Teng et al. Boundary Value Problems (2017) 2017:179 @ Boundary Value PrOblemS

DOI 10.1186/513661-017-0910-x

a SpringerOpen Journal

RESEARCH Open Access

CrossMark

A natural boundary element method for
the Sobolev equation in the 2D unbounded

domain

Fei Teng', Zhendong Luo® and Jing Yang'

“Correspondence: zhdluo@163.com
?School of Mathematics and
Physics, North China Electric Power
University, No. 2, Bei Nong Road,
Beijing, Changping District 102206,
China

Full'list of author information is
available at the end of the article

@ Springer

Abstract

In this article, we devote ourselves to establishing a natural boundary element (NBE)
method for the Sobolev equation in the 2D unbounded domain. To this end, we first
constitute the time semi-discretized super-convergence format for the Sobolev
equation by means of the Newmark method. Then, using the principle of natural
boundary reduction, we establish a fully discretized NBE format based on the natural
integral equation and the Poisson integral formula of this problem and analyze the
errors between the exact solution and the fully discretized NBE solutions. Finally, we
use some numerical experiments to verify that the NBE method is effective and
feasible for solving the Sobolev equation in the 2D unbounded domain.
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1 Introduction

Let ® C R? be a connected and bounded region with smooth boundary I' := 90, ©° :=
RN\O, X = (x1,x), |X| = \/am . For given time upper bound T, we consider the following
Sobolev equation in the 2D unbounded domain:

Problem I Find o that satisfies

w—eAw —yAw =f(x,1), (x,t) € ©®° x(0,T),
% = g(x, 1), x,t) e T x (0,7T), )

@ (x,0) = uo(x), X € O°,

where w; = %_7 represents the partial derivative for the unknown function @ (x, t) about
time, € and y are positive constants, f(x,£), g(x,t), and u(x) are three known functions
satisfying the appropriate conditions, % denotes the external normal derivative operator,
and n represents a normal vector onto boundary I' of domain ®° toward the interior of
domain ©. In addition, we also assume the function @ (x, ) is bounded at infinity point
(see [1, 2]).
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Just like the heat equation (see [3]) and the reaction diffusion equation (see [4]), Prob-
lem Iis an important system of equations with real-life application background. It has been
widely applied to many practical engineering fields (see [5, 6]), for example, it is used to de-
scribe the procedure of fluid flow permeating rocks, the soils moisture migration, and the
different media heat transfer. It usually includes complex computing domain, initial and
boundary value functions, or source term for the Sobolev equation in the 2D unbounded
domain in the real world so that it has no analytic solution. Hence, one has to depend on
the numerical methods.

The natural boundary element (NBE), which was proposed by Feng and Yu at the end
of 1970s (see [7-11]), is a novel type of boundary element method (BEM) and suitable
for solving the unbound regional problem and is an attractive and promising numeri-
cal method. It has been effectively applied to complicated boundary and infinity regional
problem. It has more specific advantages than the usual BEM, for instance, it has a unique
form of boundary integral equation, remains the unchanged energy functional, holds very
good numerical stability, adopts the same variation principle as the finite element method
(FEM), can couple with FEM and we need not calculate a great many singular integrations
in practice. The main idea of the NBE method consists in introducing an appropriate arti-
ficial boundary and then restricting the computation to an appropriate large finite spatial
domain. It divides the domain into two subregions, a bounded inner region ®; (bounded
annular region by I'g and I'g) and a regular unbounded region ®; (unbounded domain
outside circle I'g) (see [1, 2]). One can obtain the natural integral equation on bound-
ary I'r and corresponding Poisson integral formula of the subproblem over unbounded
domain ®, by the natural boundary reduction. Only the function itself, not its normal
derivative at the common boundary I'g, appears in the variational. It has been used to
solve the second-order elliptic equations, standard parabolic equations, and hyperbolic
equations (see [1, 2, 7, 9, 10]).

However, for all we know, up to now, the NBE method has yet not been used to solve the
Sobolev equation. Especially, the Sobolev equation not only includes a first-order deriva-
tive term of time and two second-order derivative terms of spatial variables but also does
two mixed derivative terms of spatial variables (second-order) and time (first-order) so
that either the establishment of NBE format or the theoretical analysis needs more skills
and is confronted with more difficulties than the second-order elliptic equations, standard
parabolic equations, and hyperbolic equations as mentioned above, but it has certain spe-
cial applications as mentioned above. Therefore, it is worth to study the NBE method for
the Sobolev equation in the 2D unbounded domain.

The forthcoming contents are scheduled as follows. In Section 2, we establish a semi-
discretized super-convergence format about time for the Sobolev equation in the 2D
unbounded domain and deduce the super-convergence error estimates of the semi-
discretized solutions about time. In the next Section 3, by the principle of natural bound-
ary reduction, we establish a fully discretized NBE format based on the natural integral
equation and the Poisson integral formula of this problem and provide the error estimates
between the exact solution and the fully discretized NBE solutions. In Section 4, we sup-
ply some numerical experimentations to validate that the numerical computational con-
sequences are concordant with the theoretical ones. Section 5 summarizes main conclu-

sions.
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2 Semi-discretized formulation by the Newmark method and error estimate
about time for the Sobolev equation in the 2D unbounded domain
By using Green’s formula, we can obtain the following variational form for the Sobolev

equation.

Problem II For ¢ € (0, T), find @ (t) € H(®°) that satisfies
(I - eA)@y,v) +y(Vo,Vu) = (f,v) + (g,v), Yve H1(®C), 2)
where (-, -) represents the inner product in L2(®°), but (-, ) is the inner product in L2(T").

The existence and uniqueness of the solution for the variational form, Problem II, are
well known (see [5, 6, 12]).
Set T is the time-step, t; = k - 7, w* = w (x, ), and @ (x, tk):%—“;’(x, tx). By the Newmark

method (see, e.g., [13]), we can establish the following iterative scheme:

o (x) =y —eA) AT (X) + I —eA)fF(x), k=1,2,...,N, 3)

o (x) = ") + T[(1- " (%) + pr*(x)], k=1,2,...,N, (4)

where 8 € (0,1] and N = [T/7] ([T/t] denotes the integer part of T'/t).
By using [(w* — @r*1)/7 - (1- B)cr*"1]/B to approximate to ), we obtain the following

semi-discretized format about time for the Sobolev equation.
Problem III Find w* € H(©°) such that

(" — " v) + (e + Bry)(Voor, Vo) + (ty (1 - B) — &) (V" T, Vu)

= (Brff+ - B v) +((Bry +o)g + (zy (1 - B) —e)g" T, v),
Vv e H'(©),k=1,2,...,N, ®)

where @7 = 1o (0), f* =06, ), and g = g6, ).
The solutions to Problem III possess the following conclusions.

Theorem 1 Iff € L2(0, T; L*(©°)), g € L*(0, T; L*(I")), and uy € H'(®°), then Problem 111
has a unique set of solutions {w* )} | C H'(®F) satisfying

|z, < (2||M0||(2) +2(e + TBY) | Vo |12

k 3
N [ AV 4 ) e ©

i=1

where Cy is the nonnegative constant in the trace theorem and k =1,2,...,N. This signifies

that the solutions of Problem 111 are stable and consecutively rely on the source function f,
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boundary value function g, and initial value function uy. In addition, when @ is sufficiently
smooth about t, we have the following error estimates:

V(@ () -*)|, = |Ve'], <Cr, k=12,...,N, 7)

where C* = 2167 Y X (4)1(1 - e A (ED) I3 + | — e A (ED)112) - exp(T), iy < &F, € <

i1

Proof Because Problem III is a linear equation about unknown function @, to prove the
existence and uniqueness of solutions of Problem III is equivalent to demonstrating that
it has only a zero solution when g = f = uy = 0.

