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Abstract
We introduce an enhanced inertial proximal minimization algorithm tailored for a
category of structured nonconvex and nonsmooth optimization problems. The
objective function in question is an aggregation of a smooth function with an
associated linear operator, a nonsmooth function dependent on an independent
variable, and a mixed function involving two variables. Throughout the iterative
procedure, parameters are selected employing a straightforward approach, and weak
inertial terms are incorporated into two subproblems within the update sequence.
Under a set of lenient conditions, we demonstrate that the sequence engendered by
our algorithm is bounded. Furthermore, we establish the global and strong
convergence of the algorithmic sequence, contingent upon the assumption that the
principal function adheres to the Kurdyka–Łojasiewicz (KL) property. Ultimately, the
numerical outcomes corroborate the algorithm’s feasibility and efficacy.
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1 Introduction
In this paper, we consider the following nonconvex and nonsmooth problem:

min
(x,y)∈Rm×Rq

{F(Ax) + G(y) + H(x, y)}, (1.1)

where the function F : Rp → R is continuously Lipschitz differentiable, G : Rq → R ∪
{+∞} is a proper lower semicontinuous function, H : Rm ×R

q → R is a Fréchet differen-
tiable function with Lipschitz continuous gradient, and A : Rm → R

p is a linear operator.
Many application problems can be modeled as (1.1), e.g., compressed sensing [2, 14], ma-
trix factorization [5], sparse approximations of signals and images [22, 27], and so on.

Obviously, when m = p and A is the identity operator, (1.1) can be written as

min
(x,y)∈Rm×Rq

{F(x) + G(y) + H(x, y)}. (1.2)
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Utilizing the two-block structure, a natural method to solve (1.2) is the alternating min-
imization method. For a given initial point

(
x0, y0) ∈ R

m × R
q, it generates the iterative

sequence
{(

xk , yk)} by the following scheme:

xk+1 ∈ arg min
{

F(x) + G(yk) + H(x, yk) : x ∈R
m}

,

yk+1 ∈ arg min
{

F(xk+1) + G(y) + H(xk+1, y) : y ∈ R
q} .

The method is also called the Gauss–Seidel method or the block coordinate descent
method, and its convergence results can be found in [3, 23, 29]. However, the conver-
gence of the above methods is in the setting of convex case. In the nonconvex setting,
the situation becomes much harder. Bolte et al. [5] considered a proximal alternating lin-
earized minimization (PALM) algorithm for solving problem (1.2) in the nonconvex and
nonsmooth case, which has the following form:

xk+1 ∈ arg min
{

F(x) +
〈∇xH

(
xk , yk) , x – xk 〉 +

ck

2
∥∥x – xk∥∥2 : x ∈R

m
}

,

yk+1 ∈ arg min

{
G(y) +

〈∇yH
(
xk+1, yk) y – yk 〉 +

dk

2
∥∥y – yk∥∥2 : y ∈R

q
}

,

where ck and dk are positive real numbers. They proved the global convergence under the
assumption that the augmented Lagrangian function satisfies the Kurdyka–Łojasiewicz
property. Driggs et al. [15] proposed a generic stochastic version of PALM algorithm for
nonsmooth nonconvex optimization problem, where various variance-reduced gradient
approximations were allowed. PALM can be considered as a blockwise application of the
well-known proximal forward–backward algorithm [13, 20] in the nonconvex setting. In
[9], Bot et al. chose a continuous forward–backward method and introduced a dynamical
system consisting of partial gradients of smooth coupling functions and proximal point
operators of two nonsmooth functions, and Attouch et al. [1] proposed an alternating
proximal minimization algorithm for nonconvex structured problem (1.2).

When G(y) = 0 and H(x, y) = H(x) for all (x, y) ∈ R
m × R

q, problem (1.1) is translated
into the following problem:

min
x∈Rm

{F(Ax) + H(x)}, (1.3)

where H : Rm → R is a Fréchet differentiable function with Lipschitz continuous gradient.
Problem (1.3) can be writen as

min
x∈Rm

F(z) + H(x)

s.t. Ax = z.

In the convex case, the linearized ADMM was adopted to solve this problem in [24, 31, 32]
in the following form:

zk+1 ∈ arg min
z

{F(z) +
〈
uk , Axk – z

〉
+

β

2
∥
∥Axk – z

∥
∥2},

xk+1 = xk –
1
τ

(∇H
(
xk) + AT uk + βAT (

Axk – zk+1)) ,
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uk+1 = uk + σβ
(
Axk+1 – zk+1) , (1.4)

where u is the Lagrangian multiplier, β is the penalty parameter, and τ ,σ > 0 are step-sizes.
Furthermore, the linearized ADMM was applied in the nonconvex case in [10, 21]. Moti-
vated by [15], Bian et al. [4] extended the result to the case of ADMM, which combined
ADMM with a class of stochastic gradient with variance reduction. Li et al. [19] examined
two types of splitting methods for solving this nonconvex optimization problem (1.3), the
alternating direction method of multipliers and the proximal gradient algorithm.

Inertial effect, as an accelerated technique, started from the so-called heavy-ball method
of Polyak [26], was very efficient in improving numerical performance of the algorithm.
Recently, the research of inertial-type algorithm has attracted more and more attention,
such as inertial versions of the ADMM for maximal monotone operator inclusion problem
[6], inertial forward–backward–forward method [7] based on Tseng’s approach [28], and
general inertial proximal point method for the mixed variational inequality problem [12].
Notably, Guo, Zhao, and Dong [17] have proposed a stochastic two-step inertial Bregman
proximal alternating linearized minimization algorithm, which presents a significant ad-
vancement in the field. Also, Zhao, Dong, Rassias, and Wang [34] have contributed to this
area with their two-step inertial Bregman alternating minimization algorithm, enhanc-
ing the understanding of nonconvex and nonsmooth optimization problems. Additionally,
Zhang and He [33] have introduced an inertial proximal alternating minimization method,
which further broadens the scope of application for inertial techniques. Specially, for prob-
lem (1.2) in the nonconvex setting, Pock and Sabach [25] proposed an inertial version of
PALM (IPALM), and Gao et al. [16] proposed a Gauss–Seidel-type inertial proximal alter-
nating linearized minimization (GIPALM) algorithm. For problem (1.3), Chao et al. [11]
combined an inertial technique with ADMM and employed the KL assumption to obtain
the global convergence in the nonconvex setting.

For problem (1.1), Hong et al. [18] analyzed the behavior of the alternating direction
method of multipliers (ADMM) in the nonconvex case. Wang et al. [30] studied the con-
vergence of the alternating direction method of multipliers (ADMM) for problem (1.1)
in the nonconvex and possibly nonsmooth case. Bolt et al. [8] transformed problem (1.1)
into a three-block nonseparable problem by introducing a new variable, which has the
following form

min
(x,y,z)∈Rm×Rq×Rp

F(z) + G(y) + H(x, y)

s.t. Ax = z. (1.5)

Then the augmented Lagrangian function Lβ : Rm ×R
q ×R

p ×R
p →R∪{+∞} of problem

(1.5) was defined as

Lβ(x, y, z, u) = F(z) + G(y) + H(x, y) + 〈u, Ax – z〉 +
β

2
‖Ax – z‖2, β > 0, (1.6)

where u is the Lagrangian multiplier, and β is the penalty parameter. Bolt [8] gave the
following proximal minimization algorithm (PMA) to solve it:

yk+1 ∈ arg min
y∈Rq

{
G(y)+

〈∇yH
(
xk , yk) , y

〉
+

μ

2
∥
∥y – yk∥∥2

}
,
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zk+1∈arg min
z∈Rp

{
F(z)+

〈
uk , Axk –z

〉
+

β

2
∥
∥Axk –z

∥
∥2

}
,

xk+1 := xk – τ–1 (∇xH
(
xk , yk+1) + AT uk + βAT (

Axk – zk+1)) ,

uk+1 := uk + σβ
(
Axk+1 – zk+1).

Moreover, they provided sufficient conditions for the boundedness of the generated se-
quence and proved that any cluster point of the latter is a KKT point of the minimization
problem. They also showed the global convergence under the Kurdyka–Łojasiewicz prop-
erty.

Inspired by the above algorithms, in this paper, we propose a weak inertial proximal
minimization algorithm for the nonconvex and nonsmooth problem (1.1). The main con-
tributions of the paper are as follows.

• Comparing with [8], inertial effect can effectively improve the convergence. Under
the action of the inertial effect, we also show that the sequence generated by the pro-
posed method is bounded and the algorithm is global and strongly convergent under the
Kurdyka–Łojasiewicz assumption.

• Comparing with [11], problem (1.1) is different from problem (2) in [11]. Here our
problem owns a nonsepable term H(x, y), which leads to big difficulty for showing the
convergence.

The paper is organized as follows. In Sect. 2, some useful definitions and results are
collected for the convergence analysis of the proposed algorithm. In Sect. 3, we propose a
modified inertial proximal minimization algorithm and analyze its convergence. Section 4
tests a numerical experiment to conclude the effectiveness of our algorithm. Finally, some
conclusions are drawn in Sect. 5.

2 Notation and preliminaries
In this section, we summarize some basic notations and some conclusions, which will be
used in the subsequent analysis.

In the following, Rn stands for the n-dimensional Euclidean space with

〈x, y〉 = xT y =
n∑

i=1

xiyi, ‖x‖ =
√〈x, x〉,

where T stands for the transpose operation. For a set S ⊂ R
n and a point x ∈ R

n, let
d(x, S) = inf

y∈S

∥
∥y – x

∥
∥2. If S = ∅, then we set d(x, S) = +∞ for all x ∈R

n.

Definition 2.1 (Lipschitz differentiability) A function f (x) is said to be Lf Lipschitz dif-
ferentiable if for all x, y, we have

∥∥∇f (x) – ∇f (y)
∥∥

2 ≤ Lf
∥∥x – y

∥∥
2.

Lemma 2.1 [21] (Descending lemma) Let f : Rn → R be Fréchet differentiable such that
its gradient is Lipschitz continuous with constant � > 0. Then the following statements are
true:

(i) For all x, y ∈R
n and z ∈ [

x, y
]

=
{
(1 – t)x + ty : t ∈ [0, 1]

}
, we have

f
(
y
) ≤ f (x) +

〈∇f (z) , y – x
〉
+

�

2
∥∥y – x

∥∥2;
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(ii) For all γ ∈R\{0}, we have

inf
x∈Rn

{
f (x) –

(
1
γ

–
�

2γ 2

)∥∥∇f (x)
∥∥2

}
≥ inf

x∈Rn
f (x) .

Remark 2.1 The descending lemma can be written as follows:

f
(
y
) ≤ f (x) +

〈∇f (x) , y – x
〉
+

�

2
∥∥y – x

∥∥2 ∀x, y ∈R
n,

which follows from (i) by taking z := x. In addition, by taking z := y in (i) we obtain

f (x) ≥ f
(
y
)

+
〈∇f

(
y
)

, x – y
〉
–

�

2
∥
∥x – y

∥
∥2 ∀x, y ∈R

n.

Lemma 2.2 [25] Let {an}n≥0 be a sequence of real numbers bounded from below, and let
{bn}n≥0 be a sequence of real nonnegative numbers. Assume that for all n ≥ 0,

an+1 + bn ≤ an.

Then the following statements hold:
(i) The sequence {an}n≥0 is monotonically decreasing and convergent;
(ii) The sequence {bn}n≥0 is summable, that is,

∑
n≥0 bn < ∞.

Lemma 2.3 Let {an}n∈N and {bn}n∈N be nonnegative real sequences such that
∑

n∈N bn < ∞
and an+1 ≤ a · an + b · an–1 + bn for all n ≥ 1, where a ∈ R, b ≥ 0, and a + b < 1. Then
∑

n∈N an < ∞.

We now introduce a function satisfying the Kurdyka–Łojasiewicz property. This class
of functions will play a crucial role in the convergence results of the proposed algorithm.

Definition 2.2 Let η ∈ (0, +∞]. We denote by �η the set of all concave continuous func-
tions ϕ : [0,η) → [0, +∞). A function ϕ belonging to the set �η for η ∈ (0, +∞] is called a
desingularization function if it satisfies the following conditions:

(i) ϕ(0) = 0;
(ii) ϕ is continuously differentiable on (0,η) and continuous at 0;
(iii) ϕ′(s) > 0 for all s ∈ (0,η).

The KŁ property reveals the possibility of reparameterizing the values of the function to
avoid flatness around the critical points. To the class of KŁ functions there belong semi-
algebraic, real subanalytic, uniformly convex functions, and convex functions satisfying a
growth condition.

Definition 2.3 [5] (Kurdyka–Łojasiewicz property) Let f : Rn → R ∪ {+∞} be a proper
lower semicontinuous function. The function f is said to have the Kundyka–Łojasiewicz
(KŁ) property at a point v̂∈dom∂f :=

{
v∈Rn :∂f (v) �=∅}

if there exist η ∈ (0, +∞], a neigh-
borhood V of v̂, and a function ϕ ∈ fη such that

ϕ′(f (v) – f (v̂)) · dist(0, ∂f (v)) ≥ 1
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for all

v ∈ V ∩ {
v ∈ R

n : f (v̂) < f (v) < f (v̂) + η
}

.

If f satisfies the KŁ property at each point of dom∂f , then f is called a KŁ function. Next,
we recall the following result, which is called the uniformized KŁ property.

Lemma 2.4 (Uniformized KŁ property) Let � be a compact set, and let f : Rn →R∪{+∞}
be a proper lower semicontinuous function. Assume that f is constant on � and satisfies
the KŁ property at each point of �. Then there exist ε > 0, η > 0, and ϕ ∈ fη such that

ϕ′(f (v) – f (v̂)) · dist(0, ∂f (v)) ≥ 1

for allllny v̂ ∈ � and every element v in the intersection

{
v ∈R

n : dist(v,�) < ε
} ∩ {

v ∈R
d : f (v̂) < f (v) < f (v̂) + η

}
.

Definition 2.4 (Coercivity) A function ψ : Rn →R∪ {+∞} is called coercive if

lim‖x‖→+∞ψ(x) = +∞.

Definition 2.5 [5] (Subdifferentials) Let σ : Rn → (–∞, +∞] be a proper lower semicon-
tinuous function.

(i) For a given x ∈ domσ , the Fréchet subdifferential of σ at x, written ∂̂σ (x), is the set
of all vectors u ∈R

n that satisfy

lim inf
y�=x

σ (y) – σ (x) – 〈u, y – x〉
‖y – x‖ ≥ 0.

When x /∈ domσ , we set ∂̂σ (x) = ∅.
(ii) The limiting subdifferential, or simply the subdifferential, of σ at x ∈ R

n, writ-
ten ∂σ (x), is defined through the following closure process ∂σ (x) := {u ∈ R

n : ∃xk → x,
σ

(
xk) → σ (x) and uk ∈ ∂̂σ

(
xk) → u as k → ∞}.

