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Abstract
In this article, we devote ourselves to building a stabilized finite volume element
(SFVE) method with a non-dimensional real together with two Gaussian quadratures
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simulations.
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1 Introduction
We assume that � ⊂ R denotes a bounded open domain and consider the D nonlinear
incompressible viscoelastic flow equation (see []).

Problem I Seek σ = (σl,n)× and u = (ux, uy)T together with p that satisfy

σ t + (u · ∇)σ = ∇uσ , (z, t) ∈ � × (, T), ()

ut – γ�u + (u · ∇)u + ∇p = ∇ · (σσ T)
, (z, t) ∈ � × (, T), ()

div u = , (z, t) ∈ � × (, T), ()

σ (z, ) = σ (z), u(z, ) = u(z), z ∈ �, ()

σ (z, t) = σ (z, t), u(z, t) = u(z, t), (z, t) ∈ ∂� × [, T], ()

where z = (x, y), σ = (σl,n)× denotes the unknown unsymmetrical stress matrix, u =
(ux, uy)T the unknown flow velocity, and p the unknown pressure, γ = /Re, Re denotes
Reynolds, and the functions σ (z), σ (z, t), u(z), and u(z, t) all are known. For the sake
of simplicity and without losing universality, we suppose that σ (z, t) = 0 and u(z, t) = 0
in the subsequent analysis.
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Certain phenomena, such as the complicated rheological phenomena and the mag-
netoelectrical phenomena (see [–]), can be described with the nonlinear incompress-
ible viscoelastic flow equation, i.e., Problem I. Therefore, it is worthy to study the equa-
tion.

Even though the existence and uniqueness of the analytic solution for the D nonlin-
ear incompressible viscoelastic flow equation have theoretically been proved (see, e.g., [,
]), because the D nonlinear incompressible viscoelastic flow equation in the actual en-
gineering applications includes generally intricate computational domain or known data,
it can not be usually solved so that one has to find its numerical solutions. Recently, a
stabilized mixed finite element (SMFE) method of Problem I has been posed in []. How-
ever, for all we know, there has not been any report about the SFVE method for the D
nonlinear incompressible viscoelastic flow equation, i.e., Problem I. Hence, in this study,
we devote ourselves to building a SFVE method for the D nonlinear incompressible vis-
coelastic flow equation, i.e., Problem I. In particular, comparing with the SMFE method
in [], the SFVE method here has more merits; for instance, it can easily proceed and sup-
ply adaptability for dealing with complex domains (in fact, it could be changed into the
finite difference scheme to implement the numerical computations, but one can proceed
the theoretical analysis by means of the SMFE method) and can maintain local mass or
other conservation laws. Therefore, it would be more effective than the SMFE method
in [].

Though some SFVE methods for the steady Stokes equations, time-dependent Navier-
Stokes equations, time-dependent parabolized Navier-Stokes equations, and time-
dependent incompressible Boussinesq equations (see [–]) have been set up, these four
types of equations are thoroughly different from the D nonlinear incompressible vis-
coelastic flow equation here, which includes the unsymmetrical stress matrix complexly
coupling with flow velocity. Thus, the study of the existence and convergence for the SFVE
solutions of Problem I is confronted with more difficulties, needs more technique, and has
greater challenges than the existing methods as aforesaid. However, Problem I holds cer-
tain particular applications. Hence, in this article, we first review the weak and the time
semi-discretized solutions of the D nonlinear incompressible viscoelastic flow equation
in Section . We then build the SFVE method with a non-dimensional real and two Gaus-
sian quadratures of the D nonlinear incompressible viscoelastic flow equation and an-
alyze the existence, stability, and error estimates of the SFVE solutions by means of the
SMFE method in Section . Next, we employ some numerical experiments to validate
the validity of the preceding theoretical conclusions in Section . Finally, we draw some
conclusions in Section .

2 Review of the weak and time discretized solutions of the 2D nonlinear
incompressible viscoelastic flow equation

The Sobolev spaces together with their norms applied thereinafter are classical (see []).
Let H = [H

(�)] and W = [H
(�)]× together with M = {ϑ ∈ L(�) :

∫
�

ϑ dz = }.
Thus, the weak form of Problem I is the following.
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Problem II For  < t ≤ T , seek (u,σ , p) ∈H×W ×M that satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(ut ,ϕ) + A(u,ϕ) + A(u, u,ϕ) – B(p,ϕ) = (div(σσ T ),ϕ), ∀ϕ ∈ H,

(σ t ,χ ) + A(u,σ ,χ ) = (∇uσ ,χ ), ∀χ ∈ ψ ,

B(ϑ , u) = , ∀ϑ ∈M,

σ (z, ) = σ (z), u(z, ) = u(z), z ∈ �,

()

the above (·, ·) is the inner product in L(�)× or L(�),

A(ψ ,ϕ) = γ

∫

�

∇ψ · ∇ϕ dz, ∀ψ ,ϕ ∈H,

B(ϑ ,ϕ) =
∫

�

ϑ divϕ dz, ∀ϑ ∈M,ϕ ∈H,

A(ψ ,ϕ,φ) =
∫

�

[(
(ψ · ∇)ϕ

) · φ –
(
(ψ · ∇)φ

) · ϕ]
dz/, ∀ϕ,ψ ,φ ∈H,

A(ϕ,σ ,χ ) =
∫

�

[(
(ϕ · ∇)σ

)
χ –

(
(ϕ · ∇)χ

)
σ
]

dz/, ∀ϕ ∈H,∀σ ,χ ∈ W .