Choosing v = @ in Problem I1I together with utilizing the Hélder and Cauchy-Schwarz
inequalities and the trace theorem (see [14]), we have

[ g + (e + pen)[ Vo' |3

: 1 )
<4(B | g+ Cor e+ Brnle o) + 5l [ + 2" [)

(e +Bry)

o (v g+ [vate),  ®

¢ 2= 15+ e+ pry)| Vot [g) +

where Cy is the nonnegative constant in the trace theorem (see [14]). By summing (8) from
1 to k, we have

[l + e+ prn|vart],

k
= 2 2 (Illo+ e+ B [a[3) + ol + (e + Bry) I Vol
i=1

k
+ SZ(Cor’l(s +Bry)|g Hi,r + Bt |V’||§), 1<k<N. 9)

i=1

When 7 is adequately small such that 7 <1, by Gronwall’s lemma (see [15, 16]), we have
k
l=*1,

< |:2||uo||% +2(e + TBY)|I Vo I3

[T

k
+16 Z(Co(ﬁy + 87,'_1) ||gi ||é,lw + B |[f"||(2)’(_)c):| -exp(T/2), 1<k=<N. (10)

i=1

Thus, when f = g = up = 0, from (10), we obtain ||@*|ly = 0, implying @* = 0 (k =
1,2,...,N). Therefore, Problem III has a unique set of solutions.
With Taylor’s expanding formula, we acquire

o) = %{%[w(m ()] - (- ﬂ)wt(tkl)}

1—
+ #wﬁ(él]{) - %w_ﬁt(%-;)t (11)
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where #_; < Elk, Ef < tx4+1. From Problem II, we obtain

(@ (tr) - @ (ti1,v) + (e + Bry) (Voo (&), V) + (ty (1 - B) — &) (Ve (1), Vv)

= (Btf(t) + T(1 = B)f (txn), v) + T2 (L= B) (U — e A (€5 ), v)
2
+{(Bry +o)glte) + (ty (1 - B) - &)g(ter), V) - %((1— ey (£9),v),

Yu € H'(©°). 12)
Let & = o (t;) — wX. By subtracting (5) from (12) taking ¢ = t;, we obtain
(ek - v) +(e+ ,Bt)(Vek, VU) + (ry(l -B)- 8) (Vek_l, VU)

2
= 22(1- (U - eMmu(Ef),v) - 5 (- e8)mu(&),v). (13)

By taking v = € in (13) and using the Cauchy and Holder-Schwarz inequalities, we have
[¢]c+ @ + pen) [ Ve[
1
<5 (1Tg + [ 15) + 20— e () g
2 - edmE) 2+ T e 2 v ). as

By summing (14) from 1 to k, when 7 is adequately small such that /2 <1/2, we have

k-1 k
[¢]lg + 26 + Brr)[ Ve g < 2 3 leflg +22° 3o (1 0 - edm&)
i=1 i=1

+41- B2 |- ) ma(E)]2). (15)

By Gronwall’s lemma (see [15, 16]), we have

k
[k ]g + 26 + Ty | Ve g <27° (40 - P2 | U - e M) (&) |

i=1
+] T - Aoy (&) ||§) -exp(T). (16)
From (16), we obtain

V(@) -&*)|, = |Ve'], <Cr, k=12,...,N, 17)

where C? = 27¢™! Zf=l(4||(1—eA)wn(gg)||g +|(I—eA)w,(&]))12) - exp(T). This finishes the
proof of Theorem 1. O

3 Natural boundary reduction on the outside circle area and error estimate for
the fully discretized NBE solutions

We define i := (/(e + T8y)) L, & = [ —e Ak L+ t(I-e A)1- B)ar* L, f = &k — 18k
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The procedure for solving the above semi-discretized Problem III is given as follows.
(1) Prediction

FX=(-eNo T+ (I -eA)A - B’ (18)

(2) Solve the problem

Awk - ok = /,szk, x €0, (19)
9 k
TP _ g xeT, (20)
on
|o*| < +o0, |x| — +o0. (21)
(3) Update value
1
ot = — (" -a"). (22)
8

From the above procedure, it is not difficult to find that our main task is to solve elliptic
boundary value problems at each time level.

