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Abstract

In this paper a posteriori error estimate for continuous interior penalty Galerkin
approximation of transient convection dominated diffusion optimal control problems
with control constraints is presented. The state equation is discretized by the
continuous interior penalty Galerkin method with continuous piecewise linear
polynomial space and the control variable is approximated by implicit discretization
concept. By use of the elliptic reconstruction technique proposed for parabolic
equations, a posteriori error estimates for state variable, adjoint state variable and
control variable are proved, which can be used to guide the mesh refinement in the
adaptive algorithm.
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1 Introduction

Transient convection diffusion optimal control problems are widely used to model some
engineering problems, for example, air pollution problem [1, 2] and waste water treat-
ment [3]. In recent years the numerical approximations of this kind of problems form
a hot topic, and many works are contributed to developing effective numerical meth-
ods and algorithms. For stabilization methods, we refer to [4—7] and for discontinuous
Galerkin methods, we refer to [8, 9]. For more literature, one can refer to the references
cited therein.

It is well known that the solutions to convection diffusion problems may have boundary
layers with small widths where their gradients change rapidly. Therefore, only using the
stable methods to solve convection diffusion optimal control problems is generally not
enough. One approach to improve the quality of a numerical solution is to exploit special
mesh which is locally refined near the boundary layers, for example, Shishkin-type mesh
or adaptive mesh. Note that a priori knowledge of the locations of the boundary layers is
necessary to construct Shishkin-type mesh. Using adaptive mesh to resolve the bound-
ary layers seems to be more natural. As we know the key problem of the adaptive finite
element method is the a posteriori error estimate. Compared with a posteriori error esti-
mates for stationary convection diffusion optimal control problems (see, [7, 10-12]), the
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works devoted to a posteriori error estimates for transient convection diffusion optimal
control problems are much fewer. In [13] the authors discuss adaptive characteristic finite
element approximation of transient convection diffusion optimal control problems with
a general diffusion coefficient, where a posteriori error estimates in L2(0, T; L*(£2)) norm
are derived by dual argument skill for the state and adjoint state variables.

The primary interest of this paper is to derive a posteriori error estimates for the follow-

ing transient convection diffusion optimal control problem with dominance convection:

1
min J(y,u) = —/ (y(x, ) —ya(x, t))2 dxdt + Z/ u(x,t) dx dt (1.1)
uell,y 2 Qr 2 Qr
subject to

ye+B-Vy+tay—elAy=f+u, (xt)eQr=2x(0,T),
y(x,t) =0, (x,t)eT'r =0 x (0, 7), 1.2)
J’(X’ 0) ZJ/O(X), (X) t) e Q.

The details will be specified in the next section.

In order to improve the quality of the numerical solutions, the continuous interior
penalty Galerkin method (CIP Galerkin method) is used to solve the state equation (1.2).
This method was firstly proposed in [14]. In [7, 15] the CIP Galerkin method was used to
approximate stationary convection diffusion optimal control problems, where a posteriori
error estimates in L2($2) and energy norm were derived. In [16] the CIP Galerkin method
combined with Crank-Nicolson scheme was used to solve transient convection diffusion
optimal control problems without constraints and a priori error estimates were deduced.

In the present paper, we apply the CIP Galerkin method combined with the backward
Euler method to solve control constrained transient convection diffusion optimal control
problems (1.1)-(1.2), where the control is discretized by the implicit discretization method
developed in [17], and the state is approximated by piecewise linear finite element space.
Due to the existence of boundary layer or interior layer for the state and adjoint state as
well as limited regularity of control variable, we derive a posteriori error estimates for the
state and adjoint state, which can be utilized to guide the mesh refinements in the adaptive
algorithm. In contrast to [13], here we use the elliptic reconstruction technique developed
in [18] for parabolic problems instead of dual argument skill to deduce the a posterior
error estimates for the state and adjoint state. By use of this technique we can take full
advantage of the well-established a posteriori error estimates for stationary convection
diffusion optimal control problems in [7, 15] to derive the a posterior error estimate for
transient convection diffusion optimal control problems.

The paper is organized as follows. In Section 2 we describe the continuous interior
penalty Galerkin scheme for the constrained optimal control problem. In Section 3 a pos-
teriori error estimates are derived. Finally, we briefly summarize the method used, results
obtained and possible future extensions and challenges.

Throughout this paper C > 0 denotes a generic constant independent of mesh parame-
ters and may be different at different occurrence. We use the expression a < b to stand for
a < Cb.
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2 The CIP Galerkin approximation scheme
2.1 Problems formulation

Consider the following transient convection diffusion optimal control problems:

min J(y, u) (2.1)

uell,y

subject to

2—{+,B-Vy+ay—sAy=f+u, (x,2) € Qr,
y(x’ t) =0, (X, t) € FT: (2'2)
¥(x,0) = yo(x), X € Q.

Here Q is a bounded domain in R? with boundary 2. f € L*(Qr) and yo(x) € HA(R) is
the initial value. U,y = {u € L*(Q7) : a < u(x,t) < ba.e.in Qr} is a bounded convex set
with two constants satisfying a < b. « > 0 is the reaction coefficient, 0 < ¢ < 1 is a small
diffusion coefficient, and 8 € (W>*(R2))? is a velocity field. We assume that the following
coercivity condition holds:

1
a—=V-B>ay>0.
2
To consider the CIP Galerkin approximation of the above optimal control problem, we
first derive a weak formulation for the state equation. Let A(-, -) be the bilinear form given
by

Ay, w)=(eVy, V) + (B - Vy,w) + (ay, w), Vy,we H(l)(Q). (2.3)

It is easy to check

Aly,y) = |yl?, (2.4)
where
1/2
Iylls = (VY3 +olyllag)

Then the weak formulation of state equation (2.2) reads as

The variational formulation of optimal control problem (2.1)-(2.2) then can be written as

min J(y, u) (2.5)

uel,y

subject to

(%,w) +AQ,w) =(f+u,w), VYwe H(l)(SZ). (2.6)
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The existence and uniqueness of solutions to (2.5)-(2.6) can be guaranteed by the theory in
[19]. Moreover, by using the Lagrange functional, the first-order necessary (also sufficient

here) optimality condition of (2.5)-(2.6) can be characterized by

(2, w)+ A, w) = (f +u,w),  Vwe HY(Q),
~(5,w)+ Aw,2) = (- ya, W), Vw € H(Q), 2.7)
(Yyu+z,v—u)>0, Yv e Uy

From the second equation in (2.7), we have that the adjoint state z satisfies transient
convection diffusion equations with the strong form
% _eNz-V - (B2)taz=y-ys (%1)€Qr,
z(x,t) = 0, (x,t) e I'r, (2.8)

z(x,T) =0, x e Q.

In contrast to the state equation, the velocity field of the adjoint equation is —f.

By the pointwise projection on U4,
Py, LX(Qr) — Uaa, Py, (v) = max(a, min(v(x, t), b)), (2.9)

the optimal condition in (2.7) simplifies to

u="~ry, (—lv>. (2.10)
Y

2.2 Semi-discrete discretization
Let T” be a regular triangulation of €2, so that Q = (g4 K. Let hix denote the diameter of
the element K. Associated with T” is a finite dimensional subspace W of C(Q) N H\(Q),
consisting of piecewise linear polynomials.

To control the convective derivative of the discrete solution sufficiently, a symmetric

stabilization form S (see, e.g, [14]) on W x W was introduced as follows:

S wi) =0y /E W[V, - n][Vw, - n]ds,

EcEh

where o > 0 is the stabilization parameter. E* denotes the collection of interior edges of
the elements in T". kg is the size of the edge E. [g] denotes the jump of g across E for
E € E" defined by

[2(0] = lim (q(x + sm) - g(x — sm)),
with n being the outward unit normal.

Using the above stabilization form, a semi-discrete CIP Galerkin approximation of op-
timal control problem (2.1)-(2.2) is defined by

min J(yp, up) (2.11)

upel,y


http://www.boundaryvalueproblems.com/content/2014/1/207

Zhou and Fu Boundary Value Problems 2014, 2014:207
http://www.boundaryvalueproblems.com/content/2014/1/207

subject to

(22, w,) +A(yh,wh) +SOwwn) = (f + up, wy), Ywy, € W,

212
y1(0) -yo e W ( )

Here the control variable was approximated by variational discrete concept (see [17]). uy
in general is not a finite element function associated with the space mesh 7”.

By standard argument it can be shown that the following first-order optimality condition
holds:

(aayfywh ) + Ay wi) + SO wh) = (f + up, wy), Yy, € WH,

—(%2, qi) + Algm zn) + S(qnz) = On — yarqn),  Van € W,

(2.13)
(yupn + zp, vy — up) > 0, Vv, € Uy,
yu(0) = y4, zi(T) = 0.
By the pointwise projection operator Py ,, we have
1
up =Py | ——zn ). (2.14)
14

2.3 Fully discrete scheme
To define a fully discrete scheme, we introduce a time partition. Let 0 = £y < £; < -+ - < fy_1 <
ty = T be a time grid with ¢, = ¢, — ¢,.1,n=1,2,...,N. Set I,, = (t,_1, t,]-

Using variational discretization concept, the fully discrete CIP Galerkin scheme for
(2.1)-(2.2) reads as follows:

1Y 2 2
i i) = 5 Xlﬁf (195 =5illog+ ¥ [4ilo0) (2.15)
subject to

yn_yn—l
(= wi) + AWy wa) + SO wi) = (" + wwi),  Ywy € wh,

NP (2.16)
Yp=Yo € W"

Similar to a semi-discrete scheme, we can derive the discrete first-order optimality condi-

tion:

n_n-1
(B2 i" i) + AW wi) + SO wi) = (" + ul,wy),  Yw, € WP,

(4 ;Z "Ih) + Az ™) + Slawzy ™) = O~ Vi an), - Yan € W, (217)
()/Llh + Zh !Vh - Llh) >0, Vv, € Uyg,
W=y  zy=0, n=1,2,...,N.

Again by the pointwise projection operator Py ,, we obtain

1
u, =Py, <—;2Z‘1>.

We can see that uJ, is a piecewise constant function in time.

Page 5 of 19
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Forn=1,2,...,N, let

Yiltyron = L@y + Lia (€)Y,
Ziltyr) = @2 + L (D27

n
Uh'(tn—len] = Mh’

where

t—t, t, —
Lt = — L L) =

n n

For Yy € C(0, T;L2(2)), ¢ € (tn-1, £u], We set ¥ = ¥ (%, £,), ¥ = ¥ (x, £,1). Note that

Y Y= i Zy _ 7, -z

ot Ty at Ty

for t € (t,-1,t,]. Then the above optimality conditions can be rewritten as

(dyh,wh) + AV wi) + SV wi) = (" + Up,wy),  Vwy € W,
~(%22, 1) + Al Z1) + S Z1) = YV — ¥l qn),  Van € W, (218)
(yUp + Zpyviy — Uy) > 0, Yy, € Uy

3 A posteriori error estimates
The objective of this section is to derive a posteriori error estimates for the state, adjoint
state and control.

3.1 The estimate for control
To obtain the estimate for control, we introduce an auxiliary problem. For given U, let
(y(Up), z(Uy)) be a solution of the following system:

() ) + A((U), w) = (f + Uy w), Vw e H)(),
y(Up)(x,0) = yo(x), x€Q,
az( uh) " (3.1)
—( ,q) +Alg, 2(Uy)) = (Un) - yarq), Vg € H)(R),
Z(Uh)(x, T) = 01 x € Q.

Lemma 3.1 Let (y,z,u) and (Yy, Zy, Uy) be the solutions of (2.7) and (2.18), respectively.
Then the following estimate

lle = Unll 20,7020 < C(||2(Un) = Zi HLz(O,T;Lz(Q)) + 1 Zn = Znll 200 712(2)))
holds.

Proof 1t follows from (2.7) and (2.18) that

2
Y e = Unll720 1020

:/(;T/;Zyu(u—l,lh)—/oT/Q)/Uh(M—Uh)

Page 6 of 19
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s/OT/Qz(uh—m—foT/Qyuh(u—uh)
=AT/SZ(Z—Zh>(uh—u>—/OTA(yuh+Zh)<u—uh>
=/OT/S;(z—z(Uh))(LIh—u)+/OT/Q(z(Uh)—Zh)(Uh—u)

—fOTL(yuh+Zh)(u—uh>
S/OTfQ(Z—Z(Uh))(Uh—M)+/()T/Q(Z(Uh)—zh)(uh—M)-

Here the last inequality was fulfilled due to the implicit discretization of the control vari-
able.
By (2.7) and (3.1) we have

T
fo /Q (z - 2(Up)) (u - Up)
T [ A0 -yW) T
B ./;) /Q T(Z_Z(Uh)) +/0 Ay - y(Un),z - z(Uy))

T rdz-z(U T
=_/ / W(y_y(uh))+/ A(y—y(uh),z_z(uh))
0 Q 0

=/0T/Q(y—y(uh))2 >0,

where y(U})(0) = yo(x) and z(U},)(T) = 0 was used. Thus we arrive at

2
14 ”u - uh ||L2(O,T;L2(Q))

T
5/ /(Z(Uh) = Zp)(Uy — u)
0 Q
2 —
E C((S) ||Z(Uh) - Zh ||L2(0,T;L2(SZ)) + C((S)”Zh - Zh ||12/2(0,T;L2(Q))

+Cé ||M - Uh ||i2(0,T;L2(SZ})'
Choosing § = 7% yields the theorem result. O

3.2 The estimate for the state and adjoint state
In this section we shall adopt the elliptic reconstruction technique proposed in [18, 20] to
derive a posteriori error estimates for the state and adjoint state.

To this end we first introduce the following elliptic reconstruction definitions for state

and adjoint state.

Definition 3.2 For n =1,2,...,N, we define the elliptic reconstruction v” € H},(Q) and
"' € H}(R) satisfying the following elliptic problems:

no_ an—1
A(v”,w) = (f”+uZ—M,w>, VweHé(Q) (3.2)
T

n

Page 7 of 19
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and

n_ Zn—l
. ,q), Vg € H)(SQ). (3.3)
T,

n

Alg0") = (yZ —Yi+
Noticing that the CIP Galerkin approximation of v” can be defined as

no_ an-1
A(v[l’, wh) + S(v,:’, wh) = (f” +uj - M,wh), Ywy, € W
T

n

Then we have
A(yZ - vy, wh) + S(yZ - vy, wh) =0,

which implies y}; = v;/. We can observe a similar property for the CIP Galerkin approxi-

mation of w" 1.

Using the above convention, we define v(¢) and w(t) as

v(t) = L(e" + L,y (£)v"

and
o(t) = ()" + 1,1 (H)0" ™

for t € I,, and n € [1,N]. We decompose the error as follows:
y(Up) = Yi(0) = y(Uy) = v(t) = (Yu(®) = (D) := py — &

and
2(Up) = Z(t) = 2(Uy) — o(t) = (Zn(t) - 0(2)) = p; - &..

Nextly we shall derive the estimates of p and &. For simplicity, we introduce the following
notations:

Yy

R, =" +ufy= =L = B3 —ayf,

Rlyzi,y = [VyZ : l’l],

0z
Rio=oh=di+ 5 + V- (Bz) —ez”,
R}, = [VzZ‘l . n],

_ §0n _ gDn—l _
o' = ——,  3¢"=
Tn Tn

Let A} and Aj, be the discrete operators associated with the state and adjoint state, which
are defined by the following for Vv € W":

(Aj,v, wh> =AW, wp) + S, wy), VYw, e W

(Aiv, wh> =Awy,v) + S(wy,v), VYw, € W

Page 8 of 19


http://www.boundaryvalueproblems.com/content/2014/1/207

Zhou and Fu Boundary Value Problems 2014, 2014:207 Page 9 of 19
http://www.boundaryvalueproblems.com/content/2014/1/207

The time error estimators are characterized by

o - (™ + el — 32T, 2<m<N,
P+ up — oyt — Ay, n=1

and
Oy — 9y + 322 N, 1<n<N-1,

Oon = d
“ {yﬁ’—yg’+8tz§:’—AZzz[, n=N.

. -1 1 . -1 1
Moreover, let ax = min{a, *, e~ 2 hg}, op = min{ogy >, €~ 2 hg).
By the standard techniques used in a posteriori error estimate for stationary convection
diffusion optimal control problems [7, 15], we obtain the following results.

Lemma 3.3 Let v" and yj, be the solutions to (3.2) and (2.16). Then the following a poste-
riori error estimate holds:

54 R

where

= D kR o+ D e 2aleRy, o, + Y adhe|RE, o
KeTh EcEh EcEM

Lemma 3.4 Let 0" and zZ‘l be the solutions to (3.3) and (2.17). Then the following a
posteriori error estimate holds:

n-1
&7, = e

where

nin = Z a12<||RIn<,z”(2),K + Z 87%015”8Rgz”§,5 + Z althE“RZ,z”(Z),E‘
KeTh EcEh EcEh

In the following we shall deduce the estimates of p, and p,. By (3.1) and Definition 3.2
we can derive the following error equations for p, and p..

Lemma 3.5 Givent € I,, we deduce

0 d
(% ) + Alpy ) = (%w) F AL = (D), 9)

+(f=f"¥), V¥ € Hy(Q) (3.4)

and

8 'z a z —
_<8_pt’w) +A(,0z,1ﬂ) = _<a—irw) +A(¢vw" ! _a)(t))

+(a =y W)+ ((Un) -y vr), V¥ € Hy(Q). (3.5)
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Proof Note that

(ayéi[h)"”) AU, Y) = + U ), YU € Ho(Q)

and

A", Y) = <f + U, - % w) Yy € Hy(9).

Then we have
ap
(B_ty’ ¢> + A(py’ 1//)

=<f+uh,w)+( gy,w) (aaf’ w) AL, Y)

Yy

<fn+uh_W‘/’> (8% ) (F-F" ) A0, )
(asy ) (=S w) + A" = v, ¥).

Similarly we can deduce the error equation for p,. g

Before deriving the estimates for p, and p, we first introduce the following lemma with

respect to a Clément-type interpolation operator. The proof can be found in [21, 22].

Lemma 3.6 Let I, be a quasi-interpolation operator of Clément type. The following esti-
mates hold for all elements K, all faces E and all functions v € Hy(RQ):

lv="Ipvlox < axllvll«ni),

—

1
lv="Iwvlloe < e %oz IVILen)

Mnv ik < NVIenE)

where N(K) and N(E) denote the union of all elements that share at least one point with K
and E.

Then we arrive at the following.

Lemma 3.7 The following estimate holds:
T
2
max +
max ol + [ a2

<o (0)]* + <% érnney,nn)z + (ij /1 lf @& -5 !!)2

Page 10 of 19
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N
2 [ (S ol s St
n=1 I

" “KeTh EcEh

2
1 _
o aphd |3RE, noﬁ)} .

EcEh
Proof Setting ¥ = p, in (3.4) leads to

1d
S 1o® I

d
-(50) 407 -0010) + (S0

+A(py, py)

Integrating in time from 0 to T gives

1 T
U@ = 1o+ [ 46,0

T a%- T " T n
:/(; <a—ty,py>+/o A(v —v(t),py)+/; (fF=1"py)

[ %0) [ [ 10-r

Assume that

A(v” —v(?), ,Oy)

[ oy(&5) ] = max oyl

Again integrating in time from 0 to ¢}, results in

1 tm
U@ =1 + [ 4G, 0)

i (g . g
=/0 (a—ty,py>+f0 A(v —v(t),,oy)+/0 (f—f ,,oy)
oo T . Tl (0&
< [aer=von)ls [10-r)l+ [|(520)

Combining the above two inequalities yields

1 T
U@ - 1)+ [ 46,0
T T T
<2 [ Jaem-vop) vz [ (sl 42 [
3
::227}.
i=1

3%,
(at”’y)

(3.6)

Page 11 of 19
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In the following we shall derive the estimates of T;. By the definition of the elliptic re-

construction, we can bound 77 as follows:

N
1= 3 [ ]G
n=1 v*n

N
=3 [t lie
n=1 %"

’

TullOynll]| 0y (£5,)

which implies

N 2
T, < C(a)(é Zrnney,nn) +8lo ()|
n=1

with an arbitrarily positive constant §.
For the second term T5, we can bound it as follows:

N
ZEDY [1re-rusi
N
< lo)1 32 o]

<co(S [ ro-r1) ol

Now it remains to estimate 73. Note that

N
Ts = Zf] o = =y 9 oy) .
n=1v'"

This term can be estimated by the techniques used in a posterior error estimates for the

stationary problem. To this end we introduce an auxiliary problem

(3.7)

—eAp -V -(Bp) +ap=p, inQ,
¢ = 0’ on 0%2.

