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discretization. The approximations of stress tensor o, velocity vector u and pressure p
are Pp-discontinuous, Pr-continuous and Py-continuous elements, respectively.
Upwinding needed for convection of o is made by a discontinuous Galerkin (DG) FE

method. For the time step At small enough, the existence of an approximate solution
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is proven. If m k> 4,g+1> ¢,and At < Goh#, then the discrete H' and L2 errors for
the velocity and stress, and L? error for the pressure, are bounded by
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1 Introduction

In this paper, we consider the time-dependent incompressible viscoelastic fluid flow prob-

lem
Re(du+u-Vu)-V -0 -2(1-a)V-D(u) + Vp =1, (1.1a)
A0 +u- Vo) +o + g, (o, Vu) = 2aD(u) = 0, (1.1b)
V-u=0, (1.1¢c)

for x € @ and ¢ € (0, T], where  C R? (d=2, 3) is a connected, bounded polygonal do-
main with the Lipschitz continuous boundary 9. p(x,t) represents the pressure, u =
(1(x,8),...,uq(x,t)) the velocity vector, and o(x,?) the stress tensor. o is the viscoelas-
tic part of the total stress tensor oyt = 0 + 2(1 — &)D(u) — pI. A is the Weissenberg num-
ber, Re the Reynolds number, f(x,t) the body forces acting on the fluid and 0 < @ < 1
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may be considered as the fraction of viscoelastic viscosity. The gradient of u is defined
as (Vu);; = du;/dx;. D(u) = %(Vu + Vu?) is the rate of the strain tensor. For all @ € [-1,1],
g4(0, Vu) is defined by

l-a l+a
-4

(o, Vu) = - (oVu+(Vu)'o) (Vu)o +o(Vu)h). 1.2)

The boundary and initial conditions are given by

u(x,t)=0, ondQ x (0,T], (1.3)

u(x,0) = up(x), o(x,0) =o09(x), VxeQ. (1.4)

Time-dependent calculations of viscoelastic fluid flows are important to the understand-
ing of many problems in non-Newtonian fluid mechanics, particularity those related to
flow instabilities [1-3]. The existence and uniqueness of solutions to viscoelastic fluid flow
(1.1a)-(1.4) were discussed in [4, 5].

Numerical methods for solving the time-dependent incompressible viscoelastic fluid
flow have been investigated extensively [6-18]. For the analysis of the time-dependent
problem, Baranger and Wardi [11] studied a DG approximation to inertialess flow in R.
Assuming the Hood-Taylor FE pair approximation for the velocity and pressure, and a
discontinuous linear FE approximation for the stress, and Euler implicit method in time,
under the assumption At < Ch*?2, they obtained that the discrete H' and L2 errors for the
velocity and stress, respectively, are bounded by C(At + 4#*2). Ervin and Heuer [14] ana-
lyzed a fully discrete approximation for the time-dependent viscoelasticity equations with
an Oldroyd B constitutive equation in R4, d=2,3. They used a Crank-Nicolson discretiza-
tion for the time derivatives. At each time level a linear system of equations is solved. To
resolve the nonlinear terms, they used a three-step extrapolation for the prediction of
the velocity and stress at the new time level. The approximation is stabilized by using a
discontinuous Galerkin approximation for the constitutive equation. Assume that At is
sufficiently small and satisfying At < Ch?%#, the existence of an approximate solution is
proven. A priori error estimate for the approximation in terms of At and /4 is also de-
rived. In [12], Ervin and Miles analyzed the finite element spacial semi-discrete and Euler
semi-implicit fully discrete schemes, which were stabilized by using a streamline upwind
Petrov-Galerkin (SUPG) for the constitutive equation. Bensaada and Esselaoui in [15] pre-
sented error analysis of a modified Euler-SUPG approximation for the time-dependent
viscoelastic flow problem. In [18], based on a splitting of the error into two parts: the error
from the time discretization of the PDEs and the error from the finite element approxima-
tion of corresponding iterated time-discrete PDEs, the authors carried on unconditional
error estimates for time-dependent viscoelastic fluid flow.

In this work, we consider the convergence of BDF2-LE in time and MFE in space for the
viscoelastic fluid flow. The backward difference formula (BDF) class of multi-step schemes
has been widely used as time integration method for both ordinary and partial differential
equations, see [19-27]. The BDF2 is one of the most popular BDF schemes due to its
stability and damping properties [28]. Girault and Raviart introduced and analyzed a first-
order and second-order BDF temporal semi-discrete schemes for Navier-Stokes equations
in [21]. An unconditionally stable decoupled BDF2 time-stepping scheme was analyzed for
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Boussinesq type Navier-Stokes equation in [24]. To the best of our knowledge, there is no
rigorous convergence analysis available yet for the viscoelastic fluid flow by using BDF2-LE
in time. We will propose and analyze a coupled scheme which belongs to this class.

This article is organized as follows. In the next section, we introduce some notations
and preliminaries related to a continuum and discrete problem. In Section 3, we propose
the extrapolated time-stepping scheme, prove the existence of the numerical solution and
establish the stability analysis. The error analysis for the general scheme is presented in
Section 4. We also present numerical tests to confirm the theoretical results in Section 5.

Finally, some conclusions are drawn.

2 Notation and preliminaries
We denote the L?(R2) norms and corresponding inner products by | - || and (-, ). Likewise,
the L2(R2) norms and the Sobolev W*?(Q2) norms [29] are denoted by | - [|z» and || - || yykp,
respectively. H¥(S2) is used to represent the Sobolev space W*2(Q2) and || - || denotes the
norm in H¥(2). The space H*(Q2) denotes the dual spaces of H(’)‘ (£2). All other norms will
be clearly labeled with subscripts.

The velocity and pressure spaces are X = H(l)(Q)d, Q = L(Q), respectively. The stress

space S and divergence-free functions space V are given by

S={r=(wst =15t e (1 <ij<d}
N{t = (g)v- Vr e Q)P4 vweX),

V={veX;(qV-v)=0,Yg€Q}.

A weak formulation of (1.1a)-(1.1c) is as follows: Find (o, u,p) : [0, T] — (S, X, Q) for a.e.
t € (0, T] satisfying

Re(9,u,v) + Rec(u,u,v) + (0, D(v)) + 2(1 — &) (D(u), D(v))

- (p’ V. V) = (f! V), (213)
(,V-u) =0, (2.1b)
A00 +u-Vo,1) + )L(gﬂ(o, Vu), r) +(0,7) - 2 (D(u), r) =0 (2.1¢)

for all (z,v, q) € (S, X, Q) with the initial condition (1.4) a.e. in 2, where the trilinear oper-
atorcon X x X x X is

c(u,v,w) = (u- Vv,w).

By virtue of the divergence-free space V, the weak formulation of (1.1a)-(1.1c) can be
written as follows: Find (o, u) € (S, V) such that, for all (z,v) € (S, V),

Re(9;u,v) + Rec(u,u,v) + (G,D(V)) +2(1- a)(D(u),D(v))
=(f,v), (2.2a)

Mo +u-Vo,7)+(0,7) + A(gu(o, Vu), ) — 2a(D(u), 7) = 0. (2.2b)
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Here we assume that the initial-boundary value problem (1.1a)-(1.4) has a unique solu-

tion satisfying the regularity conditions

uel?(0, TH*NQ)Y),  duel’(0,;H(Q)?),  8luel’(0,T;L(Q)),
pel*(0,T;HT™(Q)), o eL*(0,T;H™H(Q)"),

(2.3)
do € L*(0, T; H™ (Q)"?), 3o e L*(0, T; L* (),

allocs o llocs VUtlloos VO lloo <M forall t € [0, T].

By using V- u =0 and u =0 on 9%, it is easy to see that 2(D(u), D(v)) = (Vu, Vv), and
ID@)|| < [Vu]|.

In order to keep the exposition simple, we restrict our attention to convex polyhedral
domains. Suppose that T” is a uniformly regular triangulation of  such that = {| JK :
K € T"} and assume that there exist positive constants vy, v, such that v < hg < vy pg,
where /i is the diameter of K, px is the diameter of the greatest ball included in K, and

h =maxypn hi. The corresponding FE spaces are

Xin={veXnC' Qv € P(K)', VK € T"},
Sp={t € S;1ic € PUu(K)* VK € T"Y,

Qi ={q€ QN C°@;qix € P,(K); VK € T"},

where P,,(K) denotes the space of polynomials of degree < m on K € T".

We make the following assumptions on the finite dimensional subspaces.

Assumption Al For (u,p) € H*(Q)? x HI*(Q), there exists (ITy(u), I,(p) € Vi x Qu
such that [21, 30-33]

|u— ()| + 4] V(a- Mu@)| < Cph 1l (2.4)

lp - T,®)| < Cph™ Ipllgn- (2.5)
Let 1, (o) € S;, be a P, continuous interpolant of o, and if o € H"*1(Q)?*?, we have that
lo =T ()] + 1] V(0 =Ty (0)) | < Cph™ [0 llmer- (2.6)

Assumption A2 (Discrete inf-sup condition) For each gj, € Qy, there exists a nonzero

function v;, € X}, such that

,V :
inf @ Vv g, 2.7)
an€Qnv,ex, lgnllll Vvl

where f is a positive constant independent of the mesh size /.
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Assumption A3 For each wj, € Xj,, one has the inverse inequality, the Poincare inequality
and the second Korn’s inequality
d
IVan| < Cih™loll, lonlloo < Cih™2 |wpll,
lonll < CpllVanll, (2.8)

Vol < Ci | D(wn)

where C;, C, and C; are the positive constants, which only depend on .

There are many finite element spaces satisfying Assumptions A1-A3, such as the MINI
(P1b, P1) elements, or the Hood-Taylor (P, P;) elements for the velocity u and pressure p,
and P; (or P,) discontinuous element for stress tensor o.

The discretely divergence-free velocity space is denoted by

Vi = {veXh;(q,V-v)zo, forallg e Qh}.

Remark 2.1 The divergence-free space V}, is introduced only for theoretical analysis. The
practical computation should be based on the finite element space pair (X}, Q) for velocity
and pressure. We refer the readers to Heywood and Rannacher [34, 35] for the details on
the construction of (X3, Qy).

Here we present a result which will be used in the stability analysis and error estimate
for pressure. Since the divergence-free space V), C Xj,, we can define the norms of the dual
spaces Xy, Vj, by

(w,vh) (w, V1)

lwlly = sup , el = sup .
% v eXy ”vvh” Vi veV) ||VVh||

Lemma 2.2 ([36-38]) For Vv € V},, the norms ||v||,/ and Ivll,, are equivalent.
h h

In order to describe the approximation of the constitutive equation by the method of
discontinuous finite elements, following [6], we define

0K (u) = {x € 0K;u(x) - n(x) < 0},

where 0K is the boundary of K € T", and n is the outward unit normal to 3K, and
Q" = {UE)K:K € Th} \ 082, ¥ (u)(x) = lim r(x+ su(x)).
£—>0%t
Also, for all functions in [] KeT, [HY(K)]%*?, we define

(@, =) (@,

KeTy

£ 4+ _ + + )
(o™, T >h,u_ Z/sz(u)(g (u), 7" (u))|n - u|ds,

KeTy

1/2
I PR W R O L I

KeTy



Zhang et al. Boundary Value Problems (2017) 2017:140 Page 6 of 35

The convection term ((u - V)o, t) is approximated by means of an operator B on Xj, x
Sn % Sy, defined by

B(u,0,71)

=((w-V)o,1), + %(V ‘uo,7)+ (0" - U’,f*)hyu

—((u . V)r,(r)h - %(V -ut,o) + <(7_,‘L'_ - r+>h’u, (2.9)

which implies some ‘coercivity’ of B [39]:

B(u,0,0) = 1((0 -0 ))iu (2.10)

Let {t,|t, = nAt;0 < n < N} be a uniform partition of [0,T] with the time step At =
T/N. We denote 0™ = w(x, t,,). For a sequence of functions {w”}ﬁio, we define the BDF2
operator J(w"*!) and the linearly extrapolated operator [ (w"*!)

n+l _ 4" + wn—l

2At

3w

j(wml) _

, F(a)n+l) :26()”—(,0”_1.

It follows from Taylor’s formula with integral remainder that [26]

1o
() = ot + - /

tp-2

{Z(t - tn—l)i - %(t - tnz)z}a?w dt;
Flo(t)) =ol) + [ {2e-t). - e~ t,2) 0Fds

where (¢ — t,-1), = max((t — £,-1),0). By the Cauchy-Schwarz inequality, we have the trun-
cation error

|3(wt) - gt | < Cr(aty*?[8}w(®)] 12, _, 1120 (2.11)
[F (@) - o(tn) | < Cra? o) 2, 0 120y (2.12)
where the constant Cr is derived from Taylor’s formula.
The BDF2 operator J(w(t,,1)) satisfies the relation [26)]
(:(wnﬂ), wn+1>

e v vt [ Rl Lt P
2 _ n_ n-1 2 n-1112

T ] R Py | e B @13

The discrete Gronwall’s lemma [35] plays an important role in the following analysis.

Lemma 2.3 Let At, H, and a,, by, ¢,, yu (for integers n > 0) be nonnegative numbers such
that

a[+Ath <AtZynan+Athn+H forl=>0. (2.14)

n=0
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Suppose that Aty, <1 for all n, and set ¢, = (1 — Aty,)™\. Then

I I I
a; + Athn < exp(AtZyn§n> (Athn +H> forl=>0. (2.15)
n=0

n=0 n=0

Remark 2.4 If the first sum on the right in (2.14) extends only up to / — 1, then estimate
(2.15) holds for all # > 0 with ¢, = 1.

Throughout the paper, the constants C;, Cs, ... denote different constants which are in-
dependent of /7 and At.

3 Numerical scheme and its stability
In this section, we first present the linearly extrapolated BDF2 scheme, then study the
existence of numerical solutions, and finally establish stability of the numerical scheme.

3.1 Numerical scheme
Scheme 3.1 (BDF2-LE Galerkin FEM) Given w;! = u) = My(u) € Vj, 0,' = 0 =

I1,(0g) € Sy, find uZ*l IS Xh,pZ*l € Qy, a;*l €Sy forn=0,1,2,...,N — 1 satisfying

Re(3(uj™),vi) + Rec(F (w™), w;*,vi) + (07, D(vi))

+2(1 - a)(D(w;™),D(vi)) = (£, V - vi) = (£, va), (3.1a)
(qn, V -w™) =0, (3.1b)
2(3(oi™) ) + (o ) + AB(F (™), 05", 7a)

—2a(D(uj*), ) + A(ga(F (o), Vuji), 1) = 0 (3.1¢)

for all \VES Xh, qn € Qh and T € Sh.

By virtue of the divergence-free subspace V},, Scheme 3.1 can be written as another form
(Scheme 3.2) which is used in stability analysis in this section and error analysis in Sec-
tion 4.

Scheme 3.2 (BDF2-LE Galerkin FEM) Given u,' = uj) = [y(u) € Vi, 0, = o) =
M, (00) € Sy, find w}** € Vj, 07" € S for n=0,1,2,...,N -1, satisfying

Re(I(w)*),vi) + Rec(F (™), wi*',vi) + (07, D(vi))

+2(1 - o) (D(w;™), D(v)) = (£, va), (3.2a)
A3(orh), ) + (o ) + AB(F (w)™), 07, 1)
—2a(D(uj*), ) + A(ga(F (0f*), Vuji™), 1) = 0 (3.2b)

for all vy € Vh and T € Sh.

We see that Scheme 3.1 (or Scheme 3.2) is a linear extrapolation (semi-implicit) scheme,
which is preferred over a fully implicit scheme (see Scheme 5.1 in Section 5) as it requires
only solving the linear system in each time level.
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Remark 3.3 Since Scheme 3.1 is a two-step scheme, it requires starting values (uj),o;)
and (u},0}) and both with second order accuracy. For simplicity, here we take (u;},0;') =
(u),07) = (IMy(uo), My (00)), it ensures that (w},0}) is second order accuracy. We can
also use the way as [20, 24] to get the value (u),0,) = (ITu(uo), I, (00)) and (uj,0}) =

2/3,..4/3 2/3 4/3
W W, 0 oy 2/3 _2/3 4/3 _4/3

51—, —-"—), where (u;”,0;") and (w,””,0;,"") are solutions of the first order back-

ward Euler scheme with time step %At at t = %At and f = %At, respectively. For de-
tails, please see [20, 24]. Of course, we can follow the Crank-Nicolson/Adams-Bashforth
scheme [40] for Navier-Stokes equations to obtain (u},d}}).

3.2 The existence and uniqueness of the numerical solution
To ensure the computability of Scheme 3.2, we begin by showing that it is uniquely solvable
for uy and oy, at each time level.

Before proving the existence of solutions, we need to introduce the following induction
hypothesis:

i s lo ], =K. IH1 (3.3)

In Section 4, we will prove that the induction hypothesis IH1 is right for any n =
0,1,...,N.

e . : 1-o 3ra(l-a)
Lemma 3.4 Under the condition of hypothesis IH1, for At < min{ RedCIK 722K —20(1-2) b
n+l _n+l n+l

there exists a unique solution (W,**, 0", pi*") € Xj, x Sy x Qy, satisfying (3.1a)-(3.1c).

Proof Taking vj, = 2cu}*! in (3.1a), g, = 2ap*! in (3.1b) and 15 = 0" in (3.1c), adding
together the three equations thus obtained, we deduce that

20 Re 3 A
A(UZH,U;HI;HZH,O';H) — Y, (4uz _ uZ l’uz+1) + E(ZLO':,U;H)
- i (o7, 02 + 20 (677, u™), (3.4)

where the bilinear form A(uZ*l, a;f‘*l; Vi, Ty) is defined by

Ao ) = 2 g )+ o)+ (o)
+4a(l - a)(D(a)™),D(vi)) + 2aRec(F (w™), w)*, v,)

+1(ealF (o), Vui), m) + 2B(F (wi™) o). (35)

We now estimate the nonlinear terms on the right-hand sides (RHS) of A(uZ*l,a,:”

Vi, Tyy) in (3.5). In view of (2.8) and the Holder inequality, we deduce that

1,
)

2ozRe|c(F (uzﬂ), uZ+l’ UZH) | _ 2aRe| (F(uzwl) . VuZ“, uZ+l) |
< 2aReVd|F (w;")] [ Ve | ui
< 6aRev/dK || Vuy; | [uj |

2P 21202
< )+ 22 g
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M(ga(r (o), Vi), o) | < 4 1 (o) Ve o™
= 4| (o) NV o
= 4vd]oy] . + o ) el D(w ) [
= 12VdGK D) [ o

2 36deK
€0

= & D(wi™)|" + o]
Note that AB(F (u}*!), 0/, o))
OfB(') ] ')'
Combining the above inequalities with (3.5) yields

%((ahy’” * —o:” ))i it due to the ‘coercivity’ (2.10)

A(uZ”, ot uZJr ,O

) n+1)2<6aRe 9da2R62K2C,%)HuZ+1“2

2Nt B €0
2 772
+ (ﬁ _ 366[?/(1( + 1) ||0';11+1 ||2
2Nt €0
+ (4a(1 —a)—€y — e'o) ||D(uZ+1) ||2
A 2
+ 2((";+1+ - ‘7;7“ >>h F () (3.6)
Choose €y = €y = a(1 —a) and
. { l-« 3ra(l—a) }
At <min , )
3RedCZK?" 72dCIK? - 20(1 - )

thus the bilinear form A(uj] n+l af*l,vh, 71,) is positive. Since system (3.4) is a finite dimen-
sional linear system, then the existence and uniqueness of solutions (uZ“,oh””, p”“) to
Scheme 3.1 follow from the Lax-Milgram theorem and inf-sup condition (2.7). O

3.3 Numerical stability of Scheme 3.1
Theorem 3.5 Suppose that f € L*(0, T; H™\(Q)%), the initial value uy € L*(Q)? and oy €
L2(Q)%*4. For time step At small enough, Scheme 3.1 is stable and satisfying

-1
aRe|u; |’ +—||0h|| + o0y 200 -a)|D(w;™)|” +2]op ]
n=0
Q’C/%a - n+l || 2 2 2
<exp(2Ty,) mm;”f |7, +2aRelmoll* + Alloo|* |, (3.7)
-1
B2t |t |* < C(Re,0,d, 1, T,2, K, £, w0, 00). (38)
n=0

Proof Choosing vj, = 2Ata}*! in (3.1a), g, = 2Atp)*! in (3.1b) and 1, = 240" in (3.1c¢),
we get

2ReAt(J(w)*), wpth) + 2ReAte(F (w)™), wit, wi™)

+ 208 (0, D(w™)) + 41— @) At D(w)) | = 28687, wi ), (3.9)
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20630 ), o) + 288 |0 + 2008 (ga(F (), Vi), 070

+ Aoy ™ = o ) ) — de At (D(uf), 07*) = 0. (3.10)

Multiplying (3.9) by 2« and adding to (3.10) yield the single equation

daReAt(D(w)™), wit) + 4Rea Atc(F (w)™), wit, ui™)

+ 20A8(3(07*), 07Y) + 8l — ) At D(w) |* + 24¢]| ot

2

c200e(g (1 (o), V), 0p) + ey~ R

= da At(f,wpt). (3.11)

Furthermore, we have

]
= 4Rea At|((F (w)*) - Vi, uj) |
< aRease] () - Vui | ug|
= 4Rear/dCA]  (u) | D) ||
< 12Rea/dKCot|Du )| fu;]

36Re2a2dC2K?
|2 # (3.12)
1

<eant|D(uH)|” + At wj;

2kAt|( a(F( n+1) VuZ+1),O':+1)|
= 8rAtVa|[F (o) | o Ve [ loi |
< 241 AV ACK || D(wp) | ot

2 1442*dCK>
é

< at& || D() | + ot [Eraads (313)

and

ant|(f wi )| < dand| €7 Ve
= daCear| 7 | D(wi™) |

Ck

< At | D(u ) |+ 2 2 g2 (3.14)

Plugging (3.12)-(3.14) into (3.11) and setting €; = € = & = 2a(1 — ) yield

daReAt(I(wy™), wi™) + 22.46(3(0) ™), 04)
+2a(1-a)At| D) | + 2480 |
7202dCK? o2 18Re*dCIK?

a(l-a) a(l-a)
2Ca

a-

atu|?

+ At Hf"+1 1% (3.15)
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Using identity (2.13) to (3.15), we get
aRe[3]w; ™ |” - 4wy | + [ |*] + 20Re[ g - wi* - w; —wi]
+ orRef|wy - 2u2+uZ‘1||2+—[3UGZ’“|| ~4]op|” + o]
w1 [ort = op | = oyt = o3~ '] + 24t o

||CT”+1 207! + 0 |* + 201 - @) At | D) |*

7202dCK? 2 18RE*dCIK? 12
o) o ” + WMH% |
+ At (2Ck |71 (3.16)
Summing (3.16) from # = 0 to [ — 1 and using the identity
Eaz - lb +(@-b)= a + (x/—a— —)2 (3.17)
27 2 V2
to (3.16) yield
)
aRef [ [* + 20— ]+ S[oi]|* + 20 - o1 ]
-1 -1
+2a(1 - a)AtZHD )P+ 208> |op)?
n=0
18Re2dc21<2 - 722dCK? dc21<2 -
ey Ml a3 oI
2C2a Lt
+ At - k ZHf””H "L+ 20Re[uo |1 + Ao | (3.18)

In order to use the discrete Gronwall Lemma 2.3, here we set

a;= otRe”uﬁl ||2 + %”aﬁ

L b 20 o D) 2o

)

ar = ke | + 2 of

18RedCRK? 1441dCLK? 1
Yp = max , ) n = )
a?(l-a) al-a) 1-Aty,
2C%
= H = 2aRe||uo||* + A oo .
(1-a)

For time step At such that y,At < 3, thus using the discrete Gronwall lemma to (3.18)
yields the result (3.7).

Now we bound the pressure. As V), C X}, for all v, € V},, we have from (3.2a)

Re(:l( ”*1) h) +Rec(F(uZ+1) uZ*l,vh) (aﬁ’*l,D(vh))
+(1- oz)(VuZ*l, Vvh) = (f’”l,vh).
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Dividing by || Vv || and using the Cauchy-Schwarz inequality, we get

Q™) vi)

o S ReVAG F (i) [ Ve + o]

+A-a)[ Ve [+ e
Taking the supremum over v, € V}, yields

Re|3(u;*)

v < (3Re\/ECpK +1-a) ||VuZ+1 ” + ||o‘:+1 “

n+1
e
The bound along with Lemma 2.2 provides the following estimate:

Re|3(uj*)

x, = GRVACK + 1-) | Vui?!| + "]

Sl L
From (3.1a) we have

(V -vh,p2’+1) = Re(D(uZ”),vh) + Rec(F(uZ*l),uZ”,vh)

+ (a;f’*l,D(vh)) +(1- a)(VuZ*l, Vvh) - (f”*l,vh).
Dividing by || Vv || and using the Cauchy-Schwarz inequality yield

(Vv pith) “Re Q) vi)
IVl INAZAl

+ o+ L

+ (3ReVdC,K +1 - a)| Vul||

Taking the supremum over v;, € X, and using the inf-sup conditions (2.7), we have

Bllph | < Rl A(wi™)

x, + BReVAC,K +1-a) | Vuy|

+ o™+ 1

< (6Rev/dC,K +2 - 20) | VUit | + 2] o] + 2] £+, (3.19)
Applying (a + b + ¢)* < 3(a? + b? + ¢?) to (3.19) yields
B2 P ||* < 3(6ReVdC,K +2 —20) | Vu||* + 120yt |* + 12 €7,

Now multiplying by At, summing over # from 0 to /-1 and using the bound (3.7), we get
the required result (3.8). |

4 Error analysis of BDF2-LE scheme
We proceed to give an a priori error estimate for the BDF2-LE Galerkin FEM. In order to
simplify the descriptions, we denote

no_ .n n no_ n n no_ _n n
e, =u —u, ep—p - P e, =0 —0y,
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where (u”,p",0") and (u}, pj,,0}') are the solutions of problems (2.1a)-(2.1c) and (3.1a)-

(3.1c), respectively. We construct the error equations for velocity ey, pressure e, and stress

tensor eZf. Decompose

w= (0" = My (u")) + (Ta (") - uj) = 05 + @},
eZ = (p" -, (") + (L") - p}) = 1y + ¢ (4.1)
( " l_lg(an))+(l—lg(o”)—0,f’)=n(';+g0;',
where (ITy(u), IT,(p), [T, (0')) denote the elements in X;, x Q; x Sy, and satisfy the approx-

imation properties (2.4)-(2.6). To establish the error estimate, we introduce the following

discrete norms:

n+l

N-1 , 3
v |||w|||o,k=[At2||w"+1||k] . 42)
n=0

lwllosk = max |
0<n<N-1

Theorem 4.1 Suppose that (u, p, o) is a weak solution to (2.1a)-(2.1c) with additional reg-
ularities (2.3). (ui,pfq, a,ﬁ) is given by (3.1a)-(3.1c) for [ € {0,1,..., N —1}. For hypothesis IH1

and Aty, < %, we have

aRe| gy |* + are] 20" - gL |* + 5 ||¢>”1 I”+ ||2<ﬂ“1 o’

!
raa(-a)ary |[D(erh)|* + Atzngog“ I < w(agn), (4.3)
n=0 n=0
where
{ d2M2( 13A2d> d*Cx (15dM2 2) ) 2}
Yn = maxql, 20 + , +432K* |,416Ad" M~ ¢,
Re a(l-a) 2

and

W (At h) = exp2Ty,)[(2)* (| 33“”L2 o.1:2(@)d) T |870 ”iZ(O,T;LZ(Q)dXd)

+ afu”iz(o_T;Lz(md) +|ofo ”iZ(O,T;LZ(Q)dXd))

2442 (1112 2 2 2K 11431112
+ (B2 NPIG gar + " N0 MG sy + I G gy

2k 2
+h7 o]

2
LZ(O,T;H]”](Q +h " ” ato ”

12(0, THm+1(Q)d><d))] (44‘)

Proof At time t,,1 = (n + 1)At, the true solution (u, p, o) of (2.2a)-(2.2b) satisfies

Re(3(u"*),vy) + Rec(F (u™), 0", v) + (6", D(vy))
+2(1 - a)(D(u"*), D(vy))
_ Re(3() - )

+ (fn+1,vh) + (pVHl, V . Vh) + REC(F(un+1) - un+1) un+11vh)ﬁ (453)
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A(Q(e™), 1) + (07, 74) + AB(F (), 0™, 1)
= 20(D(w"™), 7i) + A(ga(F (™), VU'™), 74)
= 2(3(™) - 0™, 1) + AB(F (w) — ", 6™, )
+M(g(F (™) o™, vu™), ) (4.5b)

for all (vy, ty) € Vi, x Sp. Subtract (4.5a)-(4.5b) from (3.2a)-(3.2b) to yield the following

error equations for ey and e,:

Re(3(e),vi) + (€21, D(vy)) +2(1 — ) (D(el™), D(vy))
+ Rec(F (w"™), 0", v,) = Rec(F (wj*'), wi™, vy)
= (p", V- vy) + Re(J(u™) - 00", vy,
+Rec(F (w™!) —u™!, u™,v,,), (4.6a)
MAE),m) + (€ 7) - 20(D(E™), )
+AB(F (u"),0", 7,) = AB(F (w™), 07", 7))
+2(ga(F (@), V'), 1) = Aea(F (of™), Vi), )
=1(3(0™") = 0™, 1) + AB(F (w™) =", 0", 7))

+ )»( a(F(0n+1) _ O,n+l, Vu”*l),rh). (4-6b)
Taking v, = ¢/*! in (4.6a) and 7, = ¢! in (4.6b) yields

Re(J( n+1) <ﬂ3+1)+2(1—0!)(D(§0ﬁ+1) D(‘/’ln1+1))

+ ((pn+1’D( n+1)) +REC(F( n+1) wﬁﬂ,wsd) F (q)lrlul)’ (473)
)\’(:(wgﬂ) (pg+1) ((pg+1’¢g+l) 20 (D(QD:IH) (pg+1)
+ )»B(F( n+l) (pg+l’(pg+l) F ((p:;ﬁ—l)’ (47b)

where

Fi(py") = Re(3(Ma (u")) = 0™, o7) + (p", V- 03)
= (5", D(ey™)) =201 = ) (D(ng"), D(e™))
+ Rec(F (u™) —u™!, u", o)
—Rec(F (o), "™, 0p™") = Rec(F (ng™), u"", ¢
= Rec(F (w;), mi* o), (4.8)

and

B(5") = 2(3(Ms (07*)) = 80", ¢7™) + 20 (D(n™), 05™)
(ngﬂ’q)gﬂ) )\B(F( n+1)’ ’(pgﬂ) )»B(F( n+1) ,(pgﬂ)

_)\B(F( n+1) ng+l’¢);’l+l) +AB(F(u”+1) _un+1, ,f/)gﬂ)
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_}\(ga(F((an)’vunH) q0n+1) (a(F( n+1) Vun+l) ¢:+1)
—)»(ga(F( ) qunﬂ)’ n+1) (a(F( n+1) VnnH) q);m)
(F(GVHI) _ 0”*1, vuml) (p:;“l). (4'9)

+

>
—
ES

Multiplying (4.7a) by 2« and adding to (4.7b), using the ‘coercivity’ (2.10) of B(:, -, -) yield

the single equation

n+l

20Re((¢y™) @i™") + 4l - ) [D(ef) | + 2(3(es ™) 04

p
e P+ Slor ™ —er N p g

=2aF (¢i*") + By (o). (4.10)

Applying identity (2.13) to (4.10) yields

20 Re 20Re
g Bl =l + e 171+ S e - ol

20 Re

S L | A Ry PO ol PO

~4fes |+ oy 7]+ Mt[llw”“—wﬂlz—Hw’a’—wﬁ‘llf]

oo ller =200+ o P+ [or | + det =) | D(e ) |

A W2
2(((/7,’,”1 Tt »h,F(uZ“)

=2aF (¢i*) + B (o). (4.11)

Multiplying both sides of (4.11) by 2A¢, summing (4.11) with respect to # from 0 to / and
using identity (3.17) give

el gl | + aRel 201 ~ 4+ 5 Slelt P+ 5 ||2</)l+1 K

+2AtZ||¢g“|| +8a(l - oe)AtZ”D uil)

2
+ AAtZ n+l+ (p:;H-l h F(uZ+1)

l

< 2aRe|| @l |* + 1| 0C|* + 248 > [2aF (pi) + Fy(¢2)]. (4.12)
n=0
Note that
[F ()P = 205 ~ o < 4ot [P+ o + 4o o

<aof "+ loi I+ 4| o 17+ Lot

=5[o|* + 5] ot (4.13)
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and
[ (i) | = 2 - w7 | < 2] + [l (4.14)

We proceed to bound each term on the RHS of (4.12), absorb like-terms into the left-
hand side.
We first estimate the linear terms of Fi(¢*!) in (4.12). For the pressure term, using the

Cauchy-Schwarz, Korn’s and Young’s inequalities, we have

n+l

v (plrll+1)| — |(pn+1 _ Hp(prnl) V.- (pl;;1+1)|
<Vd|p™ -1, (") [ Vei |
<VdCp™ -1, (") [ [D(ei™) |

|(p

dc?
s alpe) + 225 p -1 (4.15)

Similarly, we see that

1
(D) = e D) [+ g I (@.16)
1-

20-a)(D("), D) = e D) + L= E DG, (.17)
RB(:(HH(UHH)) _ atun+1 wﬁﬂ)

< Re| I(Ma(u™")) - dpu™ | o5

R
< esRe| o) + 4_:5 | 3(Ma () - g0+ (4.18)

For the nonlinear terms of Fi(¢**!), using the Cauchy-Schwarz inequality, Young’s in-

equality, the regularity assumption (2.3) of velocity and hypothesis IH1, we obtain

Rec(F(u”*l) _ un+1’ 't , (plrll+1)
= dRe|[F () —w Vet el

< dMRe|[F (w) - 07"

2

<€6Re||¢)”+1H Mup(uml)_uml 2, (4.19)

466

Rec(r (o), w", ¢li")
< Red|F (o) ||V | 02|
Red?M?

< e[+ B (g P
< erReg |’ RCZI—MHZ il (4.20)
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RBC(F( n+1)’ ,wlrlwl)

= Red|| 1 (™) | [ Ve o el

Red*M?
< esRe| | + ———|F ()|, (4.21)
Rec(F (uj"), nﬁ“,wﬁ“) <Red||f () |V ea |
< 3RedKCi [ D(ny™") || ou™
9Red*K>C?
e R L UAD] B (4.22)

Combining (4.15)-(4.22), we have the following estimate of 2aF; (¢!*!):

20F; (p!') < 2aRe(es + € + € + €5 + €9) ||
LR gy - g1+ 20t v+ e | D)
"2%“ I =T () o 22 g
e N R e AU B
R gy 423

Now we bound the terms of F5(¢”*') in (4.12). For the first three linear terms, applying

the Cauchy-Schwarz inequality and Young’s inequality, we obtain

)\(:(Ha (O_n+1)) _ ato_nﬂ’g)gﬂ)
=23, (07*)) = o™ | [ 05|

2

< il |+ 220, () - 00 P, (24)
R R L | B e A 429
2e(Pla")05) = 2010008 1o

<ol I+ 5 100 (420

We estimate some nonlinear terms of the convection term about o. The first nonlinear

term B(F (p*1), 0", p7*1) of F (") can be rewritten as

)\B(F( n+1), ’(pgﬂ)
=)¥(F((P;l+1) Vo n+l (p(;;1+1)

A
+ 5((V N F(QD::H)) n+l (pg+1) +A(0n+1,+ _ n+1—,(pg+1 +)h Flo n+1) (427)
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Note that the term A{o"*'" — b7, g2*1*), vy = 0 due to the continuity of 0. The
other two terms on the RHS of (4.27) may be bounded by

)\’(F((pl}"‘l-#l) Vo n+1’¢;1+1)
<A F (o) - Vo ez

<@ Vo | (e es | < avam|r (o) ey |

d®M?
4B

A
2((v f( n+1)) n+1,¢g+l)
daxr
=S 1V F@) e s

\/_MA

112, (4.28)

<parfest| + 265 -

[ve e es

\/_MC )\' n+ n+
= fk [PG (@D ez

2ae 1043 C2M> )2
10|| (r ("+1))||2+ﬁ|| atl

30270292
10d3 C2M2 e (429)

= Ol€1o(||D(¢’ﬁ) ”2 + HD((p:‘lil) ”2) 32¢pa

Similarly as (4.27), we write the second nonlinear term AB(F ('), 0"+, ¢2*1) of Fy(p2*)

as

AB(E ()0 05™)

:)L(F(ﬂﬁﬂ) Vo n+l (p:;l+1)

%((V F( n+1)) n+l (pn+1) +k( nilt _ ol _,(P;Hl +)hf(ﬂﬁ+1)' (4.30)

Using the same method as (4.27) to estimate the three terms on the RHS of (4.30) leads

to

)\(F(Uﬁﬁ) VU”+1,(pg+1)
=a[F ) - Ve e
<[ F () [[Vor ] s

V@M E () les
dM

2 (4.31)

)

)

< Bsh ey +
%((V . F(nﬁﬂ)) n+1’(pg+1)

rd
=S Iv-re) e ez
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A\/_M

[V "*1) o

2

< el |+ 2L o

16,3 , (4.32)

)\’<O_n+1,+ _ o,n+1,—,¢g+l,+)hYF(nﬁ+l> =0, (433)

where we have used the continuity of 6"*! in (4.33).
By the same way, the third nonlinear term AB(F (u}*!), n*, o) of F5(¢/**') can be writ-
ten as

)\B(F( n+1) ng+l,(pg+l)

:)L(F( n+1) Vn:”,(p;'”)

+ %(V . F(uzﬂ) n+l (p:ﬂ) + )L<7)(ny+l+ n+1 —,(p:+l+> - n+1)' (4'34)

For the first term in (4.34), using (4.14) and hypothesis IH1, we can get

M) V02,
<alr () v o
NARCRINZA P
<3V | 2" ||

INdK?

5 |V, (4.35)

<prrlles |+

Making use of inverse inequality (2.8), (4.14) and hypothesis IH1 to the second term in
(4.34) yields

A
S (Vo F (i) op) < d [VF @) oo Iz 5™

)‘-d n+ n+ n+
= 5 G () oo Ins™ s

9d>K>C2h™>

2
= Psr[ler |+

Applying the continuity of ”*! to the third term on the RHS of (4.34) leads to
L R (4.37)

Using V - u = 0 and the continuity of 6"*! to the term AB(F (w"*!) — w1, 071, o"*1), we

obtain

A|B(F(u"+1) _un+1, ’¢g+1)|

< A|((F(u”+1) _ un+1) .Vo n+l QD:;HI) |

A n+ n+ n+ n+
R () - )|
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n+l+ n+1 - n+l+
+ )“|<O- ’ (po' >h F (u”*’l)—u”*l

= A (@) —wh) - Vot ept
<@V [ (o) - w7

Ad>PM?

ap, I (@) > (4.38)

< poror I+

We will estimate the last five terms of F»(¢”*!) in (4.12). Applying the Cauchy-Schwarz
inequality, Young’s inequality, Korn’s inequality, the regularity assumption (2.3) of velocity

and hypothesis IH1, we can obtain

rea(r (05™), vurt).ep™) < aea(r (e57), Ve [z
=4nd|r (¢z") |[Va ] les]
= adM|r(e5) o5

4rd*M?
Pro

Ma(F (n5™), Vo), @7t) = 2l ga(F (n5™), Vo) [z |

=and|[r () [ [ve ] es™

<porlep |+

202 — @2 H (4.39)

=4naM|r (7)o

4rd*M?
P

HealF (o), Ver™) e ™) < dlea(r (03, Veu™) [ ez |
<4dr|[F (o) | Ve ez

< 12d0KCe || D(@2* ) || 02|

2

< urfes | + Al (440)

n+l

2 18d*A’K*C} I

€11

Maa(r (), Vi), es™) = Mlga(F (o), Vi) 05 |

= 4d [ (o) [ |V [ les |

< 2aen | Dg;™) [ +

) (4.41)

< 12d0KC | D) |02t |

36d*AK>C? 2

k D n+1
5, 1P

< Buor || + , (4.42)

g (F (™) = 0™, V1), 1)
= Hea(r (") =™, vur |
=ad|r (o) o | [Vurt] ez
< 4dM|F (") 0" | ez

4d®M? ),
< Bisr e | + v (0 (o) = o™ 1", (4.43)
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Combining inequalities (4.24)-(4.43), we obtain the estimate for F(¢”*!)
5d3C2M?* )
o) < ot P2 o v o e S0
184%AK2C? 4\2d*M?
+ 7"} + (B2 + ) || + 207 - 027
ena Bro
+aen([D(eg)|* + | D(es™) ) + 20en [ D(ep™) |
rd*M? n n-1)|2 A n+l n+l 1 n+l |2
O o P+ 130 (07 0 [+

Olz n+1\ || 2 )“dst n+1\ |2 )‘dBMZ n+1\ || 2
PSP+ S ) [+ 2 o o)

A || PLICCIT 2
iy T 168,
Ad3M? 4rd>M?
+ ||f( ) w4 t—p— |F G|
36d2x1<2cg 2
D n+l 4.4.4.
G () (241

Plugging estimate (4.23) of 2aF(¢*!) and estimate (4.44) of F5(¢"*!) into (4.12) yields

I+1

aRe|¢) | +are|20)" o, +—||<ﬂ“1|| ts H2¢ ol

l

+8a(l-a)At Y [ D(¢r )|I° +2AtZ||¢§“”2
n=0

n=0

!
<2aRe|¢] ||2 + A2 ||2 + 2AtZ[2aRe(65 +é€6+ 0 +€o)]||out! ||2
n=0
rd®M?

ad>M*Re l
+ 2AtZ|: - + 15 ] 208 - oi™! ||2 + 2Atnz_0:[2a(62

+es+ et en)][ Do) +2Af2a6m (Io@)I* + 12w ™)I)

n=0
l
5d3C2M?*)n  18d*AK>C? 9
+ 2At2|:)\. (,81 + ﬂ4 A ,813 + 16€];0a + ena k )i| “‘P:H ||
c200 3 (o Bl | zmz‘“"’M 262 - 27|
n=0
2 3R et ) 203 R ) -

2 2
+zmz 12, ”*l))—3t0”+1||2+2AtZ4d’BM)L||F(a”+1)
13

n=0

d’M?*Re  \d>M?
n+1|| +2AtZ[a 5o e i j|||F( n+1) n+1||2
n=0
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aRed*M? )Ld?’M

DN C A RET» Lt T

n=0

a(l- a)2 a?  9aRed*K*C} 36d2u<2c2
+2Atz +
53 2€9

2 2
ZMZ Ard>M F )

|G )

LI

INAK? | _ 12 9rd
+2AtZO 15 |Vt +2At§ 165, (4.45)

With the following choices: €3 = €3 = €4 = €9 = €11 = I‘T"‘, €5 =€ =€ = €g = €9 = %,
Bi=Ba=- =P =55 B2=PBs =55 uf) = ()= ¢? = 0), 0 = I, (00)(= ¢° =0),
substituting these into (4.45) yields

aRelg) | + aRe[200 ~ 0y "+ ||¢“1|| 5 H2¢>’”—<ﬂéll2

I

raa(l-a)Ar Y |D(er)| +AtZH¢§”H
n=0

l
<aRenry [gf | + o 2[20d2M2Re +13278°M°] |20 - 17|
n=0 n=0

15d3CIM*A2 2164°\*K2CR Ty Y ! )
+ At Z[ wi-0 " el g ]H |* + 2082220 At Y |24

n=0

-1 + A 6ade n+1 —1I n+1 20Rea A l j n+1
al fz o = T1,(p"") | + 20Rea e Y [ 3(Mu(u"))

n=0

s 13A2AtZH:1(na (0™1)) = 8,0

n=0

1 l
+2082M*R2 ALY | F (o) o™+ [ b, 13:|AtZ|| iasl b
n=0 l-a n=0
I
+ [20ad®M*Re + 1322 M* At Y || F (w) w1 |* + [60(1 - @)
n=0
l
+ 5200 + 180aRed’K>C} + 187243 2K>CE| At Y| D(nith) |
n=0
l
+ [20aRed®M? + 13228 M|t Y | F (i) |
n=0
I
+208024°M2 At Y| F ()|
n=0
1 l
202 w2 N7R2dPK2CPh> el (12
+ 11722 dK At;”Vng I R AtnX:(;Hna I°.

(4.46)
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We now apply the approximation properties (2.4)-(2.6) to the terms on the RHS of
(4.46). Using elements of order k for velocity, elements of order m for stress, and elements

of order g for pressure, we have

! 2 2
6adC2 6adC2C:
At Z % ||pﬂ+1 _ Hp (pn+l) ||2 < 17](19}1244-2 "|p|"(2),q+1, (447)
'm0 - -
6o n+1 6o 2 1.2m+2 2
[1— +13]At2||n & [ 13}c B2 |12 00 (4.48)
n=0

l
[60(1 — @) + 5240” + d*K>C} (180aRe +18722%) |at > [ D(ni™)|*

n=0
< [6a(1 - a) + 524> + d*K*C} (180cRe + 1872A2)]cfph2k Nl 410 (4.49)
!
[20aRed®M? +13:2d°M* At Y || F (i) |
n=0
< [200Red” M?* +13)>d> M* | CL 1> [l 4,1, (4.50)
13A2d3M2 ! < BREM
—, At ZIIVF O = G Il (4.51)
!
2
20822d°M> At Y | F (™) ||” < 2080 °d*M>CLI" (|0 (15 a5 (4.52)
n=0
4 2 12772 27,2 !
2 7372 w2 W7AdTKECrn n+l |2
u72dik* ey |Vt + 1 ALY et
n=0 n=0
dcC
<117A2d1(2[1+ ]C2 " o 113 - (4.53)

In view of the truncation error (2.11) and the interpolation properties (2.4), we can ob-

tain

| 2(Ma (w')) - 3™
= | 2(Mu () - dratnn) |
=< || Hu(:(u(tru-l)) - 3tu(tn+1)) || + H at(nu(u(tm.l)) _ u(tn+1)) ||

/s
CT(At)3/2 Ha?u”Lz (trz s 2(Q)) + Clp\/— |atu”L2 0,T;HK+1(Q)d)- (454)

Then we have

! I
20Rea st Y| (u)) - 0 |7+ 132280 3031 (07) - o

n=0 n=0

< 40ReaC2 AL 9} oy + 2602CEAL |00 | 1oy 1o

“”iz 0,T;L2(Q (Q)dxd)

+40ReaC;, el ER Dok @ 261*Co ™" 9,0 |2 (4.55)

L2(0,T;H"M+1( )dxd)'
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Similarly, using the truncation error (2.12), we get

!
[20ad®M*Re + 130°d*M?| At Y | F (w*) —u! I
n=0
!
+208d°M22AL Y || F (o) — o™
n=0

< [20ad®M?Re +1332d* M* ] AL 070 2 g 120t

+ 20882 M3 CE ALY 020 |12 0 12 iy

Combining inequalities (4.47)-(4.56) with (4.46) yields

I+1

areloy!|* +aRe] 204" - 6"+ 5 ||<P’“|| s H2<p -’

l
raa(l-a)Ar Y |D(er)| +AtZ||¢§“||

n=0
I l
<aReAt Y [@it|* + 204> M?Re + 13328 M*] At Y |24

n=0 n=0
~ 1543 CEM?)\ 216d2k21<2C2
oo+ Z[ T e VO
I Cz2
+ 208022 M2 ALY [|207 — g2t |* + ———L1Ipll§ 4
n=0

6a
+ [1 — 13+ 208A2d2M2]C2 B 2o 13 ey + [6a(1 ) + 5270’

132243 M?
+180aRed*K*C? + 1872d* A\ *K*C} + T}

2 712k 2
Ciph |||u|||o,k+1

+ [20aRed® M? + 1322d> M* | CL 1> [l 4., + 117,\21<2d[1

dc?
e }C?,,h”"nw 13 1 + 4ORe Cl 1972, 717501 g

+ [20ad’ M?Re + 130> d° M* | CF. A || 8t2u||i2(0,T;L2(Q)d)

+40Rea C3.AL* |9} +26)°Co B (00 |[2, (0,73 2y

2
u HLZ 0,T;L2(2)4)

+26)°CEALY 9]0 ||i2(0,T;L2(Q)dXd)

+208d*M* N2 CR ALY 070 | 126, 7s2cyanay

In order to use the discrete Gronwall Lemma 2.3, here we set

2

’

ar = aRe|¢) | + aRe 20" - %ll ts ||<ﬂ“1|| ||2<0’+1 @

bu=4e(-a)[D(e") | + [

Page 24 of 35

(4.56)

(4.57)
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2

’

n+l n+l

Y »
ay = aRe|g{ |+ are| 205" —oi* + Dlles |+ D20 ~ o)

a*m? 132%2d\ d*Cir (15dM? ) 0 o
¥, =maxjl, 20 + , + 432K~ |,4161d"M" ¢,
Re a(l-a) 2
0 1
C = ) = - .
n Cn ],—-thyh

H = other (non-summing) terms on the RHS of (4.57).

For y, At < %, using the discrete Gronwall lemma to (4.57) yields Theorem 4.1. a

We will deduce that the induction assumption IH1 (3.3) is right forany n = 0,1,2,...,N,
by mathematical induction.

Lemma 4.2 Let (uﬁl,pi,ofl) € Xy x Qp x Sy satisfy (3.1a)-(3.1c) for each € {0,1,2,...,N}.
There is a bounded constant K such that

loil o <K ] =K. (4.58)

Proof Since |6} oo = [ITl4(00) oo < ll00lloc <M < K. Now we assume that (4.58) holds

true for n = 0,1,2,...,1. By interpolation properties, inverse estimates, the regularity as-
sumption (2.3) of o, and result (4.3), we have that

o oo = (03" = Tla (o71) + (Mo (o) = ™) + 0™
= ol + 1 oo + o™

< O |lgh | + O E nf | + M

< C(AIT + BT 4 18+ h10) 4 M. (4.59)

We can see that the expression C(Atzh‘% NS L hq*l‘%) is independent of /.

Hence, if we set k, m > %, q+1> g, and choose %, At such that

ped gt -t <L A o Lyd
- C - C
then from (4.59)
lowt|, <4+M=K.
Similarly, we get ||u§,+1 loo <4+M=K. g

Theorem 4.3 Under the conditions of Theorem 4.1 and At < Coh% , we have

1
A
ol - '+ o' -+ 20 o -
1
+da(l-a)aty_[D™ —wi)[* < w(ash). (4.60)
n=0



Zhang et al. Boundary Value Problems (2017) 2017:140 Page 26 of 35

Proof We add both sides of (4.3) with

Extraterms = ocRe” nht ||2 + otRe“2nl+1 - nfl H2 + % ||277”1 - 17{, “2

u u o

1
A
o+ ae Y e -a) [ ) [ + [0 (4.61)
n=0

and apply the triangle inequality for the left-hand side. Noticing that the upcoming terms
are already contained in the RHS of the model, we obtain the a priori error estimate
(4.60). 0

Theorem 4.4 Under the conditions of Theorem 4.3, for any 0 < [ < N -1, there is a positive
constant Cy independent of At and h such that

!
BAALY P - it < W (At k). (4.62)
n=0

Proof As Vj, C Xy, for all v, € V), we have from (4.6a)

Re(J(e’“l),vh) + (e(”,*l,D(vh)) +(1- a)(V(eﬁ*l), V(vh))

u

+ Rec(F (i), w"™,vy,) + Rec(F (w)™), en™, vi)

— (pn+1 _ )szrl’ V. Vh) + Re(:(unﬂ) _ Btu””,vh)

+ Rec(F (u’”l) —u" u”*l,vh), (4.63)

where A/*! is an approximation to p"*1. Dividing by ||V, using the Cauchy-Schwarz

inequality and the Poincaré inequality lead to

R R L]

IVl
+ReCyV/d|[F (e | [V + Rev/a || F (u )] [lei” |
+V/d]|p™ =257 | + ReGy | I(w) — B |
+ ReCy || F (w™) —u™ || V| . (4.64)

Applying Lemma 2.2 and the regularity assumption (2.3) and taking the supremum over

vy, € V), yield

ReHJ(e””)

u

x, = llest + A=) | V(eg™) | + ReComv/al [ (e)]
+3ReK~d| el || + V| pt - 1t
+ReC, | I(u™) - du™|| + ReC,M | F (u™') —u™!|. (4.65)
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Splitting p™*! — pi*t = (p"*1 — A1) + (A7 — pii*h), we get from (4.63) that

()”ZH _pz+1’ V. Vh)
= —(p”+1 VARV vh) + Re(:l(e””),vh)

u

+ (2, D(vy)) + (1 - a)(V(€i™), V(vi)) + Rec(F (ef™), w™*, vy)

+ Rec(F (wj™), el vi) — Re(I(u"*!) — du™, v,)

+ Rec(F (u’”l) —u"t, u”*l,vh). (4.66)
Combining the inf-sup condition (2.7) with (4.64)-(4.65), we have

Bla =it < 2vdpirt - pt |+ 2] e | + 20 - ) [ V()|
+2VdReCEM|| V (F (ef))|| +2ReC, | D(u"*) - B0 |
+ 67 dReKC, || Ve | + 2ReC,M | F (u™) —u™|. (4.67)

Applying the triangle inequality to (4.67) yields

Bl | = @ 2@ 3 | + 2N AReCIM] Y (r ()]
+2ReC, | 3(w™?) = du™|| + [2 - 20 + 6/dReKC,] | V () ||

+2] et +2ReC, M| F (w*h) — ™. (4.68)

Applying (a; +- - +ag)? < 6(a} + - - - + a2) to above equation, summing (4.68) with respect
to n from O to /, and multiplying both sides of the equation by At yield

l
ﬁzAtZ”pnﬂ _pZ+1 ”2
n=0
l
<61 +2vVdPaty |apt - p|?
n=0

1
+6(2—2a + 65/dReKG,)* C2at Y [ D(eh™) |
n=0
!
+24dRECIMPCEAL Y |D(F ()]
n=0
1
+ 24R62C;Atz ”3(un+1) _ 8tun+1 ”2
n=0
/ !

+24A0 Y[t |? + 24RECIMP ALY [ (w) — w2, (4.69)

n=0 n=0

Making use of the approximation property (2.5) of pressure, the error estimate [|o — oy, |||%,0
and ||D(a - uy,) |||g,0 in Theorem 4.3, the truncation errors (2.11) and (2.12) of the temporal
discretion, we can derive the required result (4.62). O



Zhang et al. Boundary Value Problems (2017) 2017:140 Page 28 of 35

If the domain  C R?, then we can use the MINI elements (P, b, P;) pair, which satisfies
the discrete inf-sup condition (2.7), to approximate the velocity u and pressure p and the
P, discontinuous element to approximate the stress o, that is, k =1, g =1, m = 1, we have

the following convergence result.

Corollary 4.5 Under the conditions of Theorem 4.3 and using the pair (P1b, Py, Pydc) el-
ements to approximate (W, p,c), there is a positive constant C, independent of At and h
such that

l
aRelu [+ X o'~ of* 4 A3 oo
n=0

! !
+4a(l - a)AtZ ”D(u'”l _ uZ“) ”2 + Atz ”pn+l _pzﬂ ”2
n=0

n=0

<G (At4 + ]’12)

Corollary 4.6 If the domain Q C R%, d = 2,3, and making use of Taylor-Hood (P,, P;)
elements to approximate velocity u and pressure p, and P, discontinuous element for o,
thatis,k=2,q=1,m=2, we have

I
el |+ o ~ o[ + 26 Yo o1
n=0

I

I
+4a(l - a)AtZ”D(u”“ _ “ZH) ”2 N AtZ”P"” _PZH ”2
n=0 '1=0

< Cg(AlA + h4)

5 Numerical experiments
In this section, some numerical tests are performed by using FreeFem++ [41] to confirm

our theoretical analysis.

5.1 Analytical solution

A known analytical solution example is used to verify theoretical convergence rates of the
linearized scheme. We choose the final time T = 0.1 and computer domain = [0,1]2.
Same as [8, 39], the right-hand side function is added to the constitutive equation (1.1b)
such that the analytical solutions (u, p, o) are taken as follows:

uy (%, y) = 1052 (x — 1)*y(y — 1)(2y — 1) cos(2),
Uy (%,y) = —10x(x — 1)(2x — 1)y (y — 1) cos(t),
plx,y) =10(2x —1)(2y — 1) cos(¥),
o =2aD(u), u = (ug, u),
with the parameter A = 1.0, @ = 0.5, 2 = 0, Re = 1.0. It is easy to see that the known solu-

tion of velocity is divergence-free. The source term f, initial and boundary conditions are
chosen to correspond to the exact solution. The spatial discretization is effected via the
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Figure 1 A uniform mesh with h = /2/8.

/|

Table 1 Errors and CPU performance of the BDF2-LE scheme by using(P1 b, P1, P1dc) finite
element for T = 0.1 and At =0.1h2

1/h llles llloc,0 lles lllo,0 [leulloo,0 Veulllo,0 lleplllo,0 CPU
4 0.0668476 0.020227 0.0144429 0.0680567 0.0802753 3.932
6 0.0329998 0.0102078 0.00709982 0.0423537 0.0363262 16.068
8 0.0197219 0.00603989 0.00417817 0.0309046 0.0204888 47.252
12 0.00961065 0.00283642 0.00192262 0.0201723 0.00904258 223.86
16 0.0058987 0.00166652 0.00109412 0.0150118 0.00501535 698.801
24 0.00311194 0.000809214 0.000489492 0.00995059 0.00214579 3,569.78
32 0.00205163 0.000499604 0.000275582 0.00744755 0.00116269 11,565.2
order 1.67091 1.78025 1.90816 1.06096 2.03938
Table 2 Errors and CPU performance of the BDF2-LE scheme by using (P, P1, P2dc) finite
element for T = 0.1 and At =0.1h2
1/h liles llloc,0 llles lllo,0 lleulloo,0 IVeulllo,o llleplllo,0 CPU
4 0.0092267 0.00275575 0.00172818 0.0144507 0.0803158 9.064
6 0.00315424 0.000907616 0.00050577 0.0069492 0.0362654 36.925
8 0.00151397 0.000411656 0.000206825 0.00401875 0.0204507 109.762
12 0.000570131 0.000139673 5.93583e-005 0.00182162 0.00903151 533.443
16 0.000296275 6.74014e-005 2.59447e-005 0.00103212 0.00501414 1,732.81
24 0.000122468 2.56494e-005 1.1174e-005 0.000462319 0.00214968 8,761.63
32 6.67788e-005 1.34476e-005 8.7483e-006 0.000262501 0.00116617 29,263.6
order 23616 255223 250376 1.93062 2.03803

pairs (P1b, Py, Pidc) and (P,, Py, Podc) to approximate velocity, pressure and stress tensor
on a uniform triangular grid (see Figure 1 for & = +/2/8), respectively.

Tables 1 and 2 are numerical results of the BDF2-LE scheme (3.1a)-(3.1c) by using
(P1b, Py, Prdc) elements and (P,, Py, Podc) elements, respectively. We see that [|D(ey)|lo,0
error has optimal convergence rate; however, ||e [l 0,0, [l€x 0,0 and [||eullso,0 €rrors are not
optimal, while [[e,lllo,0 is super-convergence for (P15, P;, Pidc) elements.

Choosing At = 0.05/ and using (Ps, Py, Prdc) elements, we present the results in Table 3
to verify time convergence order. It is easy to see that the time convergence order is two.

In order to test the computational efficiency, we compared the CPU time of the BDF2-LE
scheme (Scheme 3.1) with the classical fully implicit BDF2 scheme (Scheme 5.1).
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Table 3 Errors and CPU performance of the BDF2-LE scheme by using (P, P1, P2dc) finite
element with At =0.05hand T =0.1

At llles llloo,0 llles lllo.0 lleullo,0 IVeulllo,o llleplllo.0 CPU
17120 3.09191e-3 8.76703e-4 5.05062e—4 6.74744e-3 0.0352161 1661
1/160 147401e-3 3.98486e-4 2.06665e-4 3.92193e-3 0.0199588 37535
1/240 553103e-4 1.35618e—4 593415e-5 1.78953e-3 8.87254e-3 125627
1/320 2.87945e-4 6.56174e-5 2.58288e-5 1.01788e-3 4.94498e-3 317612
1/480 1.19708e—4 2.50901e-5 1.11776e-5 4.57881e—4 2.12907e-3 1,124.82
order 235658 257344 278518 193818 2.02091

Table 4 Errors and CPU performance of the BDF2-nonlinear scheme by using (P1 b, P1, P1dc)
finite element for T = 0.1 and At = 0.1h?

1/h llles lllo,0 llles lllo,0 lleullo,0 IVeulllo,o lllepllio,o CPU

4 00668514 00202271 00144429 0.0680566 0.0802749 12,651

6 0.0330003 00102078 000709982 0.0423537 00363262 55302

8 00197219 0.00603989 000417817 0.0309046 0.0204888 113.306
12 0.00961065 000283642 000192262 00201723 000904258 557.295
16 0.0058987 0.00166652 000109412 00150118 000501535 1,759.45
24 000311194 0.000809214 0.000489492 0.00995059 000214579 9,120.06
32 000205163 0.000499604 0000275582 0.00744755 000116269 292526
order 167093 1.78026 1.90816 1.06096 203938

Scheme 5.1 (BDF2 fully implicit scheme) Given u;! = u) € Vj, o;' = 0 € S}, find

(i, prt, o) € X, x Qp x Sy for n=0,1,2,...,N — 1 such that

Re(3(w™), vi) + Rec(u)*, i, vy,) + (o), D(vy))
+2(1 - a)(D(w;™), D(vi)) = (i, V - vi) = (£, vn),

(4 V- ™) =0,

3oy, m) + (0, m) + 28w, 0f )

—2u (D(uZ”), ) + A( a(a,’,“l, VuZ*l), rh) =0
for all (vy, qp, t) € Xj, X Qi X Sy,

Unlike the BDF2-LE, the classical fully implicit BDF2 presented in Scheme 5.1 requires
to solve a nonlinear problem at each time level. We employ the Newton iterative method.
When relative nonlinear residual is less than 1078, the Newton iteration is stopped. The
results of Scheme 5.1 are presented in Tables 4 and 5.

Comparing Tables 1-2 with Tables 4-5, respectively, we find that two numerical schemes
have the same level of accuracy, while the BDF2-LE scheme can save significant CPU time
for both (Pyb, P, P1dc) elements and (P,, P, Pydc) elements.

5.2 4-to-1 planar contraction flow

Numerical simulations of viscoelastic flow through a planar or axisymmetric contraction
have been widely studied in [42, 43]. Here the case of planar flow through a contraction
geometry with a ratio of 4:1 with respect to upstream and downstream channel widths is
considered. The contraction angle is fixed 37/2, and the channel lengths are sufficiently

long to impose a fully developed Poiseuille flow in the inflow and outflow channels. The
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Table 5 Errors and CPU performance of a fully implicit BDF2 scheme by using (P, P1, Pdc)
finite element for T =0.1,and At = 0.1h2

1/h lles llloo,0 lles lllo,0 lleulleo,0 IVeulllo,o lleplllo,0 CPU
4 0.00922671 0.00275576 0.00172819 0.0144507 0.0803158 29.361
6 0.00315424 0.000907616 0.00050577 0.0069492 0.0362654 90.013
8 0.00151397 0.000411656 0.000206825 0.00401875 0.0204507 279.113
12 0.000570131 0.000139673 5.93583e-005 0.00182162 0.00903151 141641
16 0.000296275 6.74015e-005 2.59467e-005 0.00103212 0.00501414 4,432.56
24 0.000122468 2.56494e-005 1.08e-005 0.000462319 0.00214968 22,743.7
32 6.67788e-005 1.34476e-005 8.74507e-006 0.000262501 0.00116617 75,954.1
order 23616 2.55223 249823 1.93062 2.03803
1
05E
O — e
0 2 4 6 8
Figure 2 Plot of 4:1 contraction domain geometry and sample contraction mesh.

geometry of the computational domain is illustrated in Figure 2. The lower left corner of
the domain corresponds to x =y = 0.

The computations of the mesh are also shown in Figure 2 with Axy,;, = 0.0625 and
Aymin = 0.015625. We denote I'i, = {(x,7) :x=0,0 <y <1} and oy = {(x,y) : x=8,0 <
y < 0.25}. On this domain the velocity boundary conditions are

1 1-— 2 2 1,2
u= {32( 0 Y )} on rinv u= [ (160 q )} on 1ﬁout' (51)

For stress tensor o on ['j,,

—aA(a +1)(-y/16)?
a? -1)A2(-y/16)2 -1’
—a(—y/16)
(a® —1)A2(-y/16)> -1’
—aA(a—1)(-y/16)*
(a2 - 1)A2(-y/16)2 -1

011—(

(5.2)

012 =021 =

022 =

Symmetry conditions are imposed on the bottom of the computational domain. Besides,
the parameters Re, o, . and a are chosen to be 1, 8/9, 0.7 and 1, respectively.

We performed the following study: starting from rest, we measured the time that the ap-
proximation solution reaches a steady state by using (P b, Py, P1dc) elements. The criterion

to stop this process is the following:

<1075,

{ lwy ™ —will oyt = ol }

’ n+l ”

1
“l lloy;

n
||uh

where n + 1, n denote ¢,,1, t,,, respectively.
We plot the evolution of the kinetic energy 0.5 * ||uZ"1||2 and 0.5 * ||¢7;7"1||2 using time

step At = 0.01 until it reaches its steady state in Figure 3 and Figure 4, respectively. We

Page 31 of 35
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Figure 3 Evolution of 0.5 * [u*']|2 in time with g1 ‘ ‘ ‘ ‘ ‘
time step At =0.01 by using (P1b,P¢,P1dc)
element. s
5.4
5.3
F 52
E 5.1
5
4.9
4.8
47 .
0 1 2 3 4 5 6 7
t
Figure 4 Evolution of 0.5 % [[6/*"||? in time with 045 —
time step At =0.01 by using (P1b, P¢, P dc) 04f
element. 035
0.3
:= 0.25
i
2 0.2
0.15
0.1
0.05
o ‘
0 1 2 3 4 5 6 7
t
Figure 5 Horizontal velocity u;, near reentrant 0.14 . . . .
corner (x = 4.0625). The mark ‘o' indicates results
for the steady problem and '+’ indicates results for L N o +_tme dependent problem
. . L]
the time-dependent problem at final time t = 6.31 ol ®e o
with time step At=0.01 and (P1b, Py, P1dc) element. ’ ® e
@
0.08 - ®
®
[
0.06 @
[
&
0.04f ®
@
0.02 ®
&
o ‘
0 0.05 0.1 0.15 0.2 0.25
y

observe that it converges towards a steady state, while the kinetic energy of velocity has
some oscillations at the beginning.

Figures 5 and 6 present the horizontal and vertical velocities near the reentrance corner
along the vertical line x = 4.0625. We observe that the horizontal velocity is almost con-
tinuous, while the vertical velocity has high gradients near y = 0.23. However, we find that
the solutions of the time-dependent problem can converge to the solutions of the steady
problem.

We plot the streamlines of velocity for the steady problem and the time-dependent prob-
lem at final time ¢ = 6.31 in Figure 7 and Figure 8, respectively. It is easy to observe that
the two figures are almost alike.
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Figure 6 Vertical velocity u; near reentrant

corner (x =4.0625). The mark ‘0’ indicates results ! ' ' ' ' ®
for the steady problem and '+ indicates results for 051 e %y
the time-dependent problem at final time t = 6.31 o ® &
with time step At=0.01 and (P1 b, Py, Pidc) element. 5| o o
e
&
-15F @
-2} @ @
@ ®
2.5
@ )
3t ® . ©
-35r fopge
o 005 o1 015 02 025

Figure 8 Streamlines of velocity contours for u: time-dependent problem at final time t = 6.31.

6 Conclusions and discussions
In this work, we have applied the BDF2-LE time-stepping scheme with Galerkin finite
element to solve the time-dependent viscoelastic fluid flow in R?, d = 2,3. We establish
the stability analysis and a priori error estimates. Some numerical tests are provided to
support the theoretical results and to demonstrate the effectiveness of the method.

Also, our analysis can be easily extended to the BDF2-LE decoupled scheme and other
nonlinear viscoelastic fluid flow.
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