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Abstract

In this paper we consider the semilinear parabolic equation

Zf]:w agXiXju — 9:u + VuP = 0 with a general class of potentials V = V(&, 1), where

A ={aj;};; is a positive definite symmetric matrix and the X;'s denotes a system of
left-invariant vector fields on a Carnot group G. Based on a fixed point argument and
by establishing some new estimates involving the heat kernel, we study the existence
and large-time behavior of global positive solutions to the preceding equation.
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1 Introduction
Global existence and asymptotic behavior of solutions to nonlinear parabolic equations
have been followed with interest over the past years [1-8].

In this paper we are concerned with the existence and asymptotic behavior of global
positive solutions for the semilinear parabolic equation

Hu = ZZ;:I aiX:Xju — %u +V(E DWW =0, (£,t) e G x(0,+00),

(1.1)
u(§,0)=uo(§), gEG

Here p > 1, Xj,...,X,, are left-invariant vector fields on a Carnot group G, and the matrix
A ={a;};; is symmetric and positive definite, that is,

ANZP <(AZ,Z) < A|Z)? (1.2)

for some constant A > 0, every Z € R™. For a fixed A > 1, we denote by M, the set of
m X m symmetric matrices A satisfying (1.2).

It is well known that the Euclidean space R”, with its usual Abelian group structure, is
a trivial Carnot group. In the Euclidean case, we first recall that Zhang [4] studied the
global existence for a parabolic problem in divergence form analogous to (1.1) when the
potential V' is in parabolic Kato class at infinity P*°, the asymptotic behavior of solutions
for the problem was studied by Zhang and Zhao [5]. Riahi [6] extended the results in [4]
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and [5] to a new functional class P> more general than the parabolic Kato class P> and
proved that the problem aAu — d;u + V(x, £)u? = 0 has a global continuous solution. The
author in [6] also gave the asymptotic behavior of the global solutions when V = V(x) is
independent of time. The proofs in [4—6] rely on some heat kernel estimates. We see that
the fundamental solutions to the parabolic operators on the Euclidean space have explicit
expression. A natural question to ask is whether the results in [4—6] can be generalized
to general degenerate parabolic operators whose fundamental solutions are not known
explicitly.

One of the most important degenerate parabolic operators is the heat operator associ-
ated with the subelliptic operator on a Carnot group. These classes of operators naturally
arise in many different settings: geometry in several complex variables, curvature problem
for CR-manifolds, sub-Riemannian geometry, diffusion processes, control theory, human
vision (see [9, 10] and the references therein). In recent years many authors have under-
taken the research on degenerate heat equation on Carnot groups; see for example [7, 8]
and [11-18].

In the present paper we will generalize the global existence and asymptotic results of
[5] and [6] to the degenerate heat equation on the Carnot group G. Let us briefly dis-
cuss the method we are going to adopt. We will use a fixed point argument to achieve
existence. This requires us to obtain a number of new estimates involving the heat ker-
nel, which are based on the Gaussian bounds for fundamental solutions for the operator
Ly= Zl';:l a;X;X; — 0, (see [11]). The asymptotic behavior of the global solutions are ob-
tained by establishing global Gaussian upper bounds for the fundamental solution of cer-
tain linear degenerate parabolic operators on Carnot groups. The result will serves as a
bridge between the degenerate parabolic problem and the corresponding subelliptic sta-
tionary problem.

The paper is organized as follows. In the next section, we first present the necessary
background material concerning homogeneous structures on Carnot groups and intro-
duce some basic definitions. Then we summarize our results in Theorem 2.4 and The-
orem 2.5. Section 3 is devoted to the proof of some heat kernel estimates which will be
used in the following sections. Theorem 2.4 and Theorem 2.5 will be proved in Section 4
and Section 5, respectively. In the Appendix, we present two results as regards the class of
potentials Pye.
2 Main results
We start by giving the definition of a Carnot group. We will consider G = (R¥, -) asa Carnot
group with a group operation - and a family of dilations, compatible with the Lie structure.
A Carnot group G of step r > 1is a simply connected nilpotent Lie group whose Lie algebra
g admits a stratification g = @;:1 Vj, with [V}, Vj] = V4, for 1 <j<r, [V}, V,] = {0}. We
assume that a scalar product (-, -) is given on g for which the V}’s are mutually orthogonal.

Via the exponential map, it is possible to induce on G a family of non-isotropic dilations
defined by

8 (x(l),x(z),...,x(’)) = (Ax(l),k2x(2),...,A’x(r)).

Here x¥ e RNi for i=1,...,rand Ny + --- + N, = N. The topological dimension of G is
N, whereas the homogeneous dimension of G, attached to the dilations {5, },-0, is given
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by Q = Z;leNj. Let m = N; and X = {Xy,...,X,,} be the dimension and a basis of V7, re-
spectively. Let Xu = (Xju,...,X,,u) denote the horizontal gradient for a function # and
Xul = (7 (Xi)?]2.

Let e be the identity on G. For & € G, we denote by £7! the inverse of & with respect to
the group operation. In the sequel, p will denote the Carnot-Carathéodory control dis-
tance generated on G by the X;’s (see [15]). There is a remarkable link between the control
distance p and the homogeneous Lie group structure on G. Indeed, we have

e -n&-2)=pM¢), &n¢eG,
,0(8,5)‘(5))=)\.,0(6,E), §e€G,A>0.

By denoting p(§, €) simply by p(&), we define a norm function p(§) € C*(G\{e}) N C(G)
such that

(1) p(¢)=0ifand onlyif & =e;

2) p&)=pE™);

(3) p(8:(8)) = 2p(§), A > 0.
Moreover, p(-) satisfies the triangle inequality

p&-n)=<p&+pmn), &neca 2.1

We recall that this Carnot-Carathéodory distance is equivalent to any quasi-distance
induced by a homogeneous norm on G.
We denote by

B,(6,R) = {ne€G:p(§,n) <R} (2.2)

the open ball of center § and radius R. Since the Lebesgue measure is a Haar measure on
G, we have |B, (£, R)| = |B,(e,1)|R2. The following polar coordinates formula holds:

R
/ F(o®) de = Q|B, (e, )| / Flo)o@"dp 2.3)
Bp(eR) 0

for every measurable function f.

Following [11], we next briefly recall some well-known results on the fundamental solu-
tion for the operator Ly = ZZ;ZI a;X;Xj — 9, in (1.1). There exists a positive function I'4 in
G x (0, +00) such that the fundamental solution for L4 is given by ['4(€,£1,5) := Ta(n™t -
£,t—5). TtisT4(£,6) =0 for t <0, T4(£,t) = T4(E7%,£) and T4 (8, (§),A%t) = A" QT 4(£,¢). In
particular, I'4 vanishes at infinity. For every ¢ > 0, fG Fa(§,t)dé =1.Forevery£E € G,t>0
and 7 > 0, the following reproduction property holds (see [12]):

CaEt+7) = /G Ca(n™ - & 0T a0y, 7) dn. (2.4)

One of the main tools we shall use in the paper is the following remarkable uniform
Gaussian estimates (see [11]): there exist positive constants Cp, Cp1, Cpo such that, for
every i,j=1,...,m and for every A € M, we have

2 2
cle s exp(—w> <Tu(E,0) < Cat™% exp(—p (é)), (2.5)
t Cyt
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) 2
[ XiTa(E,1)| < CAllf_QT CXP(— pC/(i)) (2.6)
and
2
[ XiXTa(E,8)| + |8, T A, £)| < Caot™ 41 P(—pcj(i)> (2.7)

forevery£ € G,t>0.
Let us introduce the class P}, on the Carnot group G.

Definition 2.1 A measurable function V' = V(&,£) on G x R is said to be in the class Pj
if it satisfies for all ¢ > 0,

N(V)= sup / /1" &8 n,s)|V(r],s)|dnds

(&,)eGxR

sup / / (&t ﬂ,S)’VE t) |d§dt<+oo,

nserR

and, for any compact subset K C G x R,

lim{ / / Etn,s)‘V(n, |dnds
r=>0 Et)eK t—r J ple.m)</7

+ sup / / F (&t n,s)|V(§ t)|d§dt} =
pEm)<

(n,s)eK

2
where I'.(&, 51, )—(t—s)" e fort>s

Obviously, P;° (G x R) and we have the following.

oc loc

Remark 2.2 (1) As far as time independent V is concerned we will show in Proposi-
tion A.2 below the fact that V € P if V € L1(G) and fG Q 2(5 dn isbounded in G. Then

loc

it follows that the function V(§) =
LY(G) N L®(G) belong to P°.
(2) In the case when V is independent of &, the function V (¢) = ﬁ, B >1, also belongs

o> Q, belongs to P°° In fact all functions in

1
T+p%(§) loc*

to P.. Following a similar argument to the proof of Proposition 2.1 in [4], we have all
functions in L'(R) N L*(R) belong to P2

Let ug be a positive function in L*(G) and ¢ > 0, we write
he,0)= [ Tlestin, Ot . 238)
G

Following [7], we introduce the following definition of weak solutions.