3 Algorithm and its convergence
In this section, we propose a weak inertial proximal minimization algorithm for solving
the optimization problem (1.1) and study the convergence behavior of the algorithm.

Algorithm 3.1 Modified Inertial Proximal Minimization Algorithm (MIPMA)
Let β , τ > 0, 0 < θk < 1, and μ > 0. For the starting points (x0, y0, z0) ∈ R

m × R
q × R

p,
u0 ∈ R

p, (x–1, y–1) ∈ R
m ×R

q, the sequence
{(

xk , yk , zk , uk)}
k≥0 for any k ≥ 0 is generated

by

yk+1∈ arg min
y∈Rq

{
G(y)+

〈∇yH
(
xk , yk), y

〉
+

μ

2
∥
∥y – yk∥∥2 +θ

〈
y, yk –yk–1〉

}
, (3.1a)

zk+1∈arg min
z∈Rp

{
F(z)+

〈
uk , Axk –z

〉
+

β

2
∥
∥Axk –z

∥
∥2 +

μ

2
∥
∥z – zk∥∥2

}
, (3.1b)
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xk+1 :=xk –τ–1(∇xH
(
xk , yk+1)+AT uk +βAT (

Axk –zk+1)+θ
(
xk –xk–1)) , (3.1c)

uk+1 :=uk + β
(
Axk+1 – zk+1) . (3.1d)

Remark 3.1 Based on the algorithm in [8], inertial terms θ〈y, yk – yk–1〉 and θ
(
xk – xk–1)

are added into the y-subproblem and the x-subproblem, respectively, and a regular term
μ

2 ‖z – zk‖2 is admitted to z-subproblem.

The following assumptions are important for the convergence analysis.

Assumption A (i) The functions F , G, and H are bounded from below.
(ii) F is Lipschitz differentiable, i.e.,

∥∥∇F(z) – ∇F(z′)
∥∥2 ≤ l2

F
∥∥z – z′∥∥2.

(iii) The Function H is Lh Lipschitz differentiable, and ∇H is LH(x, y) Lipschitz continuous,
i.e.,

∥∥∇yH
(
x, y

)
– ∇yH

(
x′, y′)∥∥2 ≤ L2

H(x, y)
(∥∥x – x′∥∥2 +

∥∥y – y′∥∥2
)

.

For any fixed y ∈R
q, there exists �1(y) ≥ 0 such that

∥∥∇xH(x, y) – ∇xH
(
x′, y

)∥∥ ≤ �1(y)
∥∥x – x′∥∥ , ∀x, x′ ∈R

m,

and for any fixed x ∈R
m, there exists �2(x) ≥ 0 such that

∥∥∇yH(x, y) – ∇yH
(
x, y′)∥∥ ≤ �2(x)

∥∥y – y′∥∥ ∀y, y′ ∈R
q.

Furthermore, there exist �1,+ > 0, �2,+ > 0, �h such that

sup
y∈Rq

�1(y) ≤ �1,+, sup
x∈Rm

�2(x) ≤ �2,+, sup
(
x,y

)∈Rm×Rq
LH(x, y) ≤ �h.

(iv)We assume that

μ > �2,+ +2θ ,β>max

{
10l2

F + 20μ2

μ
, 3lF

}
, τ >10β‖A‖2 +

β‖A‖2 +�1,+

2
+θ .

Remark 3.2 Assumption (i) ensures that the sequence generated by Algorithm 3.1 is well
defined. It also has as the consequence that

L := inf
(x,y,z)∈Rm×Rq×Rp

{F(z) + G(y) + H(x, y)} > –∞.

Before the proof, let us present the variational characterization of scheme (3.1a)–(3.1d).
By the optimality conditions for (3.1a) and (3.1b) we have

0 ∈ ∂G(yk+1) + ∇yH(xk , yk) + μ(yk+1 – yk) + θ
(
yk – yk–1) , (3.2a)

0 = ∇F(zk+1) – uk – β(Axk – zk+1) + μ(zk+1 – zk). (3.2b)
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By substituting (3.1d) into (3.2b) and rearranging terms we obtain

uk+1 = ∇F(zk+1) + β(Axk+1 – Axk) + μ(zk+1 – zk). (3.3)

The convergence analysis is based on a descent inequality, which will play an important
role in our research.

Lemma 3.1 Suppose that Assumption A holds. Suppose Lβ

(
ωk) is defined as (1.6). Then

we have

Lβ

(
xk+1, yk+1, zk+1, uk+1) +

5μ2

β

∥∥zk+1 – zk∥∥2 + (5β‖A‖2 +
θ

2
)
∥∥xk+1 – xk∥∥2

+
θ

2
∥
∥yk+1 – yk∥∥2 + C1

∥
∥zk+1 – zk∥∥2 + C2

∥
∥xk+1 – xk∥∥2 + C3

∥
∥yk+1 – yk∥∥2

≤ Lβ

(
xk , yk , zk , uk) +

5μ2

β

∥∥zk – zk–1∥∥2 + (5β‖A‖2 +
θ

2
)
∥∥xk – xk–1∥∥2

+
θ

2
∥∥yk – yk–1∥∥2,

where

C1 =
μ

2
–

5l2
F + 10μ2

β
,

C2 = τ – 10β‖A‖2 –
β‖A‖2 + �1,+

2
– θ ,

C3 =
μ

2
–

�2,+

2
– θ .

Proof According to the descent lemma and (3.1c), we have

H
(
xk+1, yk+1)

≤H
(
xk , yk+1) +

〈∇xH
(
xk , yk+1) , xk+1 – xk 〉 +

�1
(
yk+1)

2
∥∥xk+1 – xk∥∥2

≤H
(
xk , yk+1) +

�1,+

2
∥∥xk+1 – xk∥∥2

+
〈
–τ

(
xk+1 – xk)–AT uk –βAT (

Axk –zk+1)–θ(xk – xk–1), xk+1 –xk 〉

=H
(
xk , yk+1)–

〈
uk , Axk+1 – Axk 〉 – β

〈
Axk – zk+1, Axk+1 – Axk 〉

– θ
〈
xk – xk–1, xk+1 – xk 〉 +

(
�1,+

2
– τ

)∥
∥xk+1 – xk∥∥2

≤H
(
xk , yk+1)–

〈
uk , Axk+1 –Axk 〉+

β

2
∥
∥Axk –zk+1∥∥2 –

β

2
∥
∥Axk+1 –zk+1∥∥2

+
(

β ‖A‖2 + �1,+

2
– τ +

θ

2

)∥∥xk+1 – xk∥∥2 +
θ

2
∥∥xk – xk–1∥∥2 ,

which implies that

H
(
xk+1, yk+1) +

〈
uk , Axk+1 – zk+1〉 +

β

2
∥∥Axk+1 – zk+1∥∥2
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≤ H
(
xk , yk+1) +

〈
uk , Axk – zk+1〉 +

β

2
∥∥Axk – zk+1∥∥2 +

θ

2
∥∥xk – xk–1∥∥2

+
(

β ‖A‖2 + �1,+

2
– τ +

θ

2

)∥
∥xk+1 – xk∥∥2.

