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Abstract
This paper considers parallel and series systems with heterogeneous components
having dependent exponential lifetimes. The underlying dependence is assumed to
be Archimedean and the component lifetimes are supposed to be connected
according to an Archimedean copula. Sufficient conditions are found to dominate a
parallel system with heterogenous exponential components, with respect to the
dispersive order, by another parallel system with homogenous exponential
components where the dependence structure between lifetimes of components is
the same. We also compare two series systems (and two parallel systems) with
general one-parameter dependent components and with respect to the usual
stochastic ordering. Examples are given to illustrate the theoretical findings.
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1 Introduction
Numerous researchers have examined stochastic comparisons between order statistics
from specific families of distributions in the literature when the underlying random vari-
ables are either independent and identically distributed (i.i.d.) or independent but not
identically distributed (i.n.i.d.). The reader is directed, among other sources, to [2] for a re-
view of this subject. Stochastic orders of order statistics when underlying random variables
induce certain dependent structures were examined by some authors. In this manuscript,
we additionally validate several novel stochastic order outcomes amidst the most extensive
order statistics. These results extend several established findings from i.n.i.d. to scenarios
in which the random variables lack both identical distribution and independence. Order
statistics constitute an important class of statistics in reliability and survival analysis to
model the lifetime events. They have also been used frequently in the context of many re-
liability or survival models for the purpose of estimation of the parameters of the models.
In the context of reliability engineering, a system with a k-out-of-n structure is a system
which needs (n – k + 1) from its n components to be operational in order for the entire
system to work, where k = 1, . . . , n. The k-out-of-n system structure is a very popular type
of redundancy in fault-tolerant systems. It finds wide applications in both industrial and
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military systems. Two cases of k = 1 and k = n which correspond to two extreme order
statistics, i.e., X1:n and Xn:n, are well-known as the series and parallel system, respectively.
Stochastic comparisons of series and parallel systems have been an attractive topic of re-
search during recent decades (see, for instance, [6–10, 12, 14, 18], and [15]). For some
stochastic comparisons of ordered random variables in the i.i.d. case, we refer the reader
to [1, 4], and [5]. We first go over the definition of a copula function and also recall some
concepts of stochastic orders before getting into their specific roles in our investigations.

Let us first recall some stochastic orders. Throughout the paper, increasing means non-
decreasing and decreasing means nonincreasing, respectively. All integrals and expecta-
tions are assumed to exist whenever they appear.

Definition 1.1 Let X and Y be two nonnegative random variables with density functions
f and g , distribution functions F and G, survival functions F = 1 – F and G = 1 – G, hazard
rate functions rX = f /F and rY = g/G, respectively. Then, X is said to be smaller than Y in
the

(i) usual stochastic order (denoted by X ≤st Y ) if F(x) ≤ G(x) for all x ∈R+, or
equivalently, E[w(X)] ≤ [≥]E[w(Y )] for any increasing [decreasing] function
w : R →R;

(ii) hazard rate order (denoted by X ≤hr Y ) if G(x)/F(x) is increasing in x ∈ R+, or
equivalently, rX(x) ≥ rY (x) for all x ∈R+;

(iii) dispersive order (denoted by X ≤disp Y ) if

F–1
X (β) – F–1

X (α) ≤ F–1
Y (β) – F–1

Y (α) for 0 ≤ α < β ≤ 1,

or equivalently, if and only if

fY (F–1
Y (FX(x))) ≤ fX(x) for all x ∈R+. (1)

It is well-known that

X ≤hr Y �⇒ X ≤st Y ,

but neither reversed hazard rate order nor hazard rate order implies the other. For com-
prehensive discussions on stochastic orders, one may refer to [16]. One may also refer to
[13].

Now, we give some preliminaries of the concept of dependence through copula function.
Let (X1, . . . , Xn) be the vector of components’ lifetimes, having joint distribution F, survival
function F, and marginal distributions Fi, i = 1, . . . , n. A function C : [0, 1]m → R

+ is said
to be a copula of (X1, . . . , Xn) if

F(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)) for all (x1, . . . , xn) ∈R
+.

If Fi are continuous, then the copula C is unique, and it is defined as

C(u1, . . . , un) = F(F–1
1 (u1), . . . , F–1

n (un)) for u1, . . . , un ∈ (0, 1),
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where F–1
i denotes the inverse of the distribution function of the random variable Xi, i =

1, . . . , n.
Likewise, the survival copula associated with a multivariate distribution function F is

F(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)) for all (x1, . . . , xn) ∈R
+.

Among copulas (or survival copulas), the class of Archimedean copulas is particularly
interesting. Archimedean copulas are widely used in reliability theory and actuarial math-
ematics because of their mathematical tractability and wide range of dependencies. For a
decreasing and continuous function φ : [0,∞) → [0, 1] such that φ(0) = 1 and φ(∞) = 0,
where ψ = φ–1 is the pseudoinverse, a copula is called Archimedean if it can be written as

C(u1, . . . , un) = φ(ψ(u1) + · · · + ψ(un)) for all ui ∈ [0, 1], i = 1, . . . , n,

where φ is usually called the generator of the Archimedean copula C, if (–1)kφ[k](x) ≥
0, for k = 0, . . . , n – 2 and (–1)n–2φ[n–2](x) is decreasing and convex. In the above, φ[k](x)

denotes the kth derivative of the function φ(x) with respect to x.
Majorization is one of the key tools in mathematical statistics and applied probability,

which is a preordering on vectors by sorting all components in nonincreasing order. The
concepts of majorization of vectors and Schur-concavity (Schur-convexity) of functions
are given as follows.