Deﬁnition 2.3 A function u = u(&, t) is called a weak solution of (1.1) if u, Xu,...,X,,u €
(G x (0,+00)), Vu e LI (G x (0,+00)) and

loc loc

ue ) = /G L, £, 0o (n) iy + /O /G TaE,£:0,9)V (0, 5)u (n,5) iy ds

for all (§,¢) € G x (0, +00).
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The main results of the paper are the next two theorems.

Theorem 2.4 (Global existence) Let V € P{°

loc
1, there is a constant by > 0 such that for each nonnegative uy € C*(G) satisfying ||uo|lco <

be a nonnegative function. For any M > Cy >

by, there exists a positive continuous solution of (1.1) such that
M he, (6,6) u(E 1) < Mh1_(€,1)
A

forall (§,t) € G x (0, +00).
In the next theorem we present a result about the large-time behavior.

Theorem 2.5 Let V(§,t) = V(§) € P},

> be a nonnegative function. If uy € C*(G), Z;’;zl @ x

XiXjug € Py, and 0 < ay < ug < ay for some positive constants ay, o, then the problem
(1.1) has a global positive solution which converges pointwise to a positive solution of the
subelliptic problem

> aiXiXju+ V(E)u = 0. (2.9)
ij=1

Throughout this paper, the letter C denotes a positive constant which may vary from
line to line but is independent of the terms which will take part in any limit process.

3 Preliminaries and auxiliary estimates
For o, 8 > 0 we use @ vV § and @ A § to mean max{w, 8} and min{«, 8}, respectively. We
also need to use the inequality

1v (2)m

_9<7
— (1ve)yr

forall® > 0 and m > 0. (3.1)

For (§,t),(n,s) € G x R, we can define on G x R the parabolic distance corresponding

to p as
1
d((&,1),(n,s)) = pEm) Vv |t -s]2, (3.2)
where | - | denotes the Euclidean distance on R. In particular d satisfies the triangle in-

equality via (2.1). For r > 0, we can also define the ball with center (§,¢) and radius » with
respect to the parabolic distance and its complement as B((§, ), 7) and B°((&,£), ), respec-
tively.
For any 8 <1, the parabolic CC-Holder space I'?(G x R) related to d is defined by
If(g,t) —f(U,S)|
F’S(GXR)::{ el®nc: — < 0f.
/ Eoeb ) (& 0.01,5)

We refer the readers to [16] for more information.

The following two lemmas concern the continuity of the potentials [ T'4|V|dnds when
Very
Euclidean case was given in [6].

, which will be used in the proof of Theorem 2.4. The proof of the results in the
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Lemma 3.1 Let A € M. Then there exist constants C = C(A) > 0 and ¢ = ¢c(A) > 0 such
that for all r € (0,1), (&, 20) € G xR, (§,t) € B((&o, o), f) t >ty and (1,s) € B((£o, o), %),

we have

< cUE, _(So,to))

’FA(SJ;U:S)—FA(éo:to;U»S)‘ = (Ert! U;S) (33)

r2
Proof Casel:s > t. The left-hand side term is equal to zero and so the inequality is trivial.
Case 2: t > s > ty. From the assumptions we have 0 < t —s <t -ty and p(§,7n) V |t—s|% >
%ﬁ. By noting that I'4 (£, £o; 17, ) = 0 and applying (2.5) and (3.1) with m = %, we have

o _Pxen
ITa(€,8n,5) = Tal&o, to; m,5)| < Calt—s)"2e Al

C(t—s)% Q _oXen)
< —(t
(t—s5)2 v p(E,n)

(t — t0)?
<C F 1 (E L 77’5)
r2
Case 3: ty > 5. We get
ITA(E,87,5) — Ta(€o, to; m,9)|
<|Ta(& 6n,8) = TalEo, t:1,9)| + |TalEos 1,8) — Tal€o, to; m, )| (3.4)
Thus, from (2.6) and (3.1) with m = %, we have
|FA(§’ t1,8) = Tal€o, t; 77’3)|
<pE &) sup  |XTa(g,50,s)|
¢:p(¢,60)=p(& £0)
1 C p2(.n)
=p( ,Eo) sup e 2, (3.5)

P k0)=pEc0) p(C,n) V (E—9)2 (£—5)%

where we have used the Lagrange mean value theorem on G (see Theorem 20.3.1 in [15]).
On the other hand, for the previous ¢ we have

pE, )V (E—35)? > pE,n) v (E—35)7 - p(€, )

1 1
> gp(é,n) V(t-5)2 > i (3.6)
which yields p(¢,n) + t —s > 1(02(&,n) + t — 5) and therefore
2 2
p(&m) 1p7Em) 8 (3.7)

t—-s — 9 t-s 9

Substituting (3.6) and (3.7) into (3.5) leads to

DA, £5,8) = T )] < cp(g o) .

Tlx(é:r t; 77’5)- (38)
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Analogously, there exists a t € (%, £) such that

(3.9)

0]
’FA($01t;T]rS) - FA(";:OrtO;n!S)’ = |t_t0| : ‘EFA(SOIT;H!S) .

Moreover, by applying (2.7) and (3.1) with m = % +1, and using the inequality 0 < 7 —s <
t — s, we obtain

C )

T e 2CA(t—s).
(p(&o,m) V (1 —5)2)Q2

‘_FA EO»I m$ )

Wi
—~
e
=
=

<
—
A N
©
=
I
v
=
3

Since p(&, 1) V (t = )2 > p(&, ) V (t-9)? — p(,&) V (t-1)2 >
7
9’

2
and 250 f‘;'") > %p fs”) we find

] C
‘—FA(go,t;n,s) <—T_1 (&8n,s). (3.10)
at r 18Cy

Substituting (3.10) into (3.9) gives

1
t—t\2
T4 (&0, £51,5) = Ta(€o, to; 1, 8)| < C( - 0) Fﬁ(é,t; n,5). (3.11)

Combining (3.4), (3.8), and (3.11), we obtain the inequality stated in the lemma. O

Remark 3.2 If we replace ¢t > £y by ¢t < £, we obtain the same inequality provided that
L. (&,¢n,s) is replaced by T (&0, Z0; 11, 5)-

We now set, for every (§,t), (0, t) € G X R,

tVity
I(A(é, t; &0, tO) = / /G |FA('§’ L 77»5) - FA(gOr to; 77:5)| . |V(7’:S)i d’] ds.

We can prove the following lemma.

Lemma 3.3 Let V € P,

loc*

Then for every A € M, we have

lim Ku(g,t80,8) = 0.
p(&E0)VIt-tg| 2 =0

Proof Let (£y,%) € G x R be fixed. Set K = B((&, t),1). Since V € Py for & > 0, there

exists r > 0 sufficiently small such that

0 < sup / / FA(E tn,s)|V(n,s)|dndS
t-r J p(§,n)<

(&,8)eK

2

Q (&n

< Cy sup // t s) Ze CA(” V(n,s ‘dnds<s (3.12)
(EtEK t-r Jp(&n)<
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For p(€,&) V |t —to]? < g,we have

tVig
Ka(6, 550, 0) = / / ICAGE,£50,5) = TalEon tos1,5)| - |V, 5)] dn di
—00 G

:// ~~~dnds+// - dnds
B((é0,t0), %) B((Eouto) %)

2

£ 1§, 580, t0) + (&, €0, bo).

S

When p(&,&) V |t - t0|% < %, one gets from (3.12)
]l(s’t;g()!t()) = f/ FA(é;t;ﬂr5)|V(77;S)|dTldS
B((&,0),4/7)

+ // T4 (&0, to; n,S)|V(77,S)| dnds < 2e.
B((£0,t0),4/7)
By Lemma 3.1, for p(§,&) Vv |t - t0|% < ¥, we have

IZ(S’ L 501 tO) =< C

d((é: t)(EO: tO))N (V)

r2
which vanishes as p(&,&) V |t — £ |% — 0. This ends the proof. O

Remark 3.4 Similarly, for (n,s), (70,50) € G x R and A € M, let

+00
KX(’%& 7]0150) = / |FZ(7775;§’ t) - FZ(HO’SO;Sr t)| : |V($1 t)| dé dt.
sAsg 4G
If VePy,, then limp(n,no)v\s—sm%~>01<‘Z(n’s; N0,S0) = 0, where '} (n,5;&,£) = Ta(§,£1,5) is

the fundamental solution of the formal adjoint operator to L4.
We will use the following lemma established in Lemma 6.1 of [7].

Proposition 3.5 Suppose 0 < a < b. There exist positive constants C,y, and ¢ depending
only on a and b such that

t
) / /G Fo(e, 158, D|V(E, | Tol6r T51,9) de dt < CapNe(VITalE, 1, 5)

(ii) / /GFb(%‘,t;C,T)IV(CrT)IFa(s“,T;n,S)dCdrSCa,ch(V)Fa(E,t;n,S).

Applying an analogous proof to that of Lemma 2.1(a) in [7], we obtain the following
result, which in the Euclidean setting was first given by Zhang [4].