By the definition of Lβ it can be rewritten as

Lβ

(
xk+1, yk+1, zk+1, uk) ≤Lβ

(
xk , yk+1, zk+1, uk) +

θ

2
∥
∥xk – xk–1∥∥2

+
(

β ‖A‖2 + �1,+

2
– τ +

θ

2

)∥
∥xk+1 – xk∥∥2. (3.4a)

According to the descent lemma, we easily get

H
(
xk , yk+1)≤H

(
xk , yk)+

〈∇yH
(
xk , yk) , yk+1 –yk 〉+

�2
(
xk)

2
∥∥yk+1 –yk∥∥2

≤ H
(
xk , yk) +

〈∇yH
(
xk , yk) , yk+1 – yk 〉 +

�2,+

2
∥∥yk+1 – yk∥∥2. (3.5)

From (3.1a) and (3.1b) we obtain

G
(
yk+1) +

〈∇yH
(
xk , yk) , yk+1 – yk 〉

+
μ

2
∥∥yk+1 – yk∥∥2 + θ

〈
yk+1 – yk , yk – yk–1〉 ≤ G

(
yk)

and

F(zk+1) +
〈
uk , Axk – zk+1〉 +

β

2
∥∥Axk – zk+1∥∥2 +

μ

2
∥∥zk+1 – zk∥∥2

≤ F(zk) +
〈
uk , Axk – zk 〉 +

β

2
∥
∥Axk – zk∥∥2,

respectively. Adding the above three inequalities yields

F(zk+1) + G
(
yk+1) + H

(
xk , yk+1) +

〈
uk , Axk – zk+1〉

+
β

2
∥∥Axk – zk+1∥∥2 +

(
μ

2
–

�2,+

2

)∥∥yk+1 – yk∥∥2 +
μ

2
∥∥zk+1 – zk∥∥2

≤ F(zk) + G
(
yk) + H

(
xk , yk) +

〈
uk , Axk – zk 〉 +

β

2
∥∥Axk – zk∥∥2

+ θ
〈
yk – yk+1, yk – yk–1〉 .

By the definition of Lβ we have

Lβ

(
xk , yk+1, zk+1, uk) +

(
μ

2
–

�2,+

2

)∥∥yk+1 – yk∥∥2 +
μ

2
∥∥zk+1 – zk∥∥2

≤ Lβ

(
xk , yk , zk , uk) + θ

〈
yk – yk+1, yk – yk–1〉

≤ Lβ

(
xk , yk , zk , uk) + θ

∥∥yk – yk+1∥∥∥∥yk – yk–1∥∥

≤ Lβ

(
xk , yk , zk , uk) +

θ

2
∥∥yk – yk+1∥∥2 +

θ

2
∥∥yk – yk–1∥∥2. (3.4b)
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Then we get

Lβ

(
xk , yk+1, zk+1, uk)+

(
μ

2
–

�2,+

2
–

θ

2

)∥∥yk+1 –yk∥∥2 +
μ

2
∥∥zk+1 – zk∥∥2

≤ Lβ

(
xk , yk , zk , uk)+

θ

2
∥∥yk –yk–1∥∥2. (3.6)

Combining the definition of Lβ and (3.1d), we have

Lβ

(
xk+1, yk+1, zk+1, uk+1) – Lβ

(
xk+1, yk+1, zk+1, uk)

=
〈
uk+1, Axk+1 – zk+1〉 –

〈
uk , Axk+1 – zk+1〉

=
〈
uk+1 – uk , Axk+1 – zk+1〉

=
1
β

∥∥uk+1 – uk∥∥2 .

From (3.3) it follows that

∥
∥uk+1 – uk∥∥2

=
∥∥∇F(zk+1) – ∇F(zk) + β(Axk+1 – Axk) – β(Axk – Axk–1)

+μ(zk+1 – zk) – μ(zk – zk–1)
∥∥2

≤5l2
F
∥
∥zk+1 – zk∥∥2 + 5β2‖A‖2∥∥xk+1 – xk∥∥2 + 5β2‖A‖2∥∥xk – xk–1∥∥2

+ 5μ2∥∥zk+1 – zk∥∥2 + 5μ2∥∥zk – zk–1∥∥2

=(5l2
F + 5μ2)

∥∥zk+1 – zk∥∥2 + 5μ2∥∥zk – zk–1∥∥2

+ 5β2‖A‖2∥∥xk+1 – xk∥∥2 + 5β2‖A‖2∥∥xk – xk–1∥∥2. (3.7)

Then we have

Lβ

(
xk+1, yk+1, zk+1, uk+1) – Lβ

(
xk+1, yk+1, zk+1, uk)

=
1
β

∥
∥uk+1 – uk∥∥2

≤ 5l2
F + 5μ2

β

∥∥zk+1 – zk∥∥2 +
5μ2

β

∥∥zk – zk–1∥∥2

+ 5β‖A‖2∥∥xk+1 – xk∥∥2 + 5β‖A‖2∥∥xk – xk–1∥∥2. (3.4c)

Hence, combining (3.4a) and (3.4b) with (3.4c), we obtain

Lβ

(
xk+1, yk+1, zk+1, uk+1)

≤ Lβ

(
xk+1, yk+1, zk+1, uk) +

5l2
F + 5μ2

β

∥
∥zk+1 – zk∥∥2 +

5μ2

β

∥
∥zk – zk–1∥∥2

+ 5β‖A‖2∥∥xk+1 – xk∥∥2 + 5β‖A‖2∥∥xk – xk–1∥∥2

≤ Lβ

(
xk , yk+1, zk+1, uk) +

5l2
F + 5μ2

β

∥
∥zk+1 – zk∥∥2 +

5μ2

β

∥
∥zk – zk–1∥∥2
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+ (5β‖A‖2 +
β‖A‖2 +�1,+

2
– τ +

θ

2
)
∥
∥xk+1 –xk∥∥2 +(5β‖A‖2 +

θ

2
)
∥
∥xk –xk–1∥∥2

≤ Lβ

(
xk , yk , zk , uk) + (

5l2
F + 5μ2

β
–

μ

2
)
∥∥zk+1 – zk∥∥2 +

5μ2

β

∥∥zk – zk–1∥∥2

+ (5β‖A‖2 +
β‖A‖2 + �1,+

2
– τ +

θ

2
)
∥∥xk+1 – xk∥∥2

+ (5β‖A‖2 +
θ

2
)
∥∥xk –xk–1∥∥2 +

θ

2
∥∥yk –yk–1∥∥2 +

(
θ

2
+

�2,+

2
–

μ

2

)∥∥yk+1 –yk∥∥2.

which can be rewritten as

Lβ

(
xk+1, yk+1, zk+1, uk+1) + (

μ

2
–

5l2
F + 5μ2

β
)
∥∥zk+1 – zk∥∥2

+(τ –5β‖A‖2 –
β‖A‖2 + �1,+

2
–

θ

2
)
∥∥xk+1 – xk∥∥2 + (

μ

2
–

θ

2
–

�2,+

2
)
∥∥yk+1 –yk∥∥2

≤Lβ

(
xk ,yk ,zk ,uk)+

5μ2

β

∥∥zk –zk–1∥∥2 +(5β‖A‖2 +
θ

2
)
∥∥xk –xk–1∥∥2

+
θ

2
∥
∥yk –yk–1∥∥2.

The proof is completed. �

Remark 3.3 Obviously, from Assumption A(iv) we have C1 > 0, C2 > 0, and C3 > 0, since

μ > �2,+ + 2θ ,β >
10l2

F + 20μ2

μ
, τ > 10β‖A‖2 +

β‖A‖2 + �1,+

2
+ θ .