Definition 1.2 Let λ, λ∗ denote two n-dimensional real vectors. Let λ(1) ≤ λ(2) ≤ · · · ≤
λ(n), λ∗

(1) ≤ λ∗
(2) ≤ · · · ≤ λ∗

(n) be their ordered components. Then

• λ is said to be majorized by λ∗, in symbols λ
m
 λ∗, if

∑k
i=1 λ∗

(i) ≤∑k
i=1 λ(i); for

k = 1, 2, . . . , n – 1, and
∑n

i=1 λ(i) =
∑n

i=1 λ∗
(i);

• λ is said to be weakly submajorized by λ∗, in symbols λ 
w λ∗, if
∑k

i=1 λ(i) ≤∑k
i=1 λ∗

(i);
for k = 1, 2, . . . , n;

• λ is said to be p-larger than another vector λ∗, in symbols λ
p
 λ∗, if

∏j
i=1 λ∗

(i) ≤∏j
i=1 λ(i), j = 1, . . . , n.

The following lemmas show that the notion of majorization is quite useful in establishing
various inequalities.

Lemma 1.3 Let � : Rn → R be continuously differentiable. Necessary and sufficient con-
ditions for � to be Schur-convex (concave) on R

n are: � is symmetric on R
n and for all

i �= j,

(zi – zj)

(
∂�(z)

∂zi
–

∂�(z)

∂zj

)

≥ (≤)0 for all z ∈ R
n.

Lemma 1.4 A real-valued function � : Rn → R is said to be a Schur-convex (Schur-
concave) function if λ

m
 λ∗ implies �(λ) ≤ (≥)�(λ∗), for all λ,λ∗ ∈ R
n.

Let X1, . . . , Xn be independent exponential random variables with Xi, i = 1, . . . , n having
hazard rates λi > 0 for i = 1, . . . , n. Let Y1, . . . , Yn be another set of independent exponential
random variables with common hazard rate λ = 1

n
∑n

i=1 λ∗
i . [3] proved that Xn:n ≥disp Yn:n.
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In Sect. 2, we generalize the above result to the cases where the random variables
Xi, i = 1, . . . , n and the random variables Yi, i = 1, . . . , n are dependent and have a com-
mon Archimedean copula with a generator function φ satisfying a number of mild con-
ditions. In particular, we show that when the generator function is φ(x) = exp(–x), the re-
sults are consistent with the case where the underlying random variables are independent.
In Sect. 3, we compare two parallel systems with Archimedean copula-based dependent
components with a one-parameter family of the life distribution. In Sect. 4, we continue
the topic discussed in Sect. 3 for series systems. In Sect. 5, we conclude the paper by de-
scribing a number of examples, some remarks, and explanations.

2 Dispersive order of parallel systems
We bring a technical lemma which will be used in the sequel.

Lemma 2.1 Let (1 – φ(x))
1

d(x) be increasing in x ≥ 0, where d(·) is a nonnegative function.
Then, λ

d(Z(t,λ)) is increasing in λ > 0, for all t ≥ 0, where Z(t,λ) = ψ(1 – e–λt).

Proof Let us write

λ

d(Z(t,λ))
=

1
–t ln(e–λt)

d(ψ(1 – e–λt))

=
1
–t ln(1 – (1 – e–λt))

d(ψ(1 – e–λt))

=
1
–t ln(1 – φ(ψ((1 – e–λt)))

d(ψ(1 – e–λt))
.

Now, since ψ(1 – e–λt) is decreasing in λ, for all t ≥ 0, thus λ
d(Z(t,λ)) is increasing in λ, for

all t ≥ 0, if

1
–t

ln(1 – φ(x))

d(x)
is decreasing in x ≥ 0, for all t ≥ 0,

i.e., when

ln(1 – φ(x))

d(x)
is increasing in x ≥ 0.

The above statement is also equivalent to (1–φ(x))
1

d(x) being increasing in x ≥ 0. The proof
of lemma is complete. �

Next result compares the largest order statistics of heterogeneous dependent exponen-
tial random variables with that of homogeneous dependent exponential random variables
with respect to dispersive ordering.

Theorem 2.2 Let X = (X1, . . . , Xn) be a dependent random vector with the Archimedean
copula having generator φ where Xi has exponential distribution with hazard rate λi

and, further, let Y = (Y1, . . . , Yn) be another dependent random vector having the same
Archimedean copula as X where Yi has exponential distribution with hazard rate λ. If
there exists a nonnegative function d(·) satisfying
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(i) (1 – φ(u))
1

d(u) is increasing (resp. decreasing) in u ≥ 0;
(ii) d(u) 1–φ(u)

φ′(u) is decreasing (resp. increasing) and also convex in u ≥ 0,
then

m(x,λ) =
1
n

n∑

i=1

λi
d(Z̄(x,λ))

d(Z(x,λi))
, λ = (λ1, . . . ,λn),

where Z(x,λi) = ψ(1 – e–λix), i = 1, . . . , n and Z̄(x,λ) = 1
n
∑n

i=1 Z(x,λi) and
x′ = arg maxx≥0 m(x,λ) such that λ > 0, then

m(x′,λ) ≤ λ �⇒ Xn:n ≥disp Yn:n.

Proof Due to Definition 1.1(i), it is sufficient to prove that

fYn:n (F–1
Yn:n (FXn:n (x))) ≥ fXn:n (x). (2)

The density functions of Yn:n and Xn:n, respectively, can be represented as

fYn:n (x) = nλe–λx φ′ (nZ(x,λ))

φ′ (Z(x,λ))

and

fXn:n (x) =
n∑

i=1

λie–λix

φ′ (Z(x,λi))
.φ′
( n∑

i=1

U(x,λi)

)

.

It is easy to calculate that for x ∈ R
+,

F–1
Yn:n (x) = –

1
λ

log

(

1 – φ

(
1
n
ψ(x)

))

.

Thus, the left-hand side of (2) can be written as

fYn:n (F–1
Yn:n (FXn:n (x))) = nλ

1 – φ
(
Z̄(x,λ)

)

φ′ (Z̄(x,λ
) φ′

( n∑

i=1

U(x,λi)

)

.