The above A(·, ·, ·), A(·, ·, ·), A(·, ·), and B(·, ·) have the following properties (see, e.g.,
[, –]):

A(ψ ,ϕ,φ) = –A(ψ ,φ,ϕ), A(ψ ,ϕ,ϕ) = , ∀ϕ,ψ ,φ ∈H, ()

A(ψ ,σ ,χ ) = –A(ψ ,χ ,σ ), A(ψ ,χ ,χ ) = , ∀ψ ∈H,∀σ ,χ ∈W , ()

A(ψ ,ψ) ≥ γ ‖∇ψ‖
,

∣∣A(ψ ,ϕ)
∣∣ ≤ γ ‖∇ψ‖‖∇ϕ‖, ∀ψ ,ϕ ∈H, ()

sup
ϕ∈H

B(ϑ ,ϕ)
‖∇ϕ‖

≥ β‖ϑ‖, ∀ϑ ∈M, ()

where β >  is the real. Set

N = sup
ϕ∈H,σ ,χ∈W

A(ϕ,σ ,χ )
‖∇ϕ‖ · ‖∇σ‖ · ‖∇χ‖

. ()

By the same approach as the proofs in [, ], we can acquire the following.

Theorem  When the original value pair (u(z),σ (z)) ∈ [L(�)] × [L(�)]×, Prob-
lem II has a unique solution (u,σ , p) in H × W × M merely dependent on the original
value pair (σ (z), u(z)).

Let N be the integer, k = T/N the time step, and (ui,σ i, pi) the semi-discretized solutions
for (u,σ , p) at ti = ik ( ≤ i ≤ N ) with respect to time. When the time-derivatives ut and
σ t at moment t = ti are approximated by (ui – ui–)/k and (σ i – σ i–)/k, severally, the semi-
discretized format about time of Problem II can be read as follows.
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Problem III Seek (ui,σ i, pi) ∈H×W ×M ( ≤ i ≤ N ) that satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ui,ϕ) + kA(ui,ϕ) + kA(ui, ui,ϕ) – kB(pi,ϕ)

= k(div(σ iσ iT ),ϕ) + (ui–,ϕ), ∀ϕ ∈H,

(σ i,χ ) + kA(ui–,σ i,χ ) = k(∇ui–σ i,χ ) + (σ i–,χ ), ∀χ ∈W ,

B(ϑ , ui) = , ∀ϑ ∈M,

σ  = σ (z), u = u(z), z ∈ �.

()

The following conclusion for Problem III was proved in [].

Theorem  Under the same conditions of Theorem , if there is a real α >  such that
‖∇ui–‖,∞ ≤ α and ( – kα) >  when k is small enough, then Problem III has a unique
set of solutions {ui,σ i, pi}N

i= ⊂ H × W × M satisfying

∥∥σ i∥∥
 ≤ 

(
√

 – kα)i

∥∥σ ∥∥
, ()

∥
∥ui∥∥

 +
∥
∥pi∥∥

 + γ k
i∑

j=

∥
∥∇uj∥∥

 ≤ C
(∥∥σ iσ iT∥

∥
 +

∥
∥u∥∥



)
,  ≤ i ≤ N , ()

where C represents a positive real independent of k. In addition, when the solution (u,σ , p) ∈
[H(, T ; H

(�))] × [H(, T ; H
(�))]× × [H(, T ; H(�))] for Problem II, we have the

error estimations

∥∥u(ti) – ui∥∥
 + k

i∑

j=

[∥∥∇(
u(tj) – uj)∥∥

 +
∥∥p(tj) – pj∥∥



] ≤ Ck, ()

∥∥σ (ti) – σ i∥∥
 ≤ Ck,  ≤ i ≤ N . ()

Remark  Conclusions () and () in Theorem  signify that the time semi-discretized
solutions to Problem III are stable and attain the optimal error estimates in time. In ad-
dition, by the regularity, we know that, when the original value pair (σ , u) is suitably
smooth, the solutions to Problem III are bounded so that the conditions ‖∇ui–‖,∞ ≤ α

are rational.

3 The SFVE method of the 2D nonlinear incompressible viscoelastic flow
equation

3.1 FVE format
In this subsection, we directly build the SFVE format by the time semi-discretized format,
i.e., Problem II. Thus, we can bypass the semi-discretized SFVE method about the spatial
variables such that our theoretical analysis becomes simpler and more convenient than
that in [].

Let �h = {K} represent the quasi-uniform triangulation of �̄, where h = max{diam(K) :
K ∈ �h} (see [, ]). Let �∗

h = {Vz} be a dual partition associated with �h (see []), where
Vz is surrounded by the line segments between the barycenter zK ∈ K ∈ �h and the mid-
points of the edges of K , sharing the vertex z of K (see Figure ). Let Zh(K) consist of the
vertices of K ∈ �h and Z◦

h the interior vertices of Zh.
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Figure 1 The formulation of the control volume. Chart (a) shows the line segments between the
barycenter zK ∈ K with the midpoints of the edges of K . Chart (b) denotes a sample of the control volume Vz ,
sharing the vertex z of K .