Lemma 3.6 Given a > 0, let h,(&,t) be as in (2.8), where uy is a bounded nonnegative
function. Then for every given p > 1 and 0 < y <1, there exists a constant C(p, y) such that

1, 0) < Clo ol he (s, i) (3.13)
py

forallt>O0.
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Proof Clearly

ayp®(En) ,% _u(l—V)f2(E,n)
e

ol 1) = / e T (e dn,
G

where g is the conjugate of p. Using the Holder inequality and the fact that

Q _ﬂq(l—y)pz(é'n)
/ t e ¢ dn <C,
G

we have

Q 2(£.n) Q (1-9)p% ()
A / 2T ) dy [ /G £ T "dn]

G

P
q

t
< ol (5L,
py
The last inequality implies (3.13). This proves the claim. d

4 Proof of the existence result
In this section we shall first prove Theorem 2.4.

Proof Suppose that the initial value #y € C?(G) is nonnegative and satisfies ||#o|oo < bo
for some constant by > 0. Let

h. ) - /G D, 51, 0)utor) .

Then the function /4 is continuous on G x [0,+00) and 0 < /& < |lug |- In fact, for any
€ > 0, there exists a constant r > 0 sufficiently small such that

| raesnomman<e. (1)
By (&,/7)
For any (&, 1), (§0,0) € G X [0, +00) satisfying p(&,&) V |t — to|% < g, we have

|h(&, 1) — h(&o, to)| f/G|FA(§:t§77»O)_FA(go:tO;U:O)’MO(n)dW

= “e dn +/ “ee dn
fsp@o,g) B (50, %)

2

£ jl(g’ t;&o, tO) + IZ(E’ t; &0, tO)'

%

By (4.1) we obtain

I < / Ta(&,tm,0)uo(n) dn + / T4 (&0, to; 1, 0)uo(n) dn < 2e.
Bp(&./P) By (0,7

Further, using Lemma 3.1 we have clearly that I, (£, ; &0, to) — 0 as p(£,&o) V |t -t 750,
It follows that /% is continuous on G x [0, +00).
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We denote by C,(G x [0,+00)) the set of all bounded continuous functions on G X
[0, +00) and note that (Cp(G x [0,+00)), ] - o) is @ Banach space. For M > C, > 1, let
us define the set

S= {u € Cb(G X [O,+oo)) :M‘lhcA <u SMhCL}

A

Obviously S is a nonempty closed subset of C(G x [0, +00)). We define an integral oper-
ator T on C,(G x [0, +00)) by

Tu(E, 1) = h(, ) + /0 /G TalE, 60,5V, )i (n,5) iy dis. (4.2)

Since u is bounded, it follows from Lemma 3.3 that Tu € C,(G x [0, +00)). Moreover, since

u< MhCL (¢,¢), according to Lemma 3.6 one has
A

u’(n,8) <MP[h_1(n,9)]" < Clp, )M ||luoll% h 1 <n, i)
Ch Cp py

< Clpy)MPBE (n, i) 4.3)
€A py

for every y € (0,1).
Now taking y <1 such that py > 1, we obtain

W (n,s) < C(p, y)MPby f I (n, =g, 0)uo(§)d§. (4.4)
¢ &\ py
Substituting (4.4) into (4.2) and using Proposition 3.5(i), we have
TM(S, t) - h(g: t)
t
=< C(p»y)Mpb(Pgil/‘ / / FA(&;B’I,S)V(U,S)FCL <77,i,§,0) dndsuo(f)d§
cJo JG A py

< Clp,y)Calpy) S MPB C NV 1_(6,0). (4.5)

It follows that, for by sufficiently small,
Tu(§,t) th%(é,t). (4.6)
In addition,

Tu(§,8) > h(§,t) = M'he, (&, 1) (4.7)

since V > 0. Equations (4.6) and (4.7) show that Tu € Sand so 7S C S.
Moreover, for all u,v € S, we have

Tu—Tv:A /GFA(S,t;n,s)V(n,s)[up(n,s)—vp(n,s)]dnds.
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By a straightforward computation using (4.3),
|u?(n,5) =V (n,9)| < plun,s)—v(n,s)| - [ (n,8) + ¥ (n,9)]
< 2pM" [uln,5) ~vOm, )| [ g (0, 9))

< 2CpMP M| uo 125 [u(n, s) — v(n,

and hence

t
| Tt = TV ]l oo < 2CpMP~ 00 |l — v||oof f TCa,6n,8)V(n,s)dnds
0 JG

< 2Cp(Mbo)1’"1Né Nt =Vl

In particular for by small enough, we obtain || Tu — Tv|| < %Ilu —V|lso, Which means
that T is a %—Lipschitz mapping form S into itself. Therefore, according to the fixed point
theorem there exists u € S such that Tu = u. This completes the proof. d

The next theorem shows that when V > 0, the condition N,(V) < +o¢ in the definition
of class Pfy. is optimal for Theorem 2.4 to hold.

