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Abstract
Let A, B, X , and Y be n× n complex matrices such that A is self-adjoint, B ≥ 0, ±A ≤ B,
max(‖X‖2,‖Y‖2) ≤ 1, and let f be a nonnegative increasing convex function on [0,∞)
satisfying f (0) = 0. Then

2sj(f (
∣
∣XAY∗∣∣)) ≤ max

{‖X‖2,‖Y‖2}sj(f (B + A)⊕ f (B – A))

for j = 1, 2, . . . ,n. This singular value inequality extends an inequality of Audeh and
Kittaneh. Several generalizations for singular value and norm inequalities of matrices
are also given.

Mathematics Subject Classification: 15A18; 15A42; 15A60; 47A63

Keywords: Singular value; Positive semidefinite matrix; Increasing function; Convex
function; Unitarily invariant norm

1 Introduction
Let Mn(C) denote the algebra of all n × n complex matrices. For A ∈ Mn(C), the singular
values of A are denoted by s1(A) ≥ s2(A) ≥ · · · ≥ sn(A), they are precisely the eigenvalues
of the positive operator |A| = (A∗A)1/2. Singular values have several properties: Let A, B ∈
Mn(C). Then

(a) sj(A) = sj(A∗) = sj(|A|) for j = 1, 2, . . . , n.
(b) sj(AA∗) = sj(A∗A) for j = 1, 2, . . . , n.
(c) If A, B ∈Mn(C), then sj(A) ≤ sj(B) if and only if sj(A ⊕ A) ≤ sj(B ⊕ B) for j = 1, 2, . . . , n.
Bhatia and Kittaneh proved in [15] the following inequalities:

(i) If A, B ∈Mn(C) such that A is self-adjoint, B ≥ 0, and ±A ≤ B, then

sj(A) ≤ sj(B ⊕ B) (1)

for j = 1, 2, . . . , n.
(ii) If A, B ∈Mn(C), then

sj
(

AB∗ + BA∗) ≤ sj
((

AA∗ + BB∗) ⊕ (

AA∗ + BB∗)) (2)
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for j = 1, 2, . . . n. Audeh and Kittaneh pointed out in [8] that:
(i) If A, B ∈ Mn(C) such that A is self-adjoint, B ≥ 0, and ±A ≤ B, then

2sj(A) ≤ sj
(

(B + A) ⊕ (B – A)
)

(3)

for j = 1, 2, . . . , n.
(ii) If A, B, C ∈Mn(C) such that

[ A B
B∗ C

] ≥ 0, then

sj(B) ≤ sj(A ⊕ C) (4)

for j = 1, 2, . . . , n.
(iii) If A, B ∈ Mn(C), then

sj(A + B) ≤ sj
((|A| + |B|) ⊕ (∣

∣A∗∣∣ +
∣
∣B∗∣∣)) (5)

for j = 1, 2, . . . , n.
Tao proved in [24] that if A, B, C ∈ Mn(C) such that

[ A B
B∗ C ] ≥ 0, then

2sj(B) ≤ sj

[

A B
B∗ C

]

(6)

for j = 1, 2, . . . , n. In addition, Bhatia and Kittaneh showed in [14] that if A, B ∈Mn(C), then

2sj
(

AB∗) ≤ sj
(

A∗A + B∗B
)

(7)

for j = 1, 2, . . . , n. For more details and comprehensive results related to this topic, we refer
to [1–7, 9, 10] and [17]. In this paper, we provide considerable generalizations of inequal-
ities (1)–(6).

Unitarily invariant norms on Mn are denoted by |||.|||, recall that these norms satisfying
|||UAV ||| = |||A||| for all U , V , A ∈ Mn such that U and V are unitary. Important classes of
such norms are the Schatten p-norms defