1 + 2

∫

RN

∣
∣Uj(x)

∣
∣p1+2 dx

+
μ

2p2–2
j – 1

2p2

∫

RN

(
Iα ∗ ∣

∣Uj∣∣p2)(x)
∣
∣Uj(x)

∣
∣p2 dx. (3.8)

Similarly, for the term E(rl
n), we obtain

E
(
rl

n
)

=
‖rl

n‖2
L2

M
E
( √

M
‖rl

n‖L2
rl

n

)

+
((

√
M

‖rl
n‖L2

)p1 – 1)

p1 + 2

∫

RN

∣
∣rl

n(x)
∣
∣p1+2 dx

+
(

√
M

‖rl
n‖L2

)2p2–2 – 1

2p2

∫

RN

(
Iα ∗ ∣

∣rl
n
∣
∣p2)(x)

∣
∣rl

n(x)
∣
∣p2 dx + ◦(1)

≥ ‖rl
n‖2

L2

M
E
( √

M
‖rl

n‖L2
rl

n

)

+ ◦(1). (3.9)

Since ‖Uj
μj‖2

L2 = ‖
√

M
‖rl

n‖L2
rl

n‖2
L2 = M, we deduce from the definition of dM that

E
(
Uj

μj

) ≥ dM and E
( √

M
‖rl

n‖L2
rl

n

)

≥ dM. (3.10)

Thus we infer from (3.6), (3.8), and (3.9) that

E(un) ≥
l∑

j=1

(E(Uj
μj )

μ2
j

+
(μp1

j – 1)
p1 + 2

∫

RN

∣
∣Uj(x)

∣
∣p+2 dx

+
μ

2p2–2
j – 1

2p2

∫

RN

(
Iα ∗ ∣

∣Uj∣∣p2)(x)
∣
∣Uj(x)

∣
∣p2 dx

)

+
‖rl

n‖2
L2

M
E
( √

M
‖rl

n‖L2
rl

n

)

+ ◦(1)

≥
l∑

j=1

‖Uj‖2
L2

M
dM + inf

j≥1

(μp1
j – 1)

p1 + 2

( l∑

j=1

∫

RN

∣
∣Uj(x)

∣
∣p1+2 dx

)

+ inf
j≥1

μ
2p2–2
j – 1

2p2

( l∑

j=1

∫

RN

(
Iα ∗ ∣

∣Uj∣∣p2)(x)
∣
∣Uj(x)

∣
∣p2 dx

)

+
‖rl

n‖2
L2

M
dM + ◦(1)

≥
l∑

j=1

‖Uj‖2
L2

M
dM +

‖rl
n‖2

L2

M
dM

+ inf
j≥1

(
μ

a0
j – 1

)
(

1
2p2

∫

RN

(
Iα ∗ |un|p2

)
(x)

∣
∣un(x)

∣
∣p2 dx

+
1

p1 + 2

∫

RN

∣
∣un(x)

∣
∣p1+2 dx

)

+ ◦(1), (3.11)

where a0 = min{2p2 – 2, p1}.
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Note that since the series
∑∞

j=1 ‖Uj
μj‖2

L2 is convergent, there exists j0 ≥ 1 such that

inf
j≥1

μj = μj0 =
√

M
‖Uj0‖L2

. (3.12)

Letting n → ∞ and l → ∞ in (3.11), there exists C > 0 such that

dM ≥ dM + C
(( √

M
‖Uj0‖L2

)a0

– 1
)

,

which implies

∥
∥Uj0

∥
∥2

L2 ≥ M.

Hence, ‖Uj0‖2
L2 = M, and there exists only one term Uj0 
= 0 in the decomposition (3.5).

Moreover, we deduce from (2.4)–(2.6) that E(Uj0 ) = dM . This implies that the infimum of
the variational problem (3.1) is attained at Uj0 . This completes the proof. �

Now, define

SM :=
{

u ∈ H1; u is a minimizer of the variational problem (3.1)
}

. (3.13)

Then, for any u ∈ SM , we deduce from Euler–Lagrange theorem that there exists ω ∈ R

such that

–�u + ωu – |u|p1 u –
(
Iα ∗ |u|p2

)|u|p2–2u = 0. (3.14)

In addition, if u ∈ SM , then u is a solution of (3.14), and ψ(t, x) = eiωtu(x) is a standing wave
solution of (1.1). Hence eiωtu(x) is the orbit of u(x). On the other hand, for any t ≥ 0, if
u is a solution of (3.1), then eiωtu(x) is also solution of (3.1), that is, eiωtu ∈ SM . Applying
Theorem 3.1 and the method of Cazenave and Lions [17], we will show that if the initial
data is close to an orbit in the set SM , then the solution of (1.1) remains close to the orbit
in the set SM .

Theorem 3.2 Let N ≥ 3, λ1 = –1, λ2 = –1, 0 < p1 < 4
N , p2 = 1 + 2+α

N , and 0 < M < ‖Q‖2
L2 . If

Assumption 1 holds, then for arbitrary ε > 0, there exists δ > 0 such that, for any ψ0 ∈ H1

such that

inf
u∈SM

‖ψ0 – u‖H1 < δ,

the corresponding solution ψ of (1.1) satisfies

inf
u∈SM

∥
∥ψ(t) – u

∥
∥

H1 < ε

for all t > 0.
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Proof First, by Theorem 2.5 we see that the solution ψ of (1.1) exists globally. Assume by
contradiction that there exist ε0 and a sequence {ψ0,n}∞n=1 such that

inf
u∈SM

‖ψ0,n – u‖H1 <
1
n

(3.15)

and there exists {tn}∞n=1 such that the corresponding solution sequence {ψn(tn)}∞n=1 of (1.1)
satisfies

inf
u∈SM

∥
∥ψn(tn) – u

∥
∥

H1 ≥ ε0. (3.16)

From (3.15) and the conservation laws it follows that, as n → ∞,

∫

RN

∣
∣ψn(tn, x)

∣
∣2 dx =

∫

RN

∣
∣ψ0,n(x)

∣
∣2 dx →

∫

RN

∣
∣u(x)

∣
∣2 dx = M

and

E
(
ψn(tn)

)
= E(ψ0,n) → E(u) = dM.

Hence {ψn(tn)}∞n=1 is a minimizing sequence of the variational problem (3.1). We deduce
from Theorem 3.1 that there exists a minimizer ω ∈ SM such that

∥
∥ψn(tn) – ω

∥
∥

H1 → 0, n → ∞, (3.17)

which contradicts with (3.16). This completes the proof. �

Proof of Theorem 1.1 Let ψ0 ∈ H1 and 0 < M < ‖Q‖2
L2 , where Q is a ground state of (1.5).

Then it follows from Theorem 3.1 that the variational problem (3.1) has minimizers. These
minimizers correspond to the standing waves of (1.1). Therefore we obtain the existence
of the standing waves of (1.1). In addition, we deduce from Theorem 3.2 and the definition
of orbital stability (see [1]) that the standing waves of (1.1) are orbitally stable. �

4 Conclusions
In this paper, we study the orbital stability of standing waves for the nonlinear Schrödin-
ger–Choquard equation (1.1). There is no scaling invariance for this equation. When 0 <
p1 < 4

N and p2 = 1 + 2+α
N , by using variational methods and the profile decomposition of

bounded sequences in H1 we show that the standing waves are orbitally stable.
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