Based on Lemma 3.1, we define the following regularized augmented Lagrangian func-
tion:

L̂β

(
x, y, z, u, x′, y′, z′) = Lβ

(
x, y, z, u

)
+

5μ2

β

∥
∥z – z′∥∥2

+(5β‖A‖2 +
θ

2
)
∥∥x – x′∥∥2 +

θ

2
∥∥y – y′∥∥2. (3.8)

Let ω̂ =
(
x, y, z, u, x′, y′, z′), ω̂k =

(
xk , yk , zk , uk , xk–1, yk–1, zk–1), and ωk =

(
xk ,yk ,zk ,uk). Then

the following lemma implies that the sequence
{

L̂β

(
ω̂k)

}

k≥1
is decreasing. It is important

for our convergence analysis.

Lemma 3.2 (Descent property) Suppose that Assumption A holds. Let L̂β

(
ω̂k)be defined as

in (3.8). Then there exist C1, C2, C3 > 0 such that

L̂β

(
ω̂k+1)+C1

∥
∥xk+1 –xk∥∥2 +C2

∥
∥yk+1 –yk∥∥2 +C3

∥
∥zk+1 –zk∥∥2≤L̂β

(
ω̂k) . (3.9)

Proof The result follows directly from Lemma 3.1 and Remark 3.1. �

Lemma 3.3 Let

β > 3lF .
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Then there exists γ such that

1
γ

–
lF

2γ 2 =
3

2β
. (3.10)

Proof We notice that the reduced discriminant of the quadratic equations in (3.10) (in γ )
is

�γ := 4 –
12
β

lF .

Since

β > 3lF ,

it follows that �γ > 0, and hence the equation has a nonzero real solution. �

Theorem 3.1 (Convergence) Suppose that Assumption A holds. If
{
ω̂k}

k≥0 is a sequence
generated by Algorithm 3.1, then the following statements are true:

(i) The sequence
{

L̂β(ω̂k)
}

k≥1
is bounded from below and convergent;

(ii)

xk+1 –xk →0, yk+1 –yk →0, zk+1 –zk →0 and uk+1 –uk →0 as k → +∞;

(iii) The sequence
{

Lβ(ωk)
}

k≥1 is convergent.

Proof First, we show that L is a lower bound of
{

L̂β

(
ω̂k)

}

k≥2
. Suppose on the contrary

that there exists k0 ≥ 2 such that L̂β

(
ω̂k0

)
– L ≤ 0. Since

{
L̂β

(
ω̂k)

}

k≥1
is a nonincreasing

sequence, we have that for all N ≥ k0,

N∑

k=1

(
L̂β

(
ω̂k) – L

)
≤

ko–1∑

k=1

(
L̂β

(
ω̂k) – L

)
+ (N – k0 + 1)

(
L̂β

(
ω̂k0

)
– L

)
,

which implies that

lim
N→+∞

N∑

k=1

(
L̂β

(
ω̂k) – L

)
= –∞.

On the other hand, for k ≥ 1,

L̂β

(
ω̂k) – L ≥ F(zk) + G(yk) + H(xk , yk) +

〈
uk , Axk – zk 〉 – L

≥ 〈
uk , Axk – zk 〉

=
1
β

〈
uk , uk – uk–1〉

=
1

2β

∥∥uk∥∥2 +
1

2β

∥∥uk – uk–1∥∥2 –
1

2β

∥∥uk–1∥∥2 . (3.11)
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Therefore, for all N ≥ 1, we have

N∑

k=1

(
L̂β

(
ω̂k)–L

)≥ 1
2β

N∑

k=1

∥∥uk –uk–1∥∥2 +
1

2β

∥∥uN∥∥2 –
1

2β

∥∥u0∥∥2 ≥–
1

2β

∥∥u0∥∥2

which leads to a contradiction. From Lemma 3.2 we have that

L̂β

(
ω̂k+1)+C1

∥
∥xk+1 – xk∥∥2 + C2

∥
∥yk+1 – yk∥∥2 + C3

∥
∥zk+1 – zk∥∥2 ≤ L̂β

(
ω̂k) .

As
{

L̂β (ω̂k)
}

k≥1
is bounded from below, we obtain that

{
L̂β(ω̂k)

}

k≥1
is convergent by

Lemma 2.2 and also that

xk+1 – xk → 0, yk+1 – yk → 0, zk+1 – zk → 0 as k → ∞.

Then, according to (3.7), it follows that uk+1 – uk → 0 as k → ∞. By the definition of{
L̂β(ω̂k)

}

k≥1
we obtain that

{
Lβ

(
ωk)} is convergent. �

Remark 3.4 (i) Thanks to (ii) of Theorem 3.1, it is easy to see that
{

xk+1 –xk},
{

yk+1 – yk},
{

zk+1 –zk}, and
{

uk+1 –uk} are bounded. Define

S∗ := sup
k≥0

{∥∥xk+1 – xk∥∥ ,
∥
∥yk+1 – yk∥∥ ,

∥
∥zk+1 – zk∥∥ ,

∥
∥uk+1 – uk∥∥}

< +∞.

Theorem 3.2 (The boundedness of sequences) Suppose that Assumption A holds. Let
{(

xk , yk , zk , uk)}
k≥0 be a sequence generated by Algorithm 3.1, and suppose that there ex-

ists γ ∈ R\ {0} such that (3.10) holds. Suppose that the function H is coercive. Then every
sequence

{(
xk , yk , zk , uk)}

k≥0 generated by Algorithm 3.1 is bounded.

Proof Let k ≥ 1 be fixed. According to Lemma 3.2, we have that

L̂β

(
ω̂1) ≥ · · · ≥ L̂β

(
ω̂k) ≥L̂β

(
ω̂k+1)

≥F
(
zk+1)+G

(
yk+1)+H

(
xk+1, yk+1)–

1
2β

∥∥uk+1∥∥2

+
β

2

∥∥
∥∥Axk+1 – zk+1 +

1
β

uk+1
∥∥
∥∥

2

. (3.12)

From (3.3) we have

∥∥uk+1∥∥2 =
∥∥∇F(zk+1) + β(Axk+1 – Axk) + μ(zk+1 – zk)

∥∥2

≤ 3
∥∥∇F(zk+1)

∥∥2 + 3β2‖A‖2∥∥xk+1 – xk∥∥2 + 3μ2∥∥zk+1 – zk∥∥2

≤ 3
∥
∥∇F(zk+1)

∥
∥2 + (3β2‖A‖2 + 3μ2)S2

∗.

Multiplying this relation by 1
2β

and combining it with (3.12), we get

L̂β

(
ω̂1) ≥ F

(
zk+1) + G

(
yk+1) + H

(
xk+1, yk+1)
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–
3β2‖A‖2 +3μ2

2β
S2

∗–
3

2β

∥∥∇F(zk+1)
∥∥2 +

β

2

∥
∥∥
∥Axk+1 –zk+1 +

1
β

uk+1
∥
∥∥
∥

2

. (3.13)

We will prove the boundedness of
{(

xk , yk , zk , uk)}
k≥0. According to (3.13) and Proposi-

tion 2.2, we have that for all k ≥ 1,

H(xk+1, yk+1) +
β

2

∥∥
∥∥Axk+1 – zk+1 +

1
β

uk+1
∥∥
∥∥

2

≤L̂β(ω̂1) +
3β2‖A‖2 + 3μ2

2β
S2

∗ – inf{F(z) –
3

2β
‖∇F(z)‖2} – inf{G(y)}

=̂Lβ(ω̂1)+
3β2‖A‖2 +3μ2

2β
S2

∗ – inf{F(z)–(
1
γ

–
lF

2γ 2 )‖∇F(z)‖2}–inf{G(y)}

≤L̂β(ω̂1) +
3β2‖A‖2 + 3μ2

2β
S2

∗ – inf{F(z)} – inf{G(y)}. (3.14)

Since H is coercive and bounded from below, we have that the sequences

{(
xk , yk)}

k≥0 and
{

Axk – zk +
1
β

uk
}

k≥0

are bounded. As, according to (3.1d) and Remark 3.2,
{

Axk – zk}
k≥0 is bounded, it follows

that
{

uk}
k≥0 and

{
zk}

k≥0 are also bounded. �

The next lemma provides upper estimates for the square of the limiting subgradients of
the regularization of the augmented Lagrangian function L̂β(ω̂k).

Lemma 3.4 Suppose that Assumption A holds. Let
{(

xk , yk , zk , uk)}
k≥0 be the sequence gen-

erated by Algorithm 3.1, which is assumed to be bounded. We denote νk =
(
xk , yk , zk). Then

there exists ζ > 0 such that

dist
(

0, ∂L̂β

(
ω̂k+1)

)
≤ ζ

(∥∥νk+1 – νk∥∥ +
∥∥νk – νk–1∥∥)

.

Proof Let k ≥ 1 be fixed. Applying the calculus rules of the limiting subdifferential, we
get

∂xL̂β

(
ω̂k+1) =∇xH

(
xk+1, yk+1) + AT uk+1 + βAT (

Axk+1 – zk+1)

+ (10β‖A‖2 + θ )
(
xk+1 – xk) , (3.15a)

∂yL̂β

(
ω̂k+1) =∂G

(
yk+1) + ∇yH

(
xk+1, yk+1) + θ

(
yk+1 – yk) , (3.15b)

∂zL̂β

(
ω̂k+1) =∇F

(
zk+1) – uk+1 – β

(
Axk+1 – zk+1)

+
10μ2

β

(
zk+1 – zk) , (3.15c)

∂uL̂β

(
ω̂k+1) =Axk+1 – zk+1 =

1
β

(
uk+1 – uk) , (3.15d)

∂x′ L̂β

(
ω̂k+1) = – (10β‖A‖2 + θ )

(
xk+1 – xk) , (3.15e)

∂y′ L̂β

(
ω̂k+1) = – θ

(
yk+1 – yk) , (3.15f)



Xue and Ma Journal of Inequalities and Applications        (2024) 2024:124 Page 15 of 23

∂z′ L̂β

(
ω̂k+1) = –

10μ2

β

(
zk+1 – zk) . (3.15g)

After combining (3.15a) with (3.1c), we have

∂xL̂β(ω̂k+1) = ∇xH(xk+1, yk+1) – ∇xH(xk , yk+1) + AT uk+1 – AT uk

+ βAT A(xk+1 – xk) + (10β‖A‖2 + θ – τ )(xk+1 – xk) – θ (xk – xk–1).

Substituting (3.2a) and (3.2b) into (3.15b) and (3.15c), respectively, leads to

∇yH(xk+1, yk+1)–∇yH(xk ,yk)+(θ –μ)(yk+1 –yk)+θ(yk+1 –yk) ∈ ∂yL̂β(ω̂k+1)

–(uk+1 – uk) – βA(xk+1 – xk) + (
10μ2

β
– μ)(zk+1 – zk) ∈ ∂zL̂β(ω̂k+1)

Let Dk =
(

dk+1
x , dk+1

y , dk+1
z , dk+1

u , dk+1
x′ , dk+1

y′ , dk+1
z′

)
, where

dk+1
x =∇xH(xk+1,yk+1)–∇xH(xk , yk+1)+AT uk+1 –AT uk

+βAT A(xk+1 –xk) + (10β‖A‖2 + θ – τ )(xk+1 – xk) – θ (xk – xk–1),

dk+1
y = ∇yH(xk+1, yk+1)–∇yH(xk , yk)+(θ – μ)(yk+1 –yk)+θ (yk –yk–1),

dk+1
z = –βA(xk+1 – xk) + (

10μ2

β
– μ)(zk+1 – zk),

dk+1
u =

1
β

(
uk+1 – uk) ,

dk+1
x′ = –(10β‖A‖2 + θ )

(
xk+1 – xk) ,

dk+1
y′ = –θ

(
yk+1 – yk) ,

dk+1
z′ = –

10μ2

β

(
zk+1 – zk) .

Then it follows that Dk+1∈∂L̂β

(
ω̂k+1)and

(
dk+1

x ,dk+1
y ,dk+1

z ,dk+1
u

)
∈∂Lβ

(
ωk+1).

Thus dist2
(

0, ∂L̂β

(
ωk+1)

)
≤ ∥

∥Dk+1
∥
∥2. By Assumption A(iii) we have

∥
∥∇yH

(
xk+1, yk+1) – ∇yH

(
xk , yk)∥∥2 ≤ �2

h

(∥
∥xk+1 – xk∥∥2 +

∥
∥yk+1 – yk∥∥2

)
.

Then there exists ζ1 > 0 such that

dist2
(

0, ∂L̂β

(
ω̂k+1)

)
≤ ∥∥Dk+1∥∥2

≤ ζ 2
1

(∥∥xk+1 – xk∥∥2 +
∥∥yk+1 – yk∥∥2 +

∥∥zk+1 – zk∥∥2

+
∥
∥uk+1 – uk∥∥2 +

∥
∥yk – yk–1∥∥2 +

∥
∥xk – xk–1∥∥2

)
.

Thus by (3.7) there exists ζ2 > 0 such that

dist2
(

0, ∂L̂β

(
ω̂k+1)

)
≤ ζ 2

(∥∥xk+1 – xk∥∥2 +
∥∥yk+1 – yk∥∥2 +

∥∥zk+1 – zk∥∥2
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+
∥∥xk – xk–1∥∥2 +

∥∥yk – yk–1∥∥2 +
∥∥zk – zk–1∥∥2

)
. (3.16)

Then by νk =
(
xk , yk , zk) it follows that

∥∥νk – νk–1∥∥2 =
∥∥xk – xk–1∥∥2 +

∥∥yk – yk–1∥∥2 +
∥∥zk – zk–1∥∥2.

Combining with (3.16) gives

dist
(

0, ∂L̂β

(
ω̂k+1)

)
≤

√

ζ 2
(∥∥νk+1 – νk

∥∥2 +
∥∥νk – νk–1

∥∥2
)

≤ ζ
(∥∥νk+1 – νk∥∥ +

∥∥νk – νk–1∥∥)
.

The proof is completed. �

Now we give the convergence analysis of the sequence in a general framework by prov-
ing that any cluster point of

{(
xk , yk , zk , uk)}

k≥0 is a KKT point of the optimization problem
(1.1). Let � and �̂ denote the cluster point sets of the sequences

{
ωk} and

{
ω̂k}, respec-

tively.

Theorem 3.3 (Global convergence) Suppose that Assumption A holds. Suppose that the
sequence generated by Algorithm 3.1 is bounded. Then we have that

(i) �̂ is nonempty, compact, and connected;
(ii) dist

(
L̂β

(
ω̂k) , �̂

)
→ 0 as k → ∞;

(iii) If
{(

xkj, ykj, zkj, ukj
)}

j≥0 is a subsequence of
{(

xk, yk, zk, uk)}
k≥0 that converges to (x∗, y∗,

z∗, u∗) as k → +∞, then

lim
k→+∞

L̂β

(
ω̂kj

)
= Lβ

(
x∗, y∗, z∗, u∗) ; (3.17)

(iv) �̂ ⊂ critL̂β(ω̂);
(v) The function L̂β takes on �̂ the value

L̂∗
β = lim

k→+∞
L̂β

(
ω̂k) = lim

k→+∞
{

F
(
zk) + G

(
yk) + H

(
xk , yk)} .

Proof By the definition of � and �̂, (i) and (ii) are trivial.
(iii) Let

{
ωkj

}
be a subsequence of

{
ωk} such that ωkj → ω∗, j → ∞. Since F and G are

lower semicontinuous, so is Lβ , which follows from

lim inf
j→∞ Lβ

(
ωkj

) ≥ Lβ

(
ω∗) . (3.18)

On the other hand, the definition of zk+1 shows that

Lβ

(
xk , yk , zk+1, uk) +

μ

2
∥
∥zk+1 – zk∥∥2 ≤ Lβ

(
xk , yk , z∗, uk) +

μ

2
∥
∥z∗ – zk∥∥2,

from which we get

Lβ

(
xk , yk , zk+1, uk) +

μ

2
∥∥zk+1 – zk∥∥2 –

μ

2
∥∥z∗ – zk∥∥2 ≤ Lβ

(
xk , yk , z∗, uk) .
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Replacing xk , yk , zk , zk+1, uk by xkj , ykj , zkj , zkj+1, ukj , we get

Lβ

(
xkj ,ykj ,zkj+1,ukj

)
+

μ

2
∥∥zkj+1 –zkj

∥∥2 –
μ

2
∥∥z∗–zkj

∥∥2≤Lβ

(
xkj ,ykj ,z∗,ukj

)
.

Combining this with Theorem 3.1(ii) gives

∥∥ωk+1 – ωk∥∥ → 0 as k → ∞,

and then we have

∥∥ωkj+1 – ωkj
∥∥ → 0 and

∥∥ωkj – ω∗∥∥ → 0 as j → ∞,

which implies that

lim sup
j→∞

Lβ

(
xkj , ykj , zkj+1, ukj

) ≤ Lβ

(
ω∗) .

Since zk+1 – zk → 0 as k → ∞, it is easy to get

lim
j→∞ Lβ

(
xkj , ykj , zkj+1, ukj

)
= lim

j→∞ Lβ

(
ωkj

)
.

Then we have

lim sup
j→∞

Lβ

(
ωkj

) ≤ Lβ

(
ω∗) . (3.19)

Therefore from (3.18) and (3.19) it follows that

lim
j→+∞ Lβ

(
ωkj

)
= Lβ

(
ω∗) .

By the definition of L̂β

(
ω̂k), since

∥
∥ωk – ωk–1

∥
∥ → 0 as k → ∞, the desired statement fol-

lows.
(iv) For the sequence Dk defined in Lemma 3.4, for j ≥ 1, we have Dkj ∈ ∂L̂β

(
ω̂kj

)
. Then

Dkj → 0 as j → ∞,

and thus

ω̂kj → ω̂∗ and L̂β

(
ω̂kj

) → L̂β

(
ω̂∗) as j → ∞.

The closedness criterion of the limiting subdifferential guarantees that 0 ∈ ∂L̂β

(
ω̂kj

)
or, in

other words, that ω̂∗ ∈ crit(L̂β).
(v) Due to Theorem 3.1(ii) and the boundedness of {un}n≥0, the sequences

{
L̂β(ω̂k)

}

k≥0
and

{
F

(
zk) + G

(
yk) + H

(
xk , yk)}

k≥0 have the same limit:

L̂∗
β = lim

k→+∞
L̂β

(
ω̂k) = lim

k→+∞
{

F
(
zk) + G

(
yk) + H

(
xk , yk)} .

The conclusion now follows by statements (iii) and (iv). �
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Next, we will prove global convergence for
{(

xk , yk , zk , uk)}
k≥0 generated by Algo-

rithm 3.1 in the context of the Kurdyka–Łojasiewicz property. Suppose that L̂β (ω̂k) is a
KŁ function with desingularization function

ϕ(s) := cs1–θ , θ ∈ [0, 1), c > 0.

Theorem 3.4 (Strong convergence) Let νk =
(
xk , yk , zk). Assume that L̂β (ω̂k) is a KŁ func-

tion and Assumption A is satisfied. Then we have
(i)

∑∞
k=1

∥
∥ωk – ωk–1

∥
∥ < ∞,

(ii)
{
ωk} converges to a critical point of Lβ .

Proof From the proof of Theorem 3.3 it follows that limk→+∞ L̂β

(
ω̂k) = L̂β

(
ω̂∗). We con-

sider two cases.
Case 1. There exists an integer k0 > 0 such that L̂β

(
ω̂k0

)
= L̂β

(
ω̂∗). Then since

{
L̂β

(
ω̂k)

}

is decreasing, we know that for all k > k0,

C1
∥∥xk+1 –xk∥∥2 +C2

∥∥yk+1 –yk∥∥2 +C3
∥∥zk+1 –zk∥∥2

≤L̂β

(
ω̂k)–L̂β

(
ω̂k+1)≤L̂β

(
ω̂∗)–L̂β

(
ω̂∗) = 0,

which implies that xk+1 = xk , yk+1 = yk , zk+1 = zk for all k > k0. Then from (3.7) and (3.8) we
have uk+1 = uk for any k > k0. Thus, for all k > k0 + 1, we have ωk+1 = ωk , and the desired
results follow.

Case 2. L̂β

(
ω̂k) > L̂β

(
ω̂∗) for all k. Then since dist

(
ω̂k ,�

) → 0, we have that for arbitrary
ε1 > 0, there exists k1 > 0 such that dist

(
ω̂k ,�

)
< ε1 for all k > k1. Since limkj→+∞ L̂β

(
ω̂kj

)
=

L̂β

(
ω̂∗), we have that for arbitrary ε2 > 0, there exists k2 > 0 such that L̂β

(
ω̂k) < L̂β

(
ω̂∗)+ε2

for all k > k2. Therefore, for any ε1, ε2 > 0, when k > k̃ = max {k1, k2}, we have dist
(
ω̂k ,�

)
<

ε1, L̂β

(
ω̂∗) < L̂β

(
ω̂k) < L̂β

(
ω̂∗) + ε2. Since

{
ωk} is bounded, by Theorem 3.3 we know that

�̂ is nonempty compact set and L̂β is constant on �̂. Applying Lemma 2.4, we deduce that
for all k > k̃,

ϕ′
(

L̂β

(
ω̂k) – L̂β

(
ω̂∗)

)
dist

(
0, ∂L̂β

(
ω̂k)

)
≥ 1.

Due to ϕ′
(

L̂β

(
ω̂k) – L̂β

(
ω̂∗)

)
> 0, we obtain

1

ϕ′
(

L̂β

(
ω̂k

)
– L̂β

(
ω̂∗)

) ≤ dist
(

0, ∂L̂β

(
ω̂k)

)
.

Using the concavity of ϕ, we get that

ϕ
(

L̂β

(
ω̂k) – L̂β

(
ω̂∗)

)
– ϕ

(
L̂β

(
ω̂k+1) – L̂β

(
ω̂∗)

)

≥ ϕ′
(

L̂β

(
ω̂k) – L̂β

(
ω̂∗)

)(
L̂β

(
ω̂k) – L̂β

(
ω̂k+1)

)
.

Combining this with the KŁ property gives

L̂β

(
ω̂k) – L̂β

(
ω̂k+1) ≤

ϕ
(

L̂β

(
ω̂k) – L̂β

(
ω̂∗)

)
– ϕ

(
L̂β

(
ω̂k+1) – L̂β

(
ω̂∗)

)

ϕ′
(

L̂β

(
ω̂k

)
– L̂β

(
ω̂∗)

)
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≤ dist
(

0, ∂L̂β

(
ω̂k)

)(
ϕ

(
L̂β

(
ω̂k) – L̂β

(
ω̂∗)

)
– ϕ

(
L̂β

(
ω̂k+1) – L̂β

(
ω̂∗)

))
. (3.20)

By Lemma 3.2 there exists η = min(C1, C2, C3) such that

L̂β

(
ω̂k) – L̂β

(
ω̂k+1) ≥ C1

∥
∥xk+1 – xk∥∥2 +C2

∥
∥yk+1 –yk∥∥2 +C2

∥
∥zk+1 –zk∥∥2

≥ η
∥∥νk+1 –νk∥∥2. (3.21)

By Lemma 3.4 we get

dist
(

0, ∂L̂β

(
ω̂k)

)
≤ ζ

(∥∥νk – νk–1∥∥ +
∥
∥νk–1 – νk–2∥∥)

. (3.22)

Putting (3.21) and (3.22) into (3.20), we obtain

η
∥
∥νk+1 – νk∥∥2 ≤ ζ

(∥∥νk – νk–1∥∥ +
∥
∥νk–1 – νk–2∥∥)

·
(
ϕ

(
L̂β

(
ω̂k) – L̂β

(
ω̂∗)

)
– ϕ

(
L̂β

(
ω̂k+1) – L̂β

(
ω̂∗)

))
. (3.23)

Set bk = ζ

η

(
ϕ

(
L̂β

(
ω̂k) – L̂β

(
ω̂∗)

)
– ϕ

(
L̂β

(
ω̂k+1) – L̂β

(
ω̂∗)

))
≥ 0 and ak =

∥
∥νk – νk–1

∥
∥ ≥

0. Then (3.23) can be equivalently rewritten as

a2
k+1 ≤ bk (ak + ak–1) . (3.24)

Since ϕ ≥ 0, we know that

∞∑

k=1

bk ≤ ζ

η
ϕ

(
L̂β

(
ω̂1) – L̂β

(
ω̂∗)

)
,

and hence
∞∑

k=1
bk < ∞. Note that from (3.24) we have

ak+1 ≤ √
bk (ak + ak–1) ≤ 1

4
(ak + ak–1) + bk .

By Lemma 2.3 this gives that
∑∞

k=1 ak < ∞. Therefore

∞∑

k=1

∥∥xk – xk–1∥∥ < ∞,
∞∑

k=1

∥∥yk – yk–1∥∥ < ∞,
∞∑

k=1

∥∥zk – zk–1∥∥ < ∞.

Combining this with (3.7), we have

∞∑

k=1

∥∥uk – uk–1∥∥ < ∞.

This indicates that
{
ωk} is a Cauchy sequence. Therefore

{
ωk} is convergent. Let ωk → ω∗,

k → ∞. According to Theorem 3.3(iv), it is clear that ω∗ is a critical point of Lβ(ω∗). The
proof is completed. �
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4 Numerical experiments
In this section, we present a numerical example to compare the performance of our algo-
rithm with PMA in [8] and BIPCA in [34]. We consider the following optimization prob-
lem:

min
x,y

1
2

‖Ax – b‖2 + c1
∥∥y

∥∥
1
2
1
2

+
c2

2
∥∥Bx – y

∥∥2 ,

which can be rewritten as

min
x,y,z

1
2

‖z – b‖2 + c1
∥∥y

∥∥
1
2
1
2

+
c2

2
∥∥Bx – y

∥∥2

s.t. Ax = z

We select A and B as random matrices with A = (aij)p×m and B = (bij)q×m, where aij, bij ∈
(0, 1). Let m, p, q be three positive integers with m = q. We take the initial points of Algo-
rithm 3.1, x0 = zeros(m, 1), y0 = zeros(q, 1), z0 = zeros(p, 1), u0 = zeros(p, 1), x–1 = rand(n, 1),
and y–1 = rand(n, 1). The parameters are set as μ = 4, β = 182.5, τ = 1.92e + 7, and
c1 = c2 = 1. The initial points of PMA in [8] are also set as x0, y0, z0, u0, and the parameter
σ = 0.01. The initial points of BIPCA in [34] are set as x0 = x–1 and y0 = y–1, and the pa-
rameter σ = 0.01, Define ‖Ax – z‖2 as the error, and select ‖Ax – z‖2 < 10–4 as the stopping
criterion. The numerical experiment is carried out in 64-bit MATLAB R2019b on 64-bit
PC with Intel(R) core(TM)i7-6700HQ CPU@2.6 GHz anf 32 GB of RAM.

The numerical results are shown in Tables 1 and 2. To make it explicit, we also measure
the performances of the algorithm by plotting the curve of error. The corresponding re-
sults are presented in Figs. 1 and 2. In the tables, k denotes the number of iterations, and
s denotes the computing time.

In view of Table 1 and Fig. 1, we find that the inertial factor has a positive effect on the
convergence of Algorithm 3.1. The larger the value of the inertial parameter, the faster the
convergence speed. In addition, by observing Table 2 (where θ1k and θ2k are the two inertial

Table 1 Numerical results of two algorithms under various inertia values and dimensions

m = q = 100; p = 200 m = q = 100; p = 300 m = q = 100; p = 400

Algorithm 3.1
θk = 0.1

k = 10; s = 0.3281 k = 12; s = 0.3750 k = 14; s = 0.3238

Algorithm 3.1
θk = 0.5

k = 9; s = 0.3438 k = 11; s = 0.3594 k = 12; s = 0.3450

Algorithm 3.1
θk = 0.8

k = 8; s = 0.3281 k = 10; s = 0.2969 k = 11; s = 0.3594

PMA k = 305; s = 0.7813 k = 308; s = 1.0469 k = 310; s = 2.0313

Table 2 Numerical results for Example 5.1 with various θ

θ Algorithms 3.1 BIPCA PMA

k s k s k s

θk = 0.9 for Algorithm 3.1
θ1k = 0.05, θ2k = 0.03 for BIPCA

85 3.9426 143 4.2761 162 4.3871

θk = 0.8 for Algorithm 3.1
θ1k = 0.04, θ2k = 0.02 for BIPCA

106 4.5488 k188 4.7906 198 5.2917

θk = 0.7 for Algorithm 3.1
θ1k = 0.03, θ2k = 0.01 for BIPCA

142 4.7215 234 5.8531 261 6.7946
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Figure 1 The performance of our algorithm withm = q = 100 and p = 400

Figure 2 Errors for three algorithms

parameters in BIPCA) and Fig. 2, it appears that our algorithm needs fewer iterations and
converges more quickly than PMA and BIPCA. In short, experimental results show that
our algorithm is effective and performs better than PMA in [8] and BIPCA in [34] because
of employing the inertial technique and ADMM.

5 Conclusions
An efficient modified inertial proximal minimization algorithm is presented for solving a
nonconvex and nonsmooth problem that is the sum of a smooth function and a linear op-
erator or of a nonsmooth function and a function that couples two variables. The proposed
algorithm updates the x-subproblem and y-subproblem with inertial effect. The parame-
ters are selected in a simple way. The numerical experiment reveals that the algorithm is
feasibile and effective.
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