Theorem 4.1 Assume that V is defined on G x (0,+00), V > 0, and the result of Theo-
rem 2.4 holds for all A € M. Then we have, for all ¢ > Cj,

sup / /F & 5n,8)|V(n,s)| dnds < +o0.

(&,5)eGx(0,+00)

Proof According to the assumptions, for all M > C, > 1 there is a constant b, such that
for each nonnegative #y € C*(G) with ||uo||oo < bo, there exists a solution u of the integral
equation

t
ue ) = /G Ca(e, £, 0o () dly + /0 /G TaE,£:0,9)V 0, 5)? (n,5) iy ds
satisfying
M /G e, (& 60, OYuo () iy < ule£) < M /G Bt (6.5, 0)oln) d

For uy = by, we obtain u(&,t) = by + fot JTal& tn,9)V(n,8)uf (n,s)dnds and M~ by Cy <
u(&,t) < MbyC,, which implies

t
(Mo Cy)’ f / TA(€,61,5)V(n,s)dnds
0 JG
S/ /FA(é,t;n,S)V(n,S)u”(n,S)dndsS(MCz—l)bo.
0 JG

Therefore

sup / / Ca(&,t1,8)V(n,s)dnds < (MCy —1)b, _pMpC P <

(&,)eGx(0,00)

Combining this with (2.5), we deduce the result. O
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5 Proof of the asymptotic behavior

This section is divided into two parts. In the first part we establish the global Gaussian
upper bounds for fundamental solutions of certain linear degenerate parabolic equations.
We emphasize that the parameters in the bounds are independent of time. In the next part

we will prove Theorem 2.5 by means of the newly obtained Gaussian estimates.

Lemma 5.1 Let A € My, V(£,t) e TP(G x R) (0 < B <1), and T be the fundamental solu-

tion of the degenerate parabolic operator
Z aXiXju(§, ) - u(s £)+ V(E, u,b).
ij=1

Suppose that Ny (V) is sufficiently small for a suitable ¢’ > 0. Then there exist positive con-
stants a and C such that

Q 2(&,n)
', 6n,0) < Cr et

forallt>0and&,neG.

Proof Without loss of generality, we assume that V' is bounded and supported in G x
[0, T], where T is a positive number. The general case can be covered by a limiting argu-
ment. What is important is to make sure all constants are independent of T'.

According to the result in Bramanti et al. [13], there are positive constants a < % and
B = B(T) such that

Q 2(&.n)
T(&,6n,5) <B(t—s) Te s

(5.1)

forall £,n € G and s < t. We suppose that B is the smallest positive number satisfying (5.1).
We claim that such a B does exist by our extra assumption that V(§,£) = 0 and thus ' = T'4
ift>T.Fort <T,the claim can be checked by showing that B depends on V only in the
form of Ny (V).

By the Duhamel principle, (2.5) and (5.1), we have, forall £,n € Gand s < ¢,

t
L& fim,s) = rA(s,t;n,s)+f /r(s,t;z,r)|v@,r>|m<;,ms)d(dr

<FA(§tTI:S)+//(t 3

Ca
(t-s)

X ”> d¢dr.

<_2
2

We then derive from Proposition 3.5

Ca P2En) )
e Cal=s) +BC, on Ny (V) e % T

& tn,s) <

t—s)3 (t-s)2

1 2 (g.m)
<[Ca+BC, 1 No(V)] et
ﬂ,CA (
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Hence, by the definition of B, we obtain

B=<Cy+BC, 1 No(V).

A

When C, L Ny (V) < % we have B < 2C,. This finishes the proof. O

A

Now we are ready to give the proof of Theorem 2.5.

Proof First we recall the assumptions imposed on the initial function u:
Up € C2(G)’ 0< o1 = up <,

where o, is a small number so that (1.1) has global positive solutions by Theorem 2.4. The
reason to impose a positive lower bound «; for u, is to guarantee that the equilibrium
solution is non-trivial.

Since V, Zgzl aiXiXjuo € PY

. by assumption, we have

sup < +00, (5.2)

/ | i1 asXiXjuo ()| + |V ()]
¢ Jo

pQ—Z(g’ n)

which will be proved in Proposition A.2 in the Appendix.
We temporarily assume that V' is smooth. Hence the solution u(&, £) of (1.1) is smooth.

Let us write w = u,. Differentiating (1.1), we find that w solves
Yl aXiXjw = Lw+ pV(EW(E, 0w(E,0) =0, (§,1) € G x (0,+00), 53)
w(g,0) = Y7, agXiXjuo(§) + V(§)ug(€), §€GQ=3. '

Let Vi(£,t) = pV(E)u? 1 (£,t) and let T be the fundamental solution of the operator
ZZ;.:I a;X;X;— 0; + V1. Then

w(&,t) = /Gl_“(%‘,t; 1,0) [Z agXiXjuo(n) + V(n)u’é(n)} dn. (5.4)

ij=1

When g is small, we know by Theorem 2.4 that u is small, and so N (V}) < psup |u|"~! x
N,(V) is small. From Lemma 5.1, there exist positive constants ¢, C independent of ¢, &,

and 7 such that

- 2 il
[(,61,0) < Cie ™" 2 (5.5)
Substituting (5.5) into (5.4), we obtain
Q _ 0 | —
(€, 0)| < / Ct2e " |:Zainz’)(jM0(’7)+ V(n)uﬁ(n)} dn. (5.6)
G -
ij=1
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For any ¢ > 0, by integrating the above inequality from ¢ to +co we obtain, via the Fubini
theorem and (5.2),

/ |us(&,5)| ds

< C'f _ agXiXjuo(n)| + |V(n)uy(n)| | dn < +00, (5.7)
¢ r&, 77) |: ; ’ ’ |
h h d the inequality [ s $e-a” 2 g < €
where we have used the inequality [~ s™2e™* s ds < pLoeTrmE
Now we define the function
Uso(E) = lim u(§, ). (5.8)

t—+00

We claim that the rate of convergence in (5.8) depends only on £ and the rate of conver-
gence of the following limit:

/ |Z$=1 aXiXjuo(n)| + 1V (n)|
lim sup 3
M=+00 &5 Jpayzm P2, m)

]7:

Here is a proof of the claim. Obviously, for a fixed & and any ¢ > 0, there exists a constant
M > 0 such that

p(E, 122 <y

/ 121 @i XiXuo ()| + 1V ()] &
&m

From (5.6), we have

e, - 1) = [ fute.o)]ds

+00
§C/ fs ge [ZaUXXuo n)| + ’Vn)|i|dnds
t G i
+00 +00
fC/ / dndS+C/ / ---dnds
t ol& t pEn=M
+00 Q MQ 2 m
< C/ / T agXiXjuo(n)| + |V(n)| | dnds
‘ i PTE ) [ ; pXiisolm) + |V o)
1
+C/ _ agXiXjuo(n)| + |V (n)| | dnds
p(Em)=M PQ"Z(E,H)[ UZ1 ’ | |
C
< E M 2‘9 <Cs, (5.9)
when ¢ is sufficiently large. This proves the claim.
From (5.6) we derive a pointwise estimate on |u,|:
C
lu(&,1)| < / pQ G [ Zal,XXuo +|[V(n)u )qdn, (5.10)
ij=1
. L Q) c
by using the obvious inequality t™2e™* ¢ < LT
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It remains to prove that u = u.,(£€) is a non-trivial positive solution of the subelliptic
equation. Given any ¢ € C{°(G), we have

[ e, axxoerde - [ w00 de + [ viowe noede o,

ij=1

Since u is bounded, we obtain by (5.8), (5.10), and the dominated convergence theorem

[ &Y apxixae)de + [ viena € de o,

ij=1 G
According to Theorem 2.4 we find that u = u(£, ¢) is bounded away from zero when u >
a1 > 0. Therefore, u, is a positive solution of the subelliptic equation.

Now we set V' € P}.. We claim that there is a sequence of smooth functions {V,,} such
that V,, — V a.e. as n — 00, and for any domain D C G,

V()] / [V(n)l
su —————dn<su —————dn. (5.11)
EEE/D p@2(,n) =2 ) 0 )
We prove the claim as follows. Let J be the standard mollifier. Define

Vii(r) = / JOV((510) - mde.
p(¢)=<1 "

Then we only need to check (5.11). Clearly
V() / 1 a1
————dn < | —— J(&)|V((61 -n)|decd
= R =y R CTIRRIE

V)
= ———————dndc¢.
fpmg](“/DpQ-Z(s,a;(g)-n) e

Hence

V)l / V| f
—d ———d de.
S‘!E/DpQ-Z(s,m M= e ) O

This proves the claim.

The previous argument implies that, for each #, there is a global solution #,, of (1.1) when
V is replaced by the smooth function V,,. Moreover, lim;_, o 4, (&, £) = 4,00 (§) pointwise.
The claim about the rate of convergence of (5.8) and (5.11) show that the convergence is
uniform with respect to n. Therefore, a subsequence, still called {u,}, converges uniformly
to a function u(&, £) in any compact subset of G x (0, +00). Following the previous argu-
ment, we find that u is a positive solution of (1.1) and u = u(&, £) converges pointwise to a
Uso(&) as t — +00, and u(£) is a positive solution of (2.9). O

Appendix

The objective of the section is to give two propositions about the class P{°

s among which

Proposition A.2 was used to obtain (5.2) in Section 5. The corresponding results in the
Euclidean case were first given in [6].
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For a measurable function V on G x R, we put

Pl = / /G FaE, t5m,5)| V0, )| dn ds (A1)
and
P ,9) = / fG P, 6,9)|V(E, )| de dr. (A2)

By Lemma 3.3 and Remark 3.4 we obviously have the following result.

Proposition A.1 Let V € LN(G x R) N P°. Then for all A € My, the potentials p),p3" €
Cy(G x R).

Proposition A.2 Let V(&,t) = V(§) € LNG). Then V € P°

>~ if and only if the potential
PY(6) = [ soapisdn € Cy(G).

Proof We first give the proof of the sufficiency. Assume that V(£) € L}(G) and pY(E) e
Cp(G). We then obtain

[V(n)] / V(&)
N.(V)<C ——d C —d C
V)= EEB/GpQ—Z@,n) O | e, g %< Co

for some constant Cy > 0.
For simplicity we write, for r € (0,1),

% [V(n)l v |V (n)l
- LAV B - P
pr () /;p(g,\/;) p22(&, 1) 7 ar ) By PE2E M)

Jr

We will prove that ) (¢) is continuous. Indeed, for & € G, when p(£, &) < R

gy () - q) (€0)| < (€, &) + J2(E, &),

where

(& ) = /
BS (€7

and

1 1
p2E, ) p2(E0,n)

|V(m)|dn

i [V(n)l
Jo(€, &) = [ g, ~Lascovnl oz oy 41

Recall that Q > 3, we can calculate via the obvious inequality

P ]
p22(&,m)  p2(&,n)

<(Q-2)p(e so)[ : + 1 }
= CULe2E o) pE M€ n)
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Therefore

1 1

:0(%'750) "
p2(&,n)  p2(&,n)

“|V(n)|dn.
NG AN [Ven)

0 </i(§,6) =C(Q-2)

On the other hand, by the dominated convergence theorem, we also have

J2(&,60) > 0 as p(§,&) — 0.

Hence g} (€) is continuous. We then have p)(§) = p"(§) — ¢qY(€) is continuous and
lim,_,o p) (§) = 0. So, by the Dini theorem, lim,_, o SUP ¢/ pY (&) = 0 for any compact subset
K’ C G. It assists us to deduce that

lim{ sup / / (&, n,s)\\/(n)|dnds
T2 0l nek Je-r Jpm<yr

+ sup / / F (&8 n,s)|V(“§)|d“§dt}
(&m)<

(n,s)eK

Vv
<hm{Csup/ (L () d
=0 gex’ JpEn)<dr P 2(&,m)

V()] }
+Csu / PN el
nelg p(Em<T inz(Sr 77)

for any compact K C G x R. Thus V e P}

loc*

We can now proceed to the proof of the necessity. Let V € L1(G) N P . By (2.3) and the

general properties of Lebesgue integral, there exists a constant C > 0 such that

v [V(n)l /
——d V(n)|dn<C.
PrE)= /,:?(E,n)fl pQ2(&,m) b p(Em=1 | (77)| "

Let ¢ > 0. Then there exists r > 0 such that

/ [V(n)l dn <
By2y7) PLHE M)

Therefore, when p(&,&) < —, it follows that

Vv LV 1 _ 1 ‘ d
&) -p" )| < /G |pQ_2(§,n) | Vlan

By(EP) BS (60, %)

0

£ L(,&) + (&, &),

where

|V ()l / V)l
HE vl T _ay<2
1@ SO)S/Bp(s,ﬁ) p22E ) T I conum 92 E0m) T
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and

p(E,£0) [ 1 !
L, CQ-2)———
W68 =CQ=DTF |, o) |02 Em * 702 on)

] . ’V(n)|dn -0
as p(&,&) — 0. This finishes the proof. a
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