From the assumption (ii), d(u) 1–φ(u)
φ′(u) is a convex function, therefore, for all x ∈R

+,

1
n

n∑

i=1

d(Z(x,λi))
1 – φ (Z(x,λi))

φ′ (Z(x,λi))
≥ d(Z̄(x,λ))

1 – φ
(
Z̄(x,λ)

)

φ′ (Z̄(x,λ)
) (3)

Since from assumption (ii) (1 – φ(u))d(u) is increasing (resp. decreasing) in u ≥ 0 and from
assumption (ii) d(u) 1–φ(u)

φ′(u) is decreasing (resp. increasing) and, further, since Z(x,λ) is de-
creasing in λ for every x ∈ R

+, d(Z(x,λ)) 1–φ(Z(x,λ))
φ′(Z(x,λ)) is increasing (resp. decreasing) with

respect to λ. In addition, in view of the condition (i) and by using Lemma 2.1, λ
d(Z(x,λ)) is

increasing in λ, for all x ≥ 0. By Chebyshev’s sum inequality (see, e.g., [17]), it then follows
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that

1
n

n∑

i=1

λie–λix

φ′ (ψ(1 – e–λix)
) =

1
n

n∑

i=1

λi

d(Z(x,λi))

d(Z(x,λi)) [1 – φ (Z(x,λi))]

φ′ (Z(x,λi))

≥ 1
n

n∑

i=1

λi

d(Z(x,λi))

1
n

n∑

i=1

d(Z(x,λi)) [1 – d (Z(x,λi))]

φ′ (Z(x,λi))

≥ 1
n

n∑

i=1

λi
d(Z̄(x,λ))

d(Z(x,λi))

1 – φ
(
Z̄(x,λ)

)

φ′ (Z̄(x,λ)
)

= m(x,λ)
1 – φ

(
Z̄(x,λ)

)

φ′ (Z̄(x,λ)
)

≥ λ
1 – φ

(
Z̄(x,λ)

)

φ′ (Z̄(x,λ)
) ,

(4)

where the second inequality follows from equation (3) and the third from the assumption
m(x′,λ) ≤ λ, and the fact that φ′ is a negative function. As φ′ is a nonpositive function, it
thus holds that

fYn:n (F–1
Yn:n (FXn:n (x))) – fXn:n (x)

sgn=
1
n

n∑

i=1

λie–λix

φ′ (ψ(1 – e–λix)
)

– λ
1 – φ

( 1
n
∑n

i=1 ψ(1 – e–λix)
)

φ′ ( 1
n
∑n

i=1 ψ(1 – e–λix)
) ≥ 0,

where the inequality follows from (4). Hence, the required result follows from (1). �

We want to remark that there is always a proper function d in Theorem 2.2 for which
both conditions (i) and (ii) in this theorem are fulfilled. Specifically, if d(x) = –φ′(x), which
is a nonnegative function, it is seen that 1–φ(x)

φ′(x) d(x) = φ(x) – 1, which is a decreasing convex

function in x ≥ 0 and, in addition, (1 – φ(x))
1

d(x) is increasing in x ≥ 0. Below we give an
example to indicate that the result of Theorem 2.2 is obtained as a conclusion of the con-
ditions presented. This example shows that the result of Theorem 2.2 is applicable when
there is no dependency between random variables.

Example 2.3 Let us suppose that X = (X1, . . . , Xn) follows the Archimedean copula with
generator φ(x) = exp(–x) where Xi ∼ E(λi) and let Y = (Y1, . . . , Yn) follow the Archimedean
copula with the same generator in which Yi ∼ E(λ). We choose d(x) = –φ′(x). Therefore,
the conditions (i) and (ii) in Theorem 2.2 hold. In this particular case of the generator func-
tion, the random variables X1, . . . , Xn are independent and the random variables Y1, . . . , Yn

are also independent. In addition, we observe that

m(x,λ) =
1
n

n∑

i=1

⎛

⎝λi

n∏

j=1,j �=i,

(1 – exp(–λjx))

⎞

⎠≤ m(+∞,λ) =
∑n

i=1 λi

n
.

Therefore, if
∑n

i=1 λi
n ≤ λ then, using Theorem 2.2, Xn:n ≥disp Yn:n. This result has been ac-

quired by [3] without the framework of Archimedean copulas.
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It is also remarkable that in Theorem 2.2 the number m(x′,λ) could be replaced by
another finite upper bound of m(x,λ) such as m(λ). That is, if one demonstrates that
m(x,λ) ≤ m(λ), for all x ≥ 0, then the condition m(x′,λ) ≤ λ in Theorem 2.2 can be substi-
tuted by m(λ) ≤ λ. The following example illustrates another application of Theorem 2.2
in the dependent case.

Example 2.4 Consider the Clayton copula which has generator φ(x) = (1 + x)– 1
θ , θ > 0. We

have ψ(x) = x–θ – 1. Let us take d(x) = –φ′(x) and recall that the conditions (i) and (ii) in
Theorem 2.2 are satisfied as remarked before. Therefore,

d(Z̄(x,λ))

d(Z(x,λi))
= n1+ 1

θ

(
(1 – exp(–λix))–θ

∑n
j=1(1 – exp(–λjx))–θ

)1+ 1
θ

.

Let us denote by λ(1) ≤ · · · ≤ λ(n) the ordered values of λi’s, from the smallest to the biggest.
Then, one obtains

m(x,λ) = n
1
θ

n∑

i=1

λi

(
(1 – exp(–λix))–θ

∑n
j=1(1 – exp(–λjx))–θ

)1+ 1
θ

= n
1
θ

n∑

i=1

λ(i)

(
(1 – exp(–λ(i)x))–θ

∑n
j=1(1 – exp(–λ(j)x))–θ

)1+ 1
θ

.

Now, since for every j = 1, 2, . . . , i, λ(j) ≤ λ(i), thus for all j = 1, 2, . . . , i one has

(
1 – exp(–λ(j)x)

)–θ

(
1 – exp(–λ(i)x)

)–θ
≥ 1,

and, consequently,

n∑

j=1

(1 – exp(–λ(j)x))–θ

(1 – exp(–λ(i)x))–θ
≥ i.

Hence, one has

m(x,λ) ≤
n∑

i=1

λ(i)

i

(n
i

) 1
θ .

Thus, as an application of Theorem 2.2,

n∑

i=1

λ(i)

i

(n
i

) 1
θ ≤ λ �⇒ Xn:n ≥disp Yn:n

The following example illustrates another application of Theorem 2.2.

Example 2.5 Let us consider Gumbel copula with generator φ(x) = exp(–
√

x). In the con-
text of Theorem 2.2, we take d(x) = φ(x). It can be observed after some routine calculation
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that (1–φ(x))
1

d(x) is increasing in x > 0, and further that d(x) 1–φ(x)
φ′(x) is decreasing and convex

in x > 0. Denote Fλi (x) = 1 – e–λix. Now, we can get

m(x,λ) :=
1
n

n∑

i=1

λi
d(Z̄(x,λ))

d(Z(x,λi))

=
1
n

n∑

i=1

λie–
√

Z̄(x,λ)+
√

Z(x,λi),

where

Z(x,λi) := ψ(Fλi (x)) = (– ln(Fλi (x)))2,

d(Z̄(x,λ)) =
1
n

n∑

i=1

ψ(Fλi (x)) =
n∑

i=1

(– ln(Fλi (x)))2.

By Lyapunov’s inequality, one obtains

–

√
√
√
√1

n

n∑

i=1

(– ln(Fλi (x)))2 ≤ –
1
n

n∑

i=1

(– ln(Fλi (x))).

For a fixed i, when i = 1, 2, . . . , n, and by assuming without loss of generality that λ1 ≤ · · · ≤
λn, one thus gets

–
√

Z̄(x,λ) +
√

Z(x,λi) ≤ –
1
n

n∑

j=1

(– ln(Fλj (x))) – ln(Fλi (x))

=
1
n

n∑

j=1

ln

(Fλj (x)

Fλi (x)

)

=
1
n

i∑

j=1

ln

(Fλj (x)

Fλi (x)

)

+
1
n

n∑

j=i+1

ln

(Fλj (x)

Fλi (x)

)

.

Since, for λj ≥ λi, ln

(
Fλj (x)

Fλi (x)

)

is decreasing in x > 0, for every j > i,

ln

(Fλj (x)

Fλi (x)

)

≤ lim
x→0+

ln

(Fλj (x)

Fλi (x)

)

= ln
(λj

λi

)
.

In parallel, λj ≤ λi, ln

(
Fλj (x)

Fλi (x)

)

is increasing in x > 0, thus for every j ≤ i,

ln

(Fλj (x)

Fλi (x)

)

≤ lim
x→+∞ ln

(Fλj (x)

Fλi (x)

)

= 0.

Therefore,

m(x,λ) :=
1
n

n∑

i=1

λie–
√

Z̄(x,λ)+
√

Z(x,λi)



Shrahili Journal of Inequalities and Applications        (2024) 2024:120 Page 9 of 19

≤ 1
n

n∑

i=1

λie
1
n
∑n

j=i+1 ln(
λj
λi

)

=
1
n

n∑

i=1

(λi
i

n∏

j=i+1

λj)
1
n .

Hence, an application of Theorem 2.2 yields

1
n

n∑

i=1

(
λi

i

n∏

j=i+1

λj

) 1
n ≤ λ �⇒ Xn:n ≥disp Yn:n.

The next example provides another application of Theorem 2.2.

Example 2.6 Let us take ψ(u) = (1 – u)θ , θ ≥ 1. In Theorem 2.2, let us take d(x) = 1. It can
be verified that (1 – φ(x))

1
d(x) is increasing in x > 0, and also d(x) 1–φ(x)

φ′(x) is decreasing and
convex in x > 0. Using Theorem 2.2, one gets

λ̄ ≤ λ �⇒ Xn:n ≥disp Yn:n.

The following result also presents another set of conditions under which the disper-
sive order among the lifetimes of parallel systems with dependent exponential random
variables is satisfied. The proof of it being similar to the proof of Theorem 2.2 has been
omitted.

Theorem 2.7 Let X = (X1, . . . , Xn) be a dependent random vector with the Archimedean
copula having generator φ where Xi has exponential distribution with hazard rate λi

and, further, let Y = (Y1, . . . , Yn) be another dependent random vector having the same
Archimedean copula as X where Yi has exponential distribution with hazard rate λ. Let
there exist a nonnegative function d for which

(i) (1 – φ(u))d(u) is increasing (resp. decreasing) in u ≥ 0;
(ii) d(u) 1–φ(u)

φ′(u) is increasing (resp. decreasing) and also concave in u ≥ 0.
If x′′ = arg minx≥0 m(x,λ) and λ > 0, then

m(x′′,λ) ≥ λ �⇒ Xn:n ≤disp Yn:n.

3 Usual stochastic order of parallel systems
Theorem 3.1 Let X be a dependent random vector with Xi ∼ F(·;λi) and with the
Archimedean copula having generator φ and let Y be another dependent random vector
with Yi ∼ F(·;λ∗

i ) and with the Archimedean copula having generator φ. Let
(i) F(·;λ) be increasing in λ;

(ii) F(·;λ) be log-concave in λ;
(iii) uψ ′(u) be increasing in u ∈ (0, 1).

Then, we have

λ
m
 λ∗ �⇒ Xn:n ≤st Yn:n.
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Proof The survival function of Xn:n is of the form

FXn:n (x;λ) = 1 – φ

( n∑

i=1

ψ(F(x;λi)

)

.

Thus for establishing the desired result, it is enough to show that the function FXn:n (x;λ)

is Schur-convex. Taking the derivative of FXn:n (x;λ) with respect to λi, we have

∂FXn:n (x;λ)

∂λi
= –

∂F(x;λi)

∂λi
ψ ′(F(x,λi))φ

′
( n∑

i=1

ψ(F(x;λi)

)

.

Therefore, for 1 ≤ i < j ≤ n and λ ∈ D+ = {λ : λ1 ≥ λ2 ≥ · · · ≥ λn > 0}, we show that
∂FXn:n (x;λ)

∂λi
is increasing in λi. Thus, we can compute that

∂FXn:n (x;λ)

∂λi
–

∂FXn:n (x;λ)

∂λj
=

∂F(x;λj)

∂λj
ψ ′(F(x,λj))φ

′
( n∑

i=1

ψ(F(x;λj)

)

–
∂F(x;λi)

∂λi
ψ ′(F(x,λi))φ

′
( n∑

i=1

ψ(F(x;λi)

)

=
[

∂F(x;λj)

∂λj
ψ ′(F(x,λj)) –

∂F(x;λi)

∂λi
ψ ′(F(x,λi))

]

× φ′
( n∑

i=1

ψ(F(x;λi)

)

= η1φ
′
( n∑

i=1

ψ(F(x;λi)

)

From the fact that φ′ is negative, it is enough to show that η1 is negative. We have

η1 =
∂F(x;λj)

∂λj

F(x;λj)
F(x;λj)ψ

′(F(x,λj)) –
∂F(x;λi)

∂λi

F(x;λi)
F(x;λi)ψ

′(F(x,λi))

≤
∂F(x;λj)

∂λj

F(x;λj)
F(x;λi)ψ

′(F(x,λi)) –
∂F(x;λi)

∂λi

F(x;λi)
F(x;λi)ψ

′(F(x,λi))

=

⎛

⎝

∂F(x;λj)
∂λj

F(x;λj)
–

∂F(x;λi)
∂λi

F(x;λi)

⎞

⎠F(x;λi)ψ
′(F(x,λi))

sgn=
∂F(x;λi)

∂λi

F(x;λi)
–

∂F(x;λj)
∂λj

F(x;λj)
≤ 0,

where sgn= follows from the fact that ψ ′ is a negative function. The first inequality comes
from the assumption that F(·;λ) is increasing in λ and uψ ′(u) is increasing in u, and the
last inequality is based on the assumption F(·;λ) is log-concave. Then, the desired result
follows by applying Lemma 1.3. For λ ∈ I+ = {λ : 0 < λ1 ≤ λ2 ≤ · · · ≤ λn}, it can be proved
in a similar manner that the desired result holds. �
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Figure 1 Plots of survival functions of X3:3 and Y3:3

Example 3.2 Consider the family of Lomax distributions with cdf F(x;λ) = λx
1+λx , x ≥ 0, λ >

0, denoted by Lo(λ). Suppose that Xi follows Lo(λi), with λ1 = 2, λ2 = 3, λ3 = 4 and, further,
assume that Yi follows Lo(λ�

i ) with λ�
1 = 1, λ�

2 = 3, λ�
3 = 5. Contemplate the multivariate

Gumbel copula having generator ψθ (u) = (– ln(u))θ , for θ ≥ 1. It can be verified plainly
that F(x;λ) is increasing and log-concave in λ, for all x ≥ 0. Moreover, uψ ′

θ (u) is increasing
in u ∈ (0, 1). Since λ

m
 λ∗, using Theorem 3.1, we deduce that X3:3 ≤st Y3:3. Note that

F̄X3:3 (x;λ) = 1 – exp

{

–

( 3∑

i=1

lnθ

(
1 + λix

λix

)) 1
θ }

and

F̄Y3:3 (x;λ�) = 1 – exp

{

–

( 3∑

i=1

lnθ

(
1 + λ�

i x
λ�

i x

)) 1
θ }

.

The graphs of F̄X3:3 (x;λ) and F̄Y3:3 (x;λ�) for θ = 2 are plotted in Fig. 1 to acknowledge the
achieved conclusion. The upper curve (blue) is the graph of F̄Y3:3 (x;λ�) and the lower curve
(red) is that of F̄X3:3 (x;λ).

In the setting of Theorem 3.1, in order to see what happens if F(·;λ) is log-convex in
λ > 0, a counterexample is presented below.

Counterexample 3.3 Suppose that F(x;λ) =
(

1 – e–x3
)√

λ

where x > 0 and λ > 0. Denote by
X1, X2, and X3 the component lifetimes of parallel system with dependent components,
where Xi ∼ F(·;λi), i = 1, 2, 3 with Gumbel copula having parameter θ > 0. Denote by Y1,
Y2, and Y3 the component lifetimes of another parallel system with dependent components
such that Yi ∼ F(·;λ∗

i ) with the same Gumbel copula as that of Xi’s. It is easy to see that
F(x;λ) is log-convex in λ, for all x > 0. Let us choose λ = (4, 5, 6), λ∗ = (3, 5, 7), and θ = 2.
Note that λ

m
 λ∗. It can be numerically verified that X3:3 �st Y3.3. Therefore, the result of
Theorem 3.1 does not hold when F(·;λ) is log-convex in λ.
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Proposition 3.4 Let X be a dependent random vector with Xi ∼ F(·;λi) and having the
Archimedean copula with generator φ and let Y be another dependent random vector with
Yi ∼ F(·;λ∗

i ) and having the Archimedean copula with generator φ. If
(i) F(·;λ) is decreasing in λ;

(ii) F(·;λ) is log-concave in λ;
(iii) uψ ′(u) is decreasing in u ∈ (0, 1).

Then, we have

λ
m
 λ∗ �⇒ Xn:n ≤st Yn:n.

Proof In a manner similar to the proof of Theorem 3.1, we have that

∂FXn:n (x;λ)

∂λi
–

∂FXn:n (x;λ)

∂λj
= η1φ

′
( n∑

i=1

ψ(F(x;λi)

)

,

where η1 = ∂F(x;λj)
∂λj

ψ ′(F(x,λj)) – ∂F(x;λi)
∂λi

ψ ′(F(x,λi)). It suffices to show that η1 ≤ 0. Indeed,
η1 can be rewritten as follows:

η1 =
∂F(x;λj)

∂λj

F(x;λj)
F(x;λj)ψ

′(F(x,λj)) –
∂F(x;λi)

∂λi

F(x;λi)
F(x;λi)ψ

′(F(x,λi)).

From the condition that F(·;λ) is log-concave in λ, it follows that

0 ≥
∂F(x;λj)

∂λj

F(x;λj)
≥

∂F(x;λi)
∂λi

F(x;λi)
, (5)

and from the assumption that uψ ′(u) is decreasing in u ∈ (0, 1), one gets

0 ≥ F(x;λj)ψ
′(F(x,λj)) ≥ F(x;λi)ψ

′(F(x,λi)). (6)

By combining (5) and (6), it follows that η1 is nonpositive. Hence, the desired result follows
by applying Lemma 1.3. �

It is notable that there are many Archimedean copulas satisfying the condition that
uψ ′(u) increases or decreases in u of as required in Theorems 3.1 and 4.1. For exam-
ple, if we consider the Ali–Mikhail–Haq (AMH) copula with the generator φ(u) = 1–θ

eu–θ
for

θ ∈ [–1, 1), it follows that ψ(u) = ln
( 1–θ+θu

u
)
. It can be seen that

uψ ′(u) =
θ – 1

1 – θ + θu
,

which is increasing in u for θ ∈ [0, 1) and decreasing in u for θ ∈ [–1, 0). For another exam-
ple, consider Clayton copula with generator inverse ψ(u) = 1

θ
(u–θ – 1) for θ ∈ [–1,∞)\{0}.

It can be seen that

uψ ′(u) = –
1

uθ
,

which is decreasing in u for θ ∈ [–1, 0) and increasing in u for θ ∈ [1,∞).
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Example 3.5 Consider the multivariate Clayton copula described by the generator ψθ (x) =
1
θ

(
1

xθ – 1
)

, for θ > 0 such that xψ ′
θ (x) is increasing in x ∈ (0, 1). Suppose that Xi and Yi,

i = 1, 2, 3, are exponential random variables with density functions fXi (x) = λie–λix, linked
by an Archimedean copula with generator function ψθ defined above and scale parame-
ters (λ1,λ2,λ3) = (2, 4, 5) and (λ∗

1,λ∗
2,λ∗

3) = (1, 3, 7), respectively. It is easy to check that the
conditions in Theorem 3.1 are satisfied.

In Proposition 3.4, to realize what happens if F(·;λ) is log-convex in λ > 0, the next coun-
terexample is useful.

Counterexample 3.6 Let us take F(x;λ) =
(

x2

1+x2

)√
λ

where x,λ > 0. Let X1, X2, and X3

be three nonnegative dependent random variables, where Xi ∼ F(·;λi), i = 1, 2, 3 with
AMH copula having parameter θ ∈ [–1, 1). Further, let Y1, Y2, and Y3 be three nonneg-
ative dependent random variables, where Yi ∼ F(·;λ∗

i ) with the same AMH copula as that
of Xi’s. It can be easily verified that F(x;λ) is log-convex in λ, for all x > 0. Suppose that
λ = (0.4, 1.4, 2.1), λ∗ = (0.6, 1.1, 2.5), and let θ = –0.2. We see that λ 
w λ∗. Now, after some
calculation, we observe that X3:3 �st Y3.3, and, consequently, Proposition 3.4 does not re-
main valid if F(·;λ) is log-convex in λ.

Theorem 3.7 Let X be a dependent random vector with Xi ∼ F(·;λi) and having the
Archimedean copula with generator φ and let Y be another dependent random vector with
Yi ∼ F(·;λ∗

i ) and having the Archimedean copula with generator φ. If
(i) F(·;λ) is decreasing in λ;

(ii) F(·;λ) is log-concave in λ;
(iii) uψ ′(u) is decreasing in u ∈ (0, 1).

Then, we have

λ 
w λ∗ �⇒ Xn:n ≤st Yn:n.

Proof By Theorem 3.1 and since F(·;λ) is decreasing in λ, we conclude that FXn:n (x;λ) is de-
creasing in λi. For λ,λ∗ ∈ D+ = {λ : λ1 ≥ λ2 ≥ · · · ≥ λn > 0}, where λ 
w λ∗, in accordance
with Theorem 5.A.9 of [11], there exists some β ∈ D+ such that λ 
 β and β

m
 λ∗, where
λ 
 β means that λi ≤ βi, i = 1, . . . , n. Under the assumptions (i)–(iii) of Proposition 3.4,
it follows that β

m
 λ∗ implies Tn:n ≤st Y ∗
n:n, where Tn:n is the lifetime of a parallel system

formed from random lifetimes T = (T1, . . . , Tn) with Ti ∼ F(·,βi) for i = 1, . . . , n. Also due
to the assumption that FXn:n (x;λ) is increasing function in λi, it follows that λ 
 β implies
FXn:n (x;λ) ≤ FTn:n (x;β), which in turn implies that Xn:n ≤st Tn:n. By combining these obser-
vations, it holds that Xn:n ≤st X∗

n:n. For λ ∈ I+ = {λ : 0 < λ1 ≤ λ2 ≤ · · · ≤ λn}, it can be proved
in a similar manner that the desired result holds, hence the claim of the theorem. �

Example 3.8 Under the setup of Example 3.5, it is easy to check that xψ ′
θ (x) is decreasing

in x for all θ ∈ [–1, 0). Suppose that Xi and Yi, i = 1, 2, 3, are exponential random variables
with density functions fXi (x) = 1

λi
e– 1

λi
x, linked by an Archimedean copula with generator

function ψθ and scale parameters (λ1,λ2,λ3) = (1, 2, 4) and (λ∗
1,λ∗

2,λ∗
3) = (2, 3, 5), respec-

tively. It is easy to check that (λ1,λ2,λ3) 
w (λ∗
1,λ∗

2,λ∗
3) and also the conditions in Theo-

rem 3.7 are satisfied.
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In the framework of Theorem 3.7, to see what happens if F(·;λ) is log-convex in λ > 0,
we give the following counterexample.

Counterexample 3.9 Consider the cumulative distribution function F(x;λ) = e–
√

λ
x where

x,λ > 0. We also consider X1, X2, and X3 as three nonnegative dependent random variables,
where Xi ∼ F(·;λi), i = 1, 2, 3 with Clayton copula having parameter θ > 0. Moreover, take
Y1, Y2, and Y3 as three nonnegative dependent random variables, where Yi ∼ F(·;λ∗

i ) with
the same Archimedean copula as that of Xi’s. It can be seen that F(x;λ) is log-convex in λ,
for all x > 0. Let λ = (0.4, 1.4, 2.1), λ∗ = (0.6, 1.1, 2.5), and θ = 4.25. It is seen that λ 
w λ∗.
We observe that X3:3 �st Y3:3. Hence, the result of Theorem 3.7 is not satisfied in the case
when F(·;λ) is log-convex in λ.

4 Usual stochastic order of series systems
This section develops the usual stochastic ordering of extreme order statistics in the de-
pendent case provided that the original random variables follow a one-parameter lifetime
distribution. We use the notation d.non-i.d. in place of dependent and nonidentically dis-
tributed.

Theorem 4.1 Let X = (X1, . . . , Xn) be a vector of nonnegative d.non-i.d. random variables,
where Xi ∼ F(·;λi) and the dependence structure follows the Archimedean copula with gen-
erator φ and let Y = (Y1, . . . , Yn) be another vector of d.non-i.d. random variables following
the Archimedean copula with generator φ, where Yi ∼ F(·;λ∗

i ). Let
(i) F(·;λ) be decreasing in λ;

(ii) F(·;λ) be log-convex in λ;
(iii) uψ ′(u) be decreasing in u ∈ (0, 1).

Then,

λ
m
 λ∗ �⇒ X1:n ≤st Y1:n.

Proof The distribution function of X1:n is of the form

FX1:n (x;λ) = 1 – φ

( n∑

i=1

ψ(F(x;λi)

)

.

Thus for establishing the desired result, it is enough to show that the function FX1:n (x;λ)

is Schur-concave. Set 1 ≤ i < j ≤ n and λ ∈ D+ = {λ : λ1 ≥ λ2 ≥ · · · ≥ λn > 0}. Taking the
derivative of FX1:n (x;λ) with respect to λi, we have

∂FX1:n (x;λ)

∂λi
= –

∂F(x;λi)

∂λi
ψ ′(F(x,λi))φ

′
( n∑

i=1

ψ(F(x;λi)

)

.

Therefore, for i �= j, it follows that

∂FX1:n (x;λ)

∂λi
–

∂FX1:n (x;λ)

∂λj
=

∂F(x;λj)

∂λj
ψ ′(F(x,λj))φ

′
( n∑

i=1

ψ(F(x;λi)

)

–
∂F(x;λi)

∂λi
ψ ′(F(x,λi))φ

′
( n∑

i=1

ψ(F(x;λi)

)
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=

(
∂F(x;λj)

∂λj
ψ ′(F(x,λj)) –

∂F(x;λi)

∂λi
ψ ′(F(x,λi))

)

× φ′
( n∑

i=1

ψ(F(x;λj)

)

= η2φ
′
( n∑

i=1

ψ(F(x;λj)

)

.

Due to the fact that φ′ is negative, it is enough to show that η2 is positive. We can compute

η2 =
∂F(x;λj)

∂λj
ψ ′(F(x,λj)) –

∂F(x;λi)

∂λi
ψ ′(F(x,λi))

=
∂F(x;λj)

∂λj

F(x;λj)
F(x;λj)ψ

′(F(x,λj)) –
∂F(x;λi)

∂λi

F(x;λi)
F(x;λi)ψ

′(F(x,λi)).

Since F(·;λ) is log-convex with respect to λ, we have

∂F(x;λj)
∂λj

F(x;λj)
≤

∂F(x;λi)
∂λi

F(x;λi)
≤ 0, (7)

and due to the condition that uψ ′(u) is decreasing in u and the fact that F(x;λi) ≥ F(x;λj),
we see that

F(x;λj)ψ
′(F(x,λj)) ≤ F(x;λi)ψ

′(F(x,λi)) ≤ 0. (8)

By combining (7) and (9), it follows that η2 is nonnegative. From these observations,
according to Lemma 1.3, it follows that FX1:n is Schur-concave. This in turn guarantees
that FX1:n is Schur-convex. Hence, the desired result follows by applying Lemma 1.3. For
λ ∈ I+ = {λ : 0 < λ1 ≤ λ2 ≤ · · · ≤ λn}, it can be proved in a similar manner that the desired
result holds. �

Example 4.2 Under the setup of Example 3.5, it is easy to check that xψ ′
θ (x) is decreasing

in x for all θ ∈ [–1, 0) and that the conditions in Theorem 4.1 are satisfied.

In connection with Theorem 4.1, one can ask what happens if F̄(·;λ) is log-concave in
λ > 0. The following counterexample clarifies the issue.

Counterexample 4.3 Consider a parametric family of distributions with survival function
F̄(x;λ) = e–λx2 , x > 0, and λ > 0. Assume that X1, X2, and X3 are nonnegative dependent
random variables, where Xi ∼ F̄(·;λi), i = 1, 2, 3 with Gumbel copula having generator

φ(x) = e–x
1
θ , where θ ≥ 1. Let Y1, Y2, and Y3 be nonnegative dependent random variables,

where Yi ∼ F̄(·;λ∗
i ) with the same Archimedean copula as that of Xi. It can be seen that

F̄(x;λ) is log-concave in λ, for all x > 0. Let us choose λ = (3, 4, 5), λ∗ = (2, 4, 6) which fulfill
that λ

m
 λ∗. We consider Gumbel copula with θ = 3. It can be seen that X1:3 �st Y1:3. As a
result, Theorem 4.1 does not remain valid in situations where F(·;λ) is log-concave in λ.
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Theorem 4.4 Let X = (X1, . . . , Xn) be a vector of d.non-i.d. random variables with Xi ∼
F(·;λi) and having the Archimedean copula with generator φ and let Y = (Y1, . . . , Yn) be an-
other vector of d.non-i.d. random variables with Yi ∼ F(·;λ∗

i ) and having the Archimedean
copula with generator φ. If

(i) F(·;λ) is increasing in λ;
(ii) F(·;λ) is log-concave in λ;

(iii) uψ ′(u) is increasing in u ∈ (0, 1).
Then, we have

λ
m
 λ∗ �⇒ Y1:n ≤st X1:n.

Proof In a manner similar to the proof of Theorem 4.1 for establishing the desired result,
it is enough to show that the function FX1:n (x;λ) is Schur-convex. Taking the derivative of
FX1:n (x;λ) with respect to λi, we have

∂FX1:n (x;λ)

∂λi
= –

∂F(x;λi)

∂λi
ψ ′(F(x,λi))φ

′
( n∑

i=1

ψ(F(x;λi)

)

.

Therefore, for i �= j, it follows that

∂FX1:n (x;λ)

∂λi
–

∂FX1:n (x;λ)

∂λj
=

(
∂F(x;λj)

∂λj
ψ ′(F(x,λj)) –

∂F(x;λi)

∂λi
ψ ′(F(x,λi))

)

× φ′
( n∑

i=1

ψ(F(x;λj)

)

= η2φ
′
( n∑

i=1

ψ(F(x;λj)

)

.

Since φ′ is negative, it is enough to show that η2 is nonpositive. We can compute

η2 =
∂F(x;λj)

∂λj
ψ ′(F(x,λj)) –

∂F(x;λi)

∂λi
ψ ′(F(x,λi))

≤
⎡

⎢
⎣

∂F(x;λj)
∂λj

F(x;λj)
–

∂F(x;λi)
∂λi

F(x;λi)

⎤

⎥
⎦F(x;λi)ψ

′(F(x,λi)),

(9)

where, using the same arguments as in proof of Theorem 4.1, the first inequality follows
from the conditions that F(x;λi) is increasing in λ and uψ ′(u) is increasing in u. Since ψ ′

is nonpositive and F(x;λ) is log-concave in λ, it holds that

∂F(x;λj)
∂λj

F(x;λj)
≥

∂F(x;λi)
∂λi

F(x;λi)
≥ 0,

from which the right-hand side of (9) is nonpositive. Hence, the desired result follows by
applying Lemma 1.3. �
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In the next example, using Theorem 4.1, we present a situation where the reliability of
a system with components of different ages used increases as the ages of the components
become more widely separated. Recall that a nonnegative random variable X has a distri-
bution with the IFR property when the hazard rate function of X, i.e., rX(x), is increasing
in x ≥ 0.

Example 4.5 Denote by X the lifetime of a fresh unit that has survival function F̄ . Then
the lifetime of the unit at age λ as the used unit, where λ > 0 has survival function F̄(x;λ) =
F̄(x+λ)

F̄(λ)
. Assume that Xi is the lifetime of a used unit with age λi, and further assume that

Yi is the lifetime of a used unit with age λ�
i , where λ = (3, 4, 5) and λ∗ = (2, 4, 6) are two

quantities of different ages. If F possesses the IFR property with a concave hazard rate
function, then it is easy to show that F̄(x;λ) is decreasing in λ and is also log-convex in λ for
all x ≥ 0. Consider the multivariate Gumbel copula with the generator ψθ (u) = (– ln(u))θ ,
for θ ≥ 1. It can be proved that uψ ′

θ (u) is increasing in u ∈ (0, 1). Thus, since λ 
m λ∗,
using Theorem 4.1, one concludes that X1:3 ≤st Y1:3. Thus, considering two series systems
with used components where the component lifetimes satisfy the IFR property and have
a concave hazard rate function, the system comprising used components with close ages
has a lower reliability compared to the system comprising used components with scattered
ages in the sense of the majorization order.

In Theorem 4.4, we present a counterexample where F̄(·;λ) is log-convex in λ > 0.

Counterexample 4.6 Let F̄(x;λ) = e–
√

λx2 be the underlying survival function where λ > 0.
Suppose that X1, X2, and X3 are nonnegative dependent random variables, where Xi ∼
F̄(·;λi), i = 1, 2, 3 with Gumbel copula having generator φ(x) = e–x

1
θ , where θ ≥ 1. In addi-

tion, we assume that Y1, Y2, and Y3 are nonnegative dependent random variables, where
Yi ∼ F̄(·;λ∗

i ) with the same copula function as that of Xi’s. It can be seen that F̄(x;λ) is log-
convex in λ, for all x > 0. Let us choose λ = (1, 2, 3), λ∗ = (0.8, 2, 3.2), and take θ = 4.5. It is
observed that X1:3 �st Y1:3. It can be seen that λ

m
 λ∗. Therefore, the result of Theorem 4.4
does not hold in the case where F̄(·;λ) is log-convex in λ.

5 Conclusion
In this study, the usual stochastic ordering between the lifetimes of two series/parallel sys-
tems with nonidentical lifetimes of the dependent components under an Archimedean
copula dependence structure was performed under certain circumstances. It was as-
sumed that the heterogeneous components follow a one-parameter lifetime distribution
for which the cdf (e.g., F(x,λ)) or the survival function (e.g., F̄(x,λ)) must satisfy the prop-
erty of being a monotone function of λ which, moreover, is log-concave (log-convex) with
respect to λ. The inverse generator of the Archimedean copula should satisfy some special
properties. It was shown that the majorization order and the weak submajorization order
are relevant to establish the usual stochastic order between the lifetimes of the systems.
Several examples were used to investigate the sufficient conditions to obtain the results. In
general, the problem of ordering the lifetimes of two parallel/series systems with respect
to the usual stochastic ordering shows which system is more reliable, which can be a use-
ful investigation in the context of decision making and optimization for the assembly of
components in a system. In the study conducted in this paper, the selection of components
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with lifetimes that follow a general distribution with one parameter whose parameters are
more scattered improves the reliability of the system compared to the case in which com-
ponents are selected with lifetimes that follow the same family of distributions with less
variable parameters.

In a future study, we could consider nonparametric distributions instead of the general
family of distributions with one parameter associated with the component lifetimes in a
parallel/series system when the component lifetimes are heterogeneous and, moreover,
dependent with an Archimedean copula structure. In such a situation, it is an interesting
development to establish the usual stochastic ordering between the lifetimes of two paral-
lel/series systems. In addition, another study can be conducted to investigate the ordering
properties of dependent random variables having a more general dependence structure
than that of an Archimedean dependence structure.
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