Let I,(x) and K, (x) (n = 0,1,2,...) be, severally, the first and second type of modified
Bessel functions (see [17]), and i, and 3, be, respectively, the natural and Poisson integral
operators (see [1, 10]). From the NBE method (see [1, 18, 19]), the Dirichlet boundary @&
and the Neumann boundary % satisfy the following relationship:

dw " Fk . Ak
Fre + N (w15 f,0) = R, 3, (23)
and the relationship between the solution @* of Problem III with its Dirichlet boundary

value @{ is as follows:
ok = 3,5+ F(u, 11, R, 0), (24)
where
- M2 +00 00 N ~
N (p,75£%,0) = 5 ZSH / Gu(p,130)[fF4(0) cos nf + f*(o) sinnd ] do,
n=0 r

EO:I;“;‘H:2,n:1,2,“,,

_ Kn
Gulpurso) = —Sl0) @ o0,
K,(ur) r
2+OO

F(p.rsf5R,60) = % ZS,,/ 02Gu(R,0)[f*(0) cos nf + f¥* (o) sinnd] do,
n=0 r

Dn(0)Yn(R) R <o

2 _ Ey(o) 7’ —
G R, = —0;1;2;'”:
TGRS ey "
EG) » RZ0

¢u(o) = Ku(uo), V(o) = L, (no)K,(ur) - Ky (uo)l,(ur), n=0,1,2,...,
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En(G)=1/fn(0)¢;,(0)—¢n(0)¢/(0)» n=0,12,...,

f’“ /fkae)cosnede n=0,12,...,

- 1 -

ff’s(o)zg fk(a,e)sinnede, n=12,....
0

The above (23) and (24) are named the natural and the Poisson integral equations, respec-
tively. Thus, (23) is equivalent to the following variation form:
Find w¥ € H2(I") (1 < k < N) that satisfy

B, vb) = (5 (r,0) + N (1,1 f%,6),0%), Wk e HA(T), (25)
where B(wf, v¥) = (1, = [N @5)vids and (0, €) =: [ wlds.

3.1 Natural boundary reduction on the external circle area

Now, let the domain ® be a circle with radius r and center at origin. For convenience,
we also suppose that the solutions @* of Problem III are appropriately smooth. Under
the polar coordinates, I' = {(R,0) : R=r,0 € [0,2n]}, ©®° = {(R,0) : R = |x| > r,0 € [0,27]},
and the external normal derivative operator onto I' satisfies % = —%. The solution of
equations (19)-(21) can be expressed with the following form in the polar coordinates:

@ (R,0) = iﬂO(R) + Z[an(R) cosnf + b,(R) sin ;10], (26)

n=1

2w

1
a,(R) = = @X(R,0)cosnfds, n=0,1,2,...;
T Jo

1 2
b,(R) = — / oX(R,0)sinnodo, n=1,2,....
T Jo

By calculating, we get the solution @*(R, ) of equations (19)-(21) as follows.

+00 2T
Zg/ K("R)) osn(0 —0')w*(r,0') do’

+ .F(/L,r;fk,R,Q), R>r,

awk(r,H) Tk _ 12 e = . / k / /
T+N(,u,r, '9)‘5/0 Ky (w150 —0" )" (r,0") d0/, (28)

where K, (11,70 —0') = =3 "0 &, cos n(0 — 0") - K,(ur) /K, (ur).

Remark1 The formats (27) and (28) are, respectively, the Poisson and the natural integral
equations. We can attain the solution X (r,6) from the natural integral equation (28) and
then obtain the solution of the original boundary value, i.e., Problem I, by the Poisson
integral formula (27). But the solution of Problem I can be acquired directly by the Poisson
integral formula (27) for the Cauchy-Dirichlet initial boundary value problem, because the
function @ *(r,0) is known.
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Remark 2 In numerical computations, we can limit » < R < +00 on the r < R < Ryax
and use the corresponding numerical integral to calculate the integral calculation of the
N(u, r; f k.6) and F(u,r; ¥ R,0). Meanwhile, the expressions of an infinite series summa-
tion can be substituted with a finite series summation in the practical applications.

3.2 Error analysis of NBE solutions

We divide the circumference I" into some finite elements, which satisfy regular conditions.
For the sake of simplicity, we take uniform subdivision. Let S;,(I") ¢ HY?(T") be a finite
element subspace spanned by appropriate basis functions. Thus, the NBE approximation

to Problem Il is as follows.

Problem IV Find w(’;h € Sp(l') (1 < k < N) that satisfy
B(wf,,vb) = (g"(r,0) +N(M,r;ﬁ(,8),vk), vk e Su(I), (29)

and

1 X 7 K, (uR)
k _ n Y k ’ ’
@, (R6) = — n§:0 £, /0 X (ur) cosn(0 —0")wg,(r,0") do

+.7-'(u,r;fk,R,9), R>r. (30)
The above formula (30) is the approximate expression of Poisson integral formula (27).
In order to analyze the errors of NBE solutions of Problem IV, it is necessary to introduce
the following L?-projection and its property (see [16]).
Definition 1 An operator P, : Ly(I") — Su(T") (where S,(I") € L%(T") is a finite element
space) is known as an L2-projection if, for any v € L?(I"), there exists unique P,v € Sj,(T")
satisfying

(U—PhU,Uh) =0, VUh ESh(F).

Lemma 1 If S,(T") is a subspace spanned by piecewise linear polynomials and v € H*(T"),
then the L2-projection Py, satisfies

lv=Ppvlls < CE[llar,  s=-1,0,1,
where C used next represents a generic positive real independent of T and h.

Problem IV possesses the following conclusion.
Theorem 2 Let wé‘ cH? (T") and wgh be, respectively, solutions to (25) together with (29),

T = O(h?), and Sy(T") be the piecewise linear polynomial subspace. Then we have the fol-
lowing error estimates:

||w(§(_w(§(h”0,l—~ SChzy k:1,2,...,N. (31)
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Proof By subtracting (29) from (25) taking v* = v{f , we obtain

é(wé( - wé(h’ W]z()

2 f® 2
. k— k-
(13 [t [ )
+eA (g —wy) -t - By Awy 1—wgh1)]c0snédécosn9

2
+/ [~ - eA) (@™ = o) = 1y A (o™ - )
0

+ By A(w§ ™ — @, )] sin n6 d6 sin n0:| do, v§>, vk e S, (). (32)

Due to B(, ") being positive definite on H? (") x H? (T) (see [1]), by using the Holder in-

equality, we have

Mg - oy o

= @5 = @oulor @6 ~ P o +

2 *00 B
<2n§jsn/ Guljurri0)
211_ k-1 _ k-1 k-1
| [t - o) e (e -
0

—t(1- By A — o) ] cos nd dd cos né
21

RSN
0

-t(1- By A(wy H_wl 9] sinn df sinn9:| do,P,of - w§h>

S”ZU(;(_w(;<h”0r||w0 Phwo”or [”wé w0h1”0r”Phw0 w(;(Hor

1||0r +r||V( " 1_woh )”or)nphwo _w(l)(Ho,F

—f5||V(wok 1_ZUOh )”or”Pth 20 ||0r

+ (e ” w(l)‘ ZZ70h

1

+(1+e) oy —wohlnopnwo ZZ70h||or

+W(1—5)Hv(wo( 1_w0h )”or”wo th”or]

Further, by the Cauchy-Schwarz inequality and Lemma 1 as well as the inverse estimating

theorem (see [16]), we acquire

”wg _wé(h ”é,r = C(”wé( - thlHOF +h4)'



Teng et al. Boundary Value Problems (2017) 2017:179 Page 10 of 15

Further, we acquire
|70 = @il = C*
This finishes the proof of Theorem 2. d
The solutions for approximate expression (30) have the following error estimates.

Theorem 3 Let w* and w}’l‘ be, respectively, the solutions of (27) and (30) and T = O(h?).
Then we have the error estimates:

”wk - wlf”o,oo,@)c < Ch2. (33)

Proof By the literature [17], we can immediately derive

K, (x) = %(i—i)n[1+o(n1)], n—> +00.

Therefore, we have K,,(uR)/K,(ur) <1 (r < R). Thus, there is real M > 0 that satisfies

K (Mr)

By using (18), we have f* = [-(I —£A) —t(1 - B)y Al * ' — 18f* — t(1 - B)f*'. Thus, from
(27) and (30), we have

+00 27T+oo[< R
Z f Z (“) n(0-0) - (wf - ok)do’

MZ +00 +00 ) 2 o i A
+ E;&/r o Gn(R,o){[/o |-U —eA)(w§ ™ — ;") cosnd | df
2w ) A
+/ |-t - By A(wy —zzr(’fhl)cosn9|d9:| cos né
0
2w R R
+[/ |~ —eA)(wy ™ - wg,") sinnd| db
0

21
+/ |-t - By A(wy 1—w§h1)sinné|déi| sinn@}do
0
2 %
(/ cos>n(0 -0 dG/) s - th“or
0

w2 o N2
25"/ 2Gn(R,a).”||wg —w0h1||0r(f coszn9d9>
0

+5H(wé‘ . T )||Or||Acosné||0

1 f: K, (R)

<
" Ku(ur)

= |2
n=0
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+11-B)y | V(s - o )||0F||Vcosn§||0:| cos nf

2 R %
+[||wg - ||or(/0 sin2n9d9>

+e| (@&t - ol )||0F||Asinné||o

+1(L- By | V(2§ - gy )||0F||Vsinné||o] sinne} do

2 +00

+00
<CH + Ch2 1 Zs,,/ 02G,(R,0)(sinnb + cos nd) do
< Ch. (34)
From (34), we immediately gain (33). This finishes the proof of Theorem 3. O

For the fully discretized NBE format, Problem IV, we have the following conclusion.

Theorem 4 Iff* € L2(®°), g € L°(T"), and ¥ € H(OF), Problem IV has a unique solution
@, € Su() satisfying

k
[=anllo = C{Iluﬁ lor+2_(le o + w81 ||o,(—)6)i| -exp((L+e + By)T), (35)

i=1

where u)) = Pyuo(x). This signifies that the solutions of Problem 1V are steady and consec-
utively rely on the source function f, boundary value function g, and initial value function

0. Furthermore, when t = O(h?), we have the error estimates.
”w(tk)—w,’,‘HO@C§C(r+h2), k=1,2,...,N. (36)

Proof Due to B(-,-) being symmetrical, continuous, and positive definitive on H 3 (") x
H3 (T') (see [1,10]), by the Lax-Milgram theorem (see [1, 10, 16]), we know that Problem IV
has a unique set of solutions.

Then, by taking v} = @, in (29) and using the Hélder inequality, we have

< [B(wg mg,)| = (5, 0) + N (1,13 £5,0), 5, )|

2 > +00 2
<[ [ 5 [ G [l

-7(1- ,B)yA)woh -1(1-p8) k_l—rﬁfk]-cosnédécoan

Mg o

2
+/ [( (I-eA)—t(1- ,B))/A)zzroh
0

—t(1-B)f - rﬁfk] sinnf df sinn@} do

=

[(1+‘9+'BT ||w0h1||or+rmvkuooc ||g Hor]”th“or (37)

o,r
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Furthermore, we have

[ailly < (A +2+ B @a; o + 18 0,0 + 2BI [g,06)- (38)

By summing (38) from 1 to k and using Gronwall’s lemma (see [15, 16]), we get

k
l=ailly = C["ﬂo”aF +2 (gl +BIf* IIO,@C)} -exp((L+e + By)T). (39)

i=1

By using the triangle inequality,

||w(tk) - wf”o,@C < ||w(tk) - + C||zzrk - whk (40)

Noer 00,06

and combining (7) and (33) with (40), we can acquire (36). This finishes the proof of The-
orem 4. O

4 Some numerical experiments
At the moment, we utilize some numerical experimentations to validate that the numerical
computational conclusions coincide with the theoretical ones and that the NBE format is
effective and feasible for solving the Sobolev equation in the 2D unbounded domain.

Let ¢ be the external region outside the unit circle. The source term is chosen as

f068) =3[(R™" =2.257°R™ — R73) sin(L.57R) + L57>R ™2 cos(1.5m R)] cos(3¢)

+ [R_3 —-2.257%R  sin(1.5wR) — 1.57m R~2 cos(1.57rR)] sin(3t),

where R = |x| = \/m > 1 and take ¢ = y = 1. The boundary and initial functions are,
respectively, chosen as g(x,t) = —sin(3t) and uo(x) = 0 as in [1]. We approximately re-
place 3' with 3" and adopt the numerical integral to calculate A (i, r;f*,6) and
Fu,r; f” k,R,) in our numerical experimentations.

We divide the circumference I" into 64 arc paragraphes with side length A9 = /32,
which satisfies usual regular conditions, and take M =120 and the time step size 7 =
0.0125. We find exact solution ¢ and numerical solutions @, at time ¢ = 1, 10, 30, 60,
90, 120, 180, which are shown in Photo (a)’s and (b)’s of Figs. 1-7, severally. Whereas the
errors between the exact solution and numerical solutions at ¢ = 1, 10, 30, 60, 90, 120, 180
are exhibited graphically in Photo (c)’s of Figs. 1-7, severally. From each group of photos in

Figure 1 The exact and NBE solutions and the error between them at t = 1. Photos (a) and (b) are
severally the exact and NBE solutions and Photo (c) is the error between them.
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Figure 2 The exact and NBE solutions and the error between them at t = 10. Photos (a) and (b) are
severally the exact and NBE solutions and Photo (c) is the error between them.

x10

Figure 3 The exact and NBE solutions and the error between them at t = 30. Photos (a) and (b) are
severally the exact and NBE solutions and Photo (c) is the error between them.

Figure 4 The exact and NBE solutions and the error between them at t = 60. Photos (a) and (b) are
severally the exact and NBE solutions and Photo (c) is the error between them.

10

Figure 5 The exact and NBE solutions and the error between them at t = 90. Photos (a) and (b) are
severally the exact and NBE solutions and Photo (c) is the error between them.

Figs. 1-6, we can clearly see that the exact solutions are basically the same as the numeri-
cal solutions. In particular, the error photos indicated that the numerical computing con-
sequences are consistent with the theoretical ones since both theoretical and numerical
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Figure 6 The exact and NBE solutions and the error between them at t = 120. Photos (a) and (b) are
severally the exact and NBE solutions and Photo (c) is the error between them.

s =

4
K

A
K

Figure 7 The exact and NBE solutions and the error between them at t = 180. Photos (a) and (b) are
severally the exact and NBE solutions and Photo (c) is the error between them.

errors are O(107*). Especially, it is super-convergent about time accuracy. Even if ¢ = 300,
the numerical solution still converges and maintains accuracy O(10~*). These sufficiently
signify that the NBE method is very effective and feasible for solving the Sobolev equation
in the 2D unbounded domain.

5 Conclusions

In this article, we have established the semi-discretized format about time for the Sobolev
equation in the 2D unbounded domain by the Newmark method and gained the error es-
timates of super-convergence of the semi-discretized solutions about time. Especially, we
have built the fully discretized NBE format and analyzed the errors between the analytical
solution and the fully discretized NBE solutions. We have also provided some numeri-
cal experiments to validate that our method is effective and feasible. The most important
thing is that the NBE method applied to solve the Sobolev equation in the 2D unbounded
domain is first presented, it is new and original. Moreover, the method can also solve many

practical problems.
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