For the above auxiliary problem, the following stability estimates (see, e.g., [23]) hold:

3
e[l + €2 11p ]l + 61l < Cllpyl- (3.8)

Using the above auxiliary problem, we have

(Un _ vn—l _yz +yz—l’py) — A(Un _ vn—l _yZ +yz—17 )

Page 12 of 19
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By the definitions of v” and y/;, we can deduce

(v = =Sy )
= (/" + = Oy =" =y + O d) — A -9 b — 1)
— AW -y ) = SOh -y dng) + SO — i 1ng)
= (" +up =y " w4 0 ¢~ Ing)

—AGL -y Lo - 1) + SO -y L 1),

where [;,¢ denotes the Clément interpolation of ¢. Further, we have

(Vn - vn—l —J’Z +J’Zfl, py)

- /{ (3" + Bt — 5297 3u(B - V) + 3] 6 — )

KeTh

+Tn Z /E[sétVyh n](lugp — ) ds + T, S0y, In)

EcEh
<tu ) ORI = Indllox + T Y [£0RE, | o Mnp = Ploe
KeTh EcEh
+ Tho Z ”hééth,yHO,E” [n ) V(Ihd’)] ”0,5'
EcEh

Note that

” [V(Ih¢)] ” 0.E = Ch? ||V(Ih¢) ||0,N(E)’

and

[V @], p < Che i llone

Then we derive

_ 3
o DRz o[- VS o p = Con Dz [RE o £V T o e

EcEh EcEM
or
_ 1
T > |HoRE o N[0 V)] |z < Cru D BEJORE, | I ndlone-
EcEh EcEh
This implies

- 1
tn ) [IORE | o[- Vg | o p < Crn D ceh? 8RS | o cMnd lne)-

EcEl EcEh
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It follows from Lemma 3.6 and (3.8) that
(W =w" — 5+ 557 )

< Co( X iy o+ 3 et eim,

KeTh EcEM
o3 el R y||05)npynm (39)
EcEl

Thus we arrive at

T3 < CZ/ ( oK ”E;tR?w”o,K + Z af%gi}i ||85”R1n3y”0,5

KeTh EcEn

+ S skt 187, ) o5

EcEM

|:Z./ ( aK”étR;lﬂyno,K + Z afég_é ”85’Rg’y”0£

In KeTh EcEM

2
Lo
T eord it los) | el

EcEM

Inserting the estimates of 77, T5 and T3 into (3.6) and setting § small enough leads to the
theorem results. O

Theorem 3.8 Let y(Uy) and Yy, be the solutions of (2.7) and (2.13), respectively. Then the
following estimate holds:

T )\ 2
(/ bra-xl2)

1 N N
<101+ 53wl + 3 [ ro-r|
n=1 n=1 Y1In
+Z [ (3 el o S ctet e,

KeTh EcEh

L L X 3
Dokl los) (5 Dol 15710 B10)

EcEh n=1

Proof Note that

T 9 T T T T
/Hy(uh)—yhu*f/ ||py||i+/ ||sy||if/ npyn;i+f &, 12
0 0 0

< [Cuieeg <||s 2+ 181,

Then by Lemmas 3.3 and 3.7 we can deduce the estimates of fOT y(Uy) = Y2 O
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Remark 3.9 Note that

() = Ya|| < lloyll + 1,11- (3.11)

The second term is the elliptic reconstruction error, which can bounded as follows for
tel,:

181l = 28] + Lia&y ™| < max(|l&)

7). (312)

’

Then

I~ il gy =m0 + max 6 < max]y()] + ma 1.

Combining Lemmas 3.3 and 3.7, we can deduce

||y(Uh) -Y “Loo(o,T;LZ(Q))

1 al
=n ]+ 5 S mlbal+ 3 [ 0|
n=1 n=1v"

N
o [ (X ol o s X artet e,
n=1 I

" CKeTh EcE"

1
+ Z agh; || R, H O,E) + nrgr{l&)j\(ﬂ Ny (3.13)
EcEh ’

Now we turn our attention to estimate z(Uj,) — Z;. The argument skills are similar to
those used in the estimate of y(U},) — Yj,. Therefore we just sketch the proof.
Setting ¥ = p, in (3.5) leads to

1d

aé:Z n— 1
o dt ”)Oz(t)”2 +A(pz p2) = _<¥’)02) +A(pz’w = w(t)) + (yd —Jar pz)

+ (y(uh) -V pz)'

Let

ma ol = [ ()|

Then integrating the above equation from ¢} to T and 0 to T, respectively, leads to

1 T
o) =l + [ AGeo

"l (0
= 2/(; (Er pz)

T
+ 2/0 | (Un) = ¥s 2) |-

T T
+ Zfo [A(pz 0" - 0)| +2f0 |(ya =y p2)|

In an analogous way to Lemma 3.7, we can derive the estimate for p,.
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Lemma 3.10 We have

T
2 2
max || || +/ ll ozl
te(0,T] 0

1 N 2 N 2
< Jlo(D)|* + (5 Zmﬂ%ﬂ) + (Z fl Hyd—y:;H)
n=1 n=1 %"
N i L
+ |:Z/ ( Z OtK” afRI”Qz”o,K + Z apet ||8atRZ",z”o,E

n=1 “In Npeen EcE!
L 2 N 2
e liados) | (3 [ 1)+ b=
EeEh n=1 1n

Collecting Lemmas 3.4 and 3.10 and using similar arguments to Theorem 3.8 yields the

following.

Theorem 3.11 Let z(U},) and Z;, be the solutions of (2.7) and (2.13), respectively. Then the
following estimates hold:

T )\ 2
([ Iz-2)

1 N N N
<o+ 5 X wdual + X [ a3l + 3 [ %51
n n=1 n

n=1 n=1

N — _ 1 _
+ |:Z/; Z O‘K” 8tRI”Qz”o,K + Z “587% HsatRZ,ZHO,E + Z aEh,f- ” atRJHE,z”o,E]
n=1

" KeTh EcEh EcEn

1 & :
S o ) R L

n=1

Remark 3.12 Similar to Remark 3.9, we can also derive the posteriori error estimates of

|2(Un) = Zn | o0, 7200

1 X N N
<o) + 5 D wallfenl +Zf lya =] +Z/ b
n=1 n=1 In n=1 In
N ) .
+ |:Z./1 Z O‘KH 8tRIncz”o,K + Z ape * HSale,z”o,E + Z O‘Ehg ” ang,z”o,E]
n=1

" KeTh EcEh EcEh

+ nlg[lg}\‘[] nZ,VI + ”J’(Uh) - Yh ”LZ(O,T;LZ(Q))'
3.3 The main results
By (2.7) and (3.1) we can also derive

T
‘/0 ||y _y(uh) ||i = ||M - Uh”%Z(O,T;LZ(Q)) (3.14‘)
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and
T 2
/ ||Z - Z(Uh)”* = ”u - Uh||i2(o,T;L2(Q))‘ (315)
0

Therefore, combining Lemma 3.1, Theorems 3.8, 3.11, (3.14) and (3.15), we can deduce

the following estimates.

Theorem 3.13 Let (y, p, u) and (Yy, Zy, Uy,) be the solutions of (2.7) and (2.13), respectively.
Then the following estimate

T 3 T >
= Unllr20,m:02(2) + (/ ly - Yh||i> + </ ||Z—Zh||i) XNy +1;
0 0

holds, where
1 N N
?fy = pr(o)” + 5 ZTnHQy,nH + Z,/] “f(t) —f" ”
n=1 n=1*""

N
3 [ (X el o+ X ctet 0 o
n=1 1

" “Kerh EeEh
% a pn al n 1 J n|2 n-1||2 %
+ ) arhi |ORE, |, o +Z/HYh—yh||+ 3 wlg i+ 1g1)
EeEh n=1 In n=1

and
1 N N _
A FGIEESRAAEDS /1 lya = 21l + 121 = Zull 20 2200)
n=1 n=1

N

3Py POrTLEINS PR E AN
n=1 "I gern EcEh

1

1 1 N 2
ST AN AN

EeEh n=1
Remark 3.14 It follows from (2.7) and (3.1) that
|y = y(n) HLOQ(OYT;Lz(Q)) = lu = Unll 20,7229
and
|2 = 2WUn) | ;oo o, 7120 = 128 = Unll 20, 7:2202)

Using the above estimate and Lemma 3.1, we can derive the posteriori error estimates of

llet = Unll20,722(2)) + 1Y = Yillzooo, 1520 + 112 = Zill Lo o, 702(2))-
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4 Conclusion

In this paper a posteriori error estimates were established for time-dependent convection
diffusion optimal control problems by the elliptic reconstruction technique. By introduc-
ing the elliptic reconstruction, we can take full advantage of the well-established a poste-
riori error estimates for stationary convection diffusion optimal control problems. There
are still many issues needed to be addressed, such as optimal control problems with state
constraints and pointwisely imposed control problems. The applications of our approach
to these settings will be postponed to our future work.
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