The trial subspaces for the unsymmetrical stress matrix and velocity together with pres-
sure are, respectively, chosen as follows:

Wh =
{
χh ∈W ∩ [

C(�)
]× : χh|K ∈ (

P(K)
)×,∀K ∈ �h

}
,

Hh =
{
ϕh ∈H ∩ [

C(�)
] : ϕh|K ∈ (

P(K)
),∀K ∈ �h

}
,

Mh =
{
ϑh ∈M∩ C(�) : ϑh|K ∈P(K),∀K ∈ �h

}
,

the above P(K) denotes a bivariate linear polynomial set on K .
It is evident that Wh ⊂ W = H

(�)× and Hh ⊂ H = H
(�). For (ϕ,σ ) ∈ H × W , let

(	hϕ,ρhσ ) denote an interpolation operator from H×W onto Hh ×Wh. By the interpo-
lation theorem (see [, ]), we acquire the following:

|ϕ – 	hϕ|n ≤ Ch–n|ϕ|, ∀ϕ ∈ H(�), n = , , ()

|σ – ρhσ |n ≤ Ch–n|σ |, ∀σ ∈ H(�)×, n = , , ()

the above C denotes a positive generic real independent of k and h.
The test subspaces W̃h together with H̃h for the stress matrix together with flow velocity

are separately taken as follows:

W̃h =
{
χh ∈ L(�)× : χh|Vz ∈P(Vz)× (Vz ∩ ∂� = ∅),

χh|Vz = 0 (Vz ∩ ∂� �= ∅),∀Vz ∈ �∗
h
}

,

H̃h =
{
ϕh ∈ L(�) : ϕh|Vz ∈ [

P(Vz)
] (Vz ∩ ∂� = ∅),

ϕh|Vz = 0 (Vz ∩ ∂� �= ∅),∀Vz ∈ �∗
h
}

,

()

where P(Vz) is the constant space on Vz spanning by

φz(z) =

⎧
⎨

⎩
, z ∈ Vz,

, elsewhere,
∀z ∈ Z◦

h. ()
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For (u,σ ) ∈ H×W , let (	∗
hu,ρ∗

hσ ) be an interpolation operator from H×W onto H̃h ×
W̃h, i.e.,

(
	∗

hu,ρ∗
hσ

)
=

∑

z∈Z◦
h

(
u(z),σ (z)

)
φz. ()

With the interpolation theorem (see [, ]), we acquire

∥
∥u – 	∗

hu
∥
∥

 ≤ Ch‖∇u‖;
∥
∥σ – ρ∗

hσ
∥
∥

 ≤ Ch‖∇σ‖. ()

Then the SFVE format with a non-dimensional real and two Gaussian quadratures is
read as follows.

Problem IV Find (un
h, pn

h,σ n
h) ∈Hh ×Mh ×Wh ( ≤ i ≤ N ) that satisfy

(
ui

h,	∗
hϕh

)
+ kAh

(
ui

h,	∗
hϕh

)
+ kAh

(
ui

h, ui
h,	∗

hϕh
)

– kBh
(
pi

h,	∗
hϕh

)

= k
(
div

(
σ i

hσ
iT
h

)
,	∗

hϕh
)

+
(

ui–
h ,	∗

hϕh
)
, ∀ϕh ∈Hh, ()

(
σ i

h,ρ∗
hχh

)
+ kAh

(
uh

i–,σ h
i,ρ∗

hχh
)

= k
(∇ui–

h σ i
h,ρ∗

hχh
)

+
(
σ i–

h ,ρ∗
hχh

)
, ∀χh ∈Wh, ()

Bh
(
ϑh, ui

h
)

+ Dh
(
pn

h,ϑh
)

= , ∀ϑh ∈Mh,

σ  = 	hσ
(z), u

h = ρhu(z), z ∈ �,
()

where

Ah
(

un
h,	∗

hϕh
)

= –γ
∑

Vz∈�∗
h

∫

∂Vz

(
ϕh(z)∇un

h
) · n ds; ()

Bh
(
ϑh,	∗

hϕh
)

=
∑

Vz∈�∗
h

ϕh(z)
∫

∂Vz

ϑhn ds; ()

Ah
(
ϕn

h,ψn
h,	∗

huh
)

=
[(

ϕn
h · ∇)

ψn
h,	∗

huh) +
((

divϕn
h
)
ψn

h,	∗
huh

)]
/; ()

Ah
(
ψn

h,σ n
h,ρ∗

hχh
)

=
[((

ψn
h · ∇)

σ n
h,ρ∗

hχh
)

+
((

divψn
h
)
σ h,ρ∗

hχn
h
)]

/; ()

Dh
(
pn

h,ϑh
)

= δ
∑

K∈�h

{∫

K ,
pn

hϑh dz –
∫

K ,
pn

hϑh dz
}

, ()

δ >  denotes a non-dimensional real,
∫

K ,j f (z) dz (j = , ) represent two suitable Gaussian
quadratures on K that are accurate for j (j = , ) degree polynomial, and f (z) = phϑh is a
polynomial of degree ≤j.

Therefore, when the test function ϑh ∈ Mh and j = , the trial function ph ∈ Mh has to
be a piece-wise constant. Hence, we define a map πh : L(�) → Ŵh satisfying, ∀ϑ ∈ L(�),

(ϑ ,ϑh) = (πhϑ ,ϑh), ∀ϑh ∈ Ŵh =:
{
ϑh ∈ L(�) : ϑh|K ∈P(K),∀K ∈ �h

}
. ()
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It is obvious that the map πh satisfies (see [])

‖πhϑ‖ ≤ ‖ϑ‖, ∀ϑ ∈ L(�), ()

‖ϑ – πhϑ‖ ≤ Ch‖ϑ‖, ∀ϑ ∈ H(�). ()

Furthermore, by the map πh, Dh(·, ·) may denote the following:

Dh(ph,ϑh) = δ(ph – πhph,ϑh) = δ(ph – πhph,ϑh – πhϑh). ()

3.2 The existence and stability together with convergence of the SFVE solutions
For the sake of analyzing the existence and stability together with convergence of the FVE
solutions, we need to use three lemmas (see [, , , ]).

Lemma  The following equalities hold:

Ah
(
ψh,	∗

hϕh
)

= A(ψh,ϕh), Ah
(
ϕh,ψh,	∗

hψh
)

= , ∀ψh,ϕh ∈Hh,

Ah
(
ψh,σ h,ρ∗

hσ h
)

= , ∀ψh ∈Hh,∀σ h ∈Wh,

Bh
(
ϑh,	∗

hϕh
)

= –B(ϑh,ϕh), ∀ϕh ∈Hh,∀ϑh ∈Mh.

In addition, Ah(uh,	∗
hϕh) is symmetric, positive definite, and bounded, i.e.,

Ah
(
ψh,	∗

hϕh
)

= Ah
(
ϕh,	∗

hψh
)
, ∀ψh,ϕh ∈Hh,

there is a real h ≥ h >  meeting

Ah
(
ψh,	∗

hψh
)

= γ |ψh| ,
∣∣Ah

(
ψh,	∗

hϕh
)∣∣ ≤ γ ‖ψh‖‖ϕh‖, ∀ψh,ϕh ∈Hh.

Lemma  There are the following conclusions:

(
ψh,	∗

hϕh
)

=
(
ϕh,	∗

hψh
)
, ∀ψh,ϕh ∈Hh,

∣∣(ψ ,ϕh) –
(
ψ ,	∗

hϕh
)∣∣ ≤ Chm+n‖ψ‖m‖ϕh‖n, ψ ∈ Hm(�),ψh ∈Hh, m, n = , .

Furthermore, set |||ψh||| = (ψh,	∗
hψh)/, then there are two positive reals C and C that

satisfy

C‖ψh‖ ≤ |||ψh||| ≤ C‖ψh‖, ∀ψh ∈Hh. ()

Lemma  (Gronwall’s inequality) When three sequences {αi}, {βi}, and {μi} are positive
and {μi} is monotone such that αi + βi ≤ μi + λ̄

∑i–
j= βj (λ̄ > ) and α + β ≤ μ, we have

αi + βi ≤ μi exp(iλ̄) (i = , , , . . .).

Remark  For matrix functions, Lemma  is still correct.
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The FVE solutions hold the following existence together with stability.

Theorem  Under the same conditions of Theorems  and , if there is a real α >  that
satisfies ‖∇ui–

h ‖,∞ ≤ α and ( – kα) >  when k is small enough, then Problem IV has a
unique set of solutions {ui

h, pi
h,σ i

h}N
i= that satisfies the following stability:

∣∣∣∣∣∣σ i
h
∣∣∣∣∣∣

 ≤ 
(
√

 – kα)i

∣∣∣∣∣∣σ ∣∣∣∣∣∣
, ()

∥
∥ui

h
∥
∥

 +
∥
∥pi

h
∥
∥

 + γ k
i∑

j=

∥
∥∇uj

h
∥
∥

 ≤ C
(∥∥σ i

hσ
iT
h

∥
∥

 +
∥
∥u∥∥



)
. ()

Proof Due to () being a linear equation, for the sake of proving that it has a unique
set of solutions {σ i

h}N
i= ⊂ Wh, we just need to demonstrate that when σ (z) = 0, σ i

h = 0
( ≤ i ≤ N ). Therefore, we only prove that () holds. For this purpose, by taking χh = σ i

h

in (), when ‖∇ui–
h ‖,∞ ≤ α, using Lemma , the Hölder inequality together with the

Cauchy-Schwarz inequality, we acquire

∣∣∣∣∣∣σ i
h
∣∣∣∣∣∣

 = k
(∇ui–σ i

h,ρ∗
hσ i

h
)

+
(
σ i–

h ,ρ∗
hσ i

h
)

≤ kα
∣∣∣∣∣∣σ i

h
∣∣∣∣∣∣

 +


(∣∣∣∣∣∣σ i

h
∣∣∣∣∣∣

 +
∣∣∣∣∣∣σ i–

h
∣∣∣∣∣∣



)
. ()

Thus, from ( – kα) > , we obtain

∣
∣
∣
∣
∣
∣σ i

h
∣
∣
∣
∣
∣
∣
 ≤ |||σ i–

h |||√
 – kα

≤ · · · ≤ |||σ |||
(
√

 – kα)i
,  ≤ i ≤ N . ()

Therefore, when σ  = 0, () has only the zero solution. Thus, () has a sole set of solu-
tions {σ i

h}N
i=.

After {σ i
h}N

i= have been obtained by (), () and () form the SFVE format for the
time-dependent Navier-Stokes problems. Therefore, from the SFVE method of the time-
dependent Navier-Stokes problems (see, e.g., [, , ]), we deduce that () and () have
a unique set of solutions {(ui

h, pi
n)}N

i= ⊂Hh ×Mh that satisfies (). This accomplishes the
argument of Theorem . �

Set

Ã
((

Shun, Qhpn); (ϕh,ϑh)
)

=: A
(
Shun,ϕh

)
+ A

(
Shun, Shun,ϕh

)
– B

(
Qhpn,ϕh

)
+ B

(
ϑh, Shun),

Ã
((

un, pn); (ϕh,ϑh)
)

= A
(

un,ϕh
)

+ A
(

un, un,ϕh
)

– B
(
pn,ϕh

)
+ B

(
ϑh, un).

()

By using the SMFE methods of the D time-dependent Navier-Stokes problems (see,
e.g., [, , ]), we obtain the following.

Lemma  Assume that (Shui, Qhpi) ∈Hh ×Mh is a Navier-Stokes projection for the solu-
tions (ui, pi) of Problem III, i.e., for all solutions (ui, pi) ∈ H ×M of Problem III, there are
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(Shui, Qhpi) ( ≤ i ≤ N ) satisfying

kA
((

Shui, Qhpi); (ϕh,ϑh)
)

+
(
Shui – Shui–,ϕh

)
+ kDh

(
Qhpi,ϑh

)

= kA
((

ui, pi); (ϕh,ϑh)
)

+
(

ui – ui–,ϕh
)
, ∀(ϕh,ϑh) ∈Hh ×Mh, ()

Shu = 	hu(z), u = u(z), z ∈ �. ()

Then we have

∥
∥Shui∥∥

 +
∥
∥Qhpi∥∥

 ≤ C
(∥∥ui∥∥

 +
∥
∥pi∥∥



)
,  ≤ i ≤ N . ()

When h = O(k) together with the solution (ui, pi) ∈ H(�) × H(�) ( ≤ i ≤ N ) for Prob-
lem III, the error estimations hold

∥∥ui – Shui∥∥
 + k

[∥∥∇(
ui – Shui)∥∥

 +
∥∥pi – Qhpi∥∥



] ≤ Ch,  ≤ i ≤ N . ()

Remark  As a matter of fact, () together with () constitute a system of error
equations between the SMFE format and the time semi-discretized format of the time-
dependent Navier-Stokes problems. Therefore, () and () are directly acquired with
the SMFE method (see, e.g., [, , ]).

With the standard FE method of the D elliptic equations (see, e.g., [, ]), we can
obtain the following lemma.

Lemma  Assume that Rh : W → Wh denotes a generalized Ritz map, namely, for known
ui–

h ∈ Hh, σ i– ∈ W , σ i–
h ∈ Wh, and σ i ∈ W (i = , , . . . , N ), Rhσ

i ∈ Wh (i = , , . . . , N )
satisfy

(
Rhσ

i,χh
)

+ kA
(

ui–
h , Rhσ

i,χh
)

–
(
Rhσ

i–,χh
)

+ k
(∇ui–

h Rhσ
i,χh

)

=
(
σ i,χh

)
+ kA

(
ui–,σ i,χh

)
–

(
σ i–,χh

)
+ k

(∇ui–σ i,χh
)
,

∀χh ∈Wh,  ≤ i ≤ N . ()

Then, when (ui, pi,σ i) ( ≤ i ≤ N ) are the solutions to Problem III and σ i ∈ H(�) ∩W , we
have the following:

∥
∥Rhσ

i∥∥
 ≤ C

∥
∥σ i∥∥

, i = , , , . . . , N , ()
∥∥Rhσ

i – σ i∥∥
 ≤ Ch, i = , , , . . . , N . ()

The convergence of the SFVE solutions of Problem IV is as follows.

Theorem  Under the same conditions of Theorems  and , if (u, p,σ ) is the solution to
Problem II, {ui

h, pi
h,σ i

h} is the set of solutions to Problem IV, p
h = p =  (or p

h = Qhp),
h = O(k), N‖∇ui

h‖ ≤ /, and (u,σ ) ∈ H(�) × H(�)×, then we achieve the error
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estimations
∥∥u(ti) – ui

h
∥∥

 +
∥∥σ (ti) – σ i

h
∥∥

 + k[
∥∥p(ti) – pi

h
∥∥

 +
∥∥∇(

u(ti) – ui
h
)∥∥



≤ Ch,  ≤ i ≤ N . ()

Proof First, by Problem III subtracting Problem IV and taking ϕ = ϕh, ϑ = ϑh, and χ = χh,
and then using Lemmas  and , we acquire the following error system:

(
ui – ui

h,ϕh
)

+
(

ui
h – 	∗

hui
h,ϕh – 	∗

hϕh
)

+ kA
(

ui – ui
h,ϕh

)

+ kA
(

ui, ui,ϕh
)

– kAh
(

ui
h, ui

h,	∗ϕh
)

– kB
(
pi – pi

h,ϕh
)

= k
(
div

(
σ iσ iT – σ i

hσ
iT
h

)
,ϕh

)
– k

(
div

(
σ i

hσ
iT
h

)
,	∗

hϕh – ϕh
)

+
(

ui– – ui–
h ,ϕh

)
–

(
ui–

h ,	∗
hϕh – ϕh

)
, ∀ϕh ∈Hh, i = , , . . . , N , ()

B
(
ϑh, ui – ui

h
)

– δ
(
pi

h – πhpi
h,ϑh – πhϑh

)
= , ∀ϑh ∈Mh, i = , , . . . , N , ()

(
σ i – σ i

h,χh
)

–
(
σ i

h,ρ∗
hχh – χh

)
+ kA

(
ui–,σ i,χh

)
– kAh

(
ui

h,σ i
h,ρ∗

hϕh
)

= k
(∇ui–σ i,χh

)
– k

(∇ui–
h σ i

h,ρ∗
hχh

)
+

(
σ i– – σ i–

h ,χh
)

–
(
σ i–

h ,ρ∗
hχh – χh

)
, ∀χh ∈Wh, i = , , . . . , N . ()

Set ξ i = Qhpi – pi
h and E i = Shui – ui

h. With (), (), and (), we obtain

∥∥E i∥∥
 + kγ

∥∥∇E i∥∥


=
(
Shui – ui,E i) + kA

(
Shui – ui,E i)

+
(

ui – ui
h,E i) + kA

(
ui – ui

h,E i)

=
(
Shui– – ui–,E i) + kB

(
Qhpi – pi,E i) + kA

(
ui, ui,E i)

– kA
(
Shui, Shui,E i) – kA

(
ui, ui,E i) + kAh

(
ui

h, ui
h,	∗

hE i)

+ kB
(
pi – pi

h,E i) –
(

ui
h – 	∗

hui
h,E i – 	∗

hE i)

+
(

ui–
h – 	∗

hui–
h ,E i – 	∗

hE i) –
(
Shui– – ui–

h ,E i)

+
(

ui– – ui–
h ,E i) + k

(
div

(
σ iσ iT – σ i

hσ
iT
h

)
,E i) – k

(
div

(
σ i

hσ
iT
h

)
,	∗

hE i – E i)

= k
(
div

(
σ iσ iT – σ i

hσ
iT
h

)
,E i) – k

(
div

(
σ i

hσ
iT
h

)
,	∗

hE i – E i) – kA
(
E i, ui

h,E i)

+ kAh
(

ui
h, ui

h,E i – 	∗
hE i) +

(
E i–,E i–) + kB

(
ξ i,E i)

–
(

ui
h – ui–

h – 	∗
h
(

ui
h – ui–

h
)
,E i – 	∗

hE i). ()

By Lemma , the Hölder and Cauchy-Schwarz inequalities, and Theorems  and , we
have

∣
∣k

(
div

(
σ iσ iT – σ i

hσ
iT
h

)
,E i) – k

(
div

(
σ i

hσ
iT
h

)
,	∗

hE i – E i)∣∣

=
∣
∣k

(
σ iσ iT – σ i

hσ
iT + σ i

hσ
iT – σ i

hσ
iT
h

)
,∇E i) + k

(
div

(
σ i

hσ
iT
h

)
,	∗

hE i – E i)∣∣

≤ Ck
∥
∥σ i – σ i

h
∥
∥



∥
∥∇E i∥∥

 + Ckh∥∥∇div
(
σ i

hσ
iT
h

)∥∥


∥
∥∇E i∥∥



≤ Ck
∥∥σ i – σ i

h
∥∥

 + Ckh +
γ k


∥∥∇E i∥∥
. ()
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When h = O(k), by Taylor’s formula, we acquire

∣
∣(ui

h – ui–
h – 	∗

h
(

ui
h – ui–

h
)
,E i – 	∗

hE i)∣∣

≤ Ch∥∥∇(
ui

h – ui–
h

)∥∥


∥
∥∇E i∥∥



≤ Ch(∥∥∇E i∥∥
 +

∥
∥∇(

Shui – Shui–)∥∥
 +

∥
∥∇E i–∥∥



)
+

kγ


∥
∥∇E i∥∥



≤ Ch
∥∥E i∥∥

 + Ckh + Ch
∥∥E i–∥∥

 +
kγ


∥∥∇E i∥∥

. ()

Because B(ϑh, Shui – ui) = –kδ(Qhpi – ρh(Qhpi),ϑh – ρhϑh), by the property of the map πh

and (), we obtain

B
(
ξ i,E i) = B

(
ξ i, Shui – ui) + B

(
ξ i, ui – ui

h
)

= –
δ


(
ξ i – πhξ

i, ξ i – πhξ
i) –

δ


(
ξ i– – πhξ

i–, ξ i – πhξ
i)

≤ –
δ


∥
∥ξ i – πhξ

i∥∥
 +

δ


∥
∥ξ i– – πhξ

i–∥∥
. ()

When N‖∇ui
h‖ ≤ / (i = , , . . . , N ), by (), (), and Lemma , we acquire

k
∣∣Ah

(
ui

h, ui
h,E i – 	∗

hE i) – A
(
E i, ui

h,E i)∣∣ ≤ Ckh +
kγ


∥∥∇E i∥∥

. ()

By combining () and ()-(), we acquire

∥
∥E i∥∥

 + kγ
∥
∥∇E i∥∥

 +
kδ


∥
∥ξ i – πhξ

i∥∥
 –

kδ


∥
∥ξ i– – πhξ

i–∥∥


≤ Ckh + Ch
∥
∥E i–∥∥

 + Ck
∥
∥σ i – σ i

h
∥
∥

. ()

When p
h = p =  (or p

h = Qhp), by summing () from  to i, we acquire

∥
∥E i∥∥

 + kγ

i∑

j=

∥
∥E j∥∥

 + kδ
∥
∥ξ i – πhξ

i∥∥


≤ Cnkh + Ck
i∑

j=

∥∥σ j – σ
j
h
∥∥

 + Ck
i–∑

j=

∥∥E j∥∥
. ()

By Gronwall’s Lemma , from (), we acquire

∥
∥E i∥∥

 + k
i∑

j=

∥
∥∇E j∥∥

 + k
∥
∥ξ i – πhξ

i∥∥
 ≤ C

(

h + k
i∑

j=

∥
∥σ j – σ

j
h
∥
∥



)

exp(Ckn). ()

Extracting the square root of () together with utilizing
∑i

i= |ai|/√n ≤ (
∑i

i= a
i )/ and

‖c‖ – ‖d‖ ≤ ‖c + d‖, we acquire

∥∥E i∥∥
 + k

[‖∇E i‖ +
∥∥ξ i∥∥

 –
∥∥πhξ

i∥∥


] ≤ C

(

h + k
i∑

i=

∥∥σ j – σ
j
h
∥∥



)/

. ()
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When ξ i �= , we have ‖ξ i‖ > ‖πhξ
i‖. Therefore, there is a real ω ∈ (, ) satisfying

ω‖ξ i‖ = ‖πhξ
i‖. Thus, using the triangular inequality, Lemma , and (), we acquire

∥∥ui – ui
h
∥∥

 + k
[∥∥∇(

ui – ui
h
)∥∥

+
∥∥pi – pi

h
∥∥



] ≤ C

(

h + k
i∑

j=

∥∥σ j – σ
j
h
∥∥



)/

. ()

Set ei = Rhσ
i – σ i

h. By () and Lemma , we acquire

‖ei‖
 = (ei, ei)

=
(
Rhσ

i – σ i, ei
)

+
(
σ i – σ i

h, ei
)

=
[(

Rhσ
i– – σ i–, ei

)
+ kA

(
ui–,σ i, ei

)
– kA

(
ui–

h , Rhσ
i, ei

)

– k
(∇ui–σ i, ei

)
+ k

(∇ui–
h Rhσ

i, ei
)]

+
[(

σ i
h,ρ∗

h ei – ei
)

+ kAh
(

ui–
h ,σ i

h,ρ∗
h ei

)
– kA

(
ui–,σ i, ei

)

+ k
(∇ui–σ i, ei

)
– k

(∇ui–
h σ i

h,ρ∗
h ei

)
+

(
σ i– – σ i–

h , ei
)

–
(
σ i–

h ,ρ∗
h ei – ei

)]

=
(
σ i

h – σ i–
h ,ρ∗

h ei – ei
)

+ k
(∇ui–

h Rhσ
i, ei

)
– k

(∇ui–
h σ i

h,ρ∗
h ei

)

+ kAh
(

ui–
h ,σ i

h,ρ∗
h ei

)
– kA

(
ui–

h , Rhσ
i, ei

)
. ()

By Lemma  together with the Hölder and Cauchy-Schwarz inequalities, we acquire

(
σ i

h – σ i–
h ,ρ∗

h ei – ei
)

≤ Ch
(‖ei‖ +

∥∥Rhσ
i – σ i∥∥

 + h
∥∥σ i – σ i–∥∥



+
∥∥σ i– – Rhσ

i–∥∥
 + ‖ei–‖

)‖∇ei‖

≤ Ch
(
h + kh + ‖ei‖

 + ‖ei–‖

)

+


‖ei‖

, ()
∣∣k

(∇ui–
h Rhσ

i, ei
)

– k
(∇ui–

h σ i
h,ρ∗

h ei
)∣∣

≤ 

‖ei‖

 + Ckh. ()

When N‖∇ui
h‖ ≤ / (i = , , . . . , N ), by (), Lemmas  and , and the Hölder and

Cauchy-Schwarz inequalities, we acquire

∣∣kAh
(

ui
h,σ i

h,ρ∗
h ei

)
– kA

(
ui

h, Rhσ
i, ei

)∣∣ ≤ 


‖ei‖
 + Ckh. ()

When h = O(k), by combining () with ()-(), we acquire

‖ei‖
 ≤ Ck

(
h + ‖ei‖

 + ‖ei–‖

)
. ()

If k becomes sufficiently small so as to ensure Ck ≤ / in (), we acquire

‖ei‖
 ≤ ‖ei–‖

 + Ckh. ()
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By summing () from  to i and using Lemma , we gain

‖ei‖
 ≤ Cikh + ‖e‖



≤ Ch + C
∥∥Rhσ

 – σ ∥∥
 + C‖σ – ρhσ‖



≤ Ch. ()

Further, we get

‖ei‖ ≤ Ch. ()

By the triangle inequality, (), and Lemma , we acquire

∥∥σ i – σ i
h
∥∥

 ≤ Ch. ()

By combining () with (), we acquire

∥
∥ui – ui

h
∥
∥

 + k
[∥∥∇(

ui – ui
h
)∥∥

 +
∥
∥pi – pi

h
∥
∥



] ≤ Ch. ()

By combining () and () with Theorem , we achieve (). When ξ i = , () is valid,
too. This accomplishes the argumentation of Theorem . �

Remark  It can be easily seen from Theorem  together with its argumentation proce-
dure that, when ‖∇u‖ and ‖∇σ ‖ are small enough, the conditions N‖∇ui

h‖ ≤ /
(i = , , . . . , N ) of Theorem  are tenable.

4 Some numerical experiments
Here, we adopt some numerical experiments to check the feasibility and effectiveness of
the above SFVE format.

Let the computational domain �̄ = {(x, y) :  ≤ x ≤ ,  ≤ y ≤ } ∪ {(x, y) :  ≤ x ≤
,  ≤ y ≤ }, Re = ,, and the initial and boundary values of the flow velocity u =
u = (ux, uy) = ((y – )( – y), ) on {(x, y); x = ,  ≤ y ≤ } and u = u = (ux, uy)
that satisfies ∂ux/∂x = pRe and uy =  on {(x, y) : x = ,  ≤ y ≤ }, but u = u =
(ux, uy) = (, ) on other sides of �̄, while the initial and boundary values of the stress
σ = (σlm)× satisfy that σ = σ =  and σ = σ = . Moreover, we divided {(x, y) :  ≤
x ≤ ,  ≤ y ≤ } into ,×, = × small squares of side size �x = �y = .
and divided {(x, y) :  ≤ x ≤ ,  ≤ y ≤ } into , × , =  ×  squares of
side size �x = �y = ., too. And then, we linked the diagonal of each square to split
it as two triangles along the identical direction, to constitute triangularizations �h with
h =

√
 × –. Finally, we adopted the barycenter control element �∗

h, whose nodes were
the barycenter point for the element K ∈ �h. For the sake of ensuring h = O(k), we chose
k = ..

By solving the SFVE format on Microsoft Surface Book PC, we achieved the approximate
solutions of u, p, σ, σ, σ, and σ at moment t =  and painted them in Charts (a)’s
of Figures  to , respectively. The SMFE solutions of u, p, σ, σ, σ, and σ at moment
t =  were obtained by solving the SMFE model in [] on the same PC, and they are
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Figure 2 The streamline of numerical solutions of the flow velocity u. Charts (a) and (b) are severally the
SFVE and the SMFE solutions at moment t = 10.

Figure 3 The numerical solutions of the pressure p. Charts (a) and (b) are severally the SFVE and SMFE
solutions at t = 10.

Figure 4 The numerical solutions of the stress component σ11. Charts (a) and (b) are severally the SFVE
and SMFE solutions at moment t = 10.

painted in Charts (b)’s of Figures  to , respectively. These charts showed that the SFVE
solutions were more stable than the SMFE solutions due to the SFVE method maintaining
local mass or other conservation laws.

Charts (a)’s and (b)’s of Figures  and  severally showed the L-norm errors (log )
for the SFVE and SMFE numerical solutions of the flow velocity u, pressure p, and stress
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Figure 5 The numerical solutions of the stress component σ12. Charts (a) and (b) are severally the SFVE
and SMFE solutions at moment t = 10.

Figure 6 The numerical solutions of the stress component σ21. Charts (a) and (b) are the SFVE and SMFE
solutions at moment t = 10.

Figure 7 The numerical solutions of the stress component σ22. Charts (a) and (b) are severally the SFVE
and SMFE solutions at moment t = 10.

σ = (σlm)× on the time interval [, ], which were estimated by ‖ri
h – ri–

h ‖ (r = u, p,
or σ ln,  ≤ i ≤ N and l, n = , ) because ‖r(ti) – ri

h‖ ≤ ∑i
j= ‖rj

h – rj–
h ‖ when r(t) = r

h .
From developing tendencies of the error curves of Figures  and , we can easily see that
the errors of SFVE solutions increased far slower than those of the SMFE solutions, which
further showed that the SFVE method here was more stable than the SMFE format in [].
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Figure 8 The L2-norm error tendency of the numerical solutions of the flow velocity u and the
pressure p. Charts (a) and (b) are severally the error of the SFVE and SMFE solutions on 0≤ t ≤ 10.

Figure 9 The L2-norm error tendency of the numerical solutions of stress. Charts (a) and (b) are
severally the errors of the SFVE solution and the SMFE solution on 0≤ t ≤ 10.

This signifies that the SFVE method here is more effective than the SMFE model in []
for solving the D nonlinear incompressible viscoelastic flow equation. The error curves
for the SFVE solutions also expressed that these numerical simulating conclusions were
in agreement with those theoretical ones because no error was greater than –.

5 Conclusions
In this study, we have directly set up the SFVE format with a non-dimensional real together
with two Gaussian quadratures by means of the time semi-discretized format of the D
nonlinear incompressible viscoelastic flow equation. Therefore, we can not only bypass
the semi-discretized SFVE technique with respect to the spatial variables, but can also
remove the limitation of Brezzi-Babuška inequality so that the theoretical study here is
more convenient than other existing methods used in the time-dependent Navier-Stokes
problems (see, e.g., [, , ]). We have analyzed the existence and stability as well as
convergence for the SFVE solutions and verified that the SFVE method is more superior
than the SMFE method by comparing their numerical simulation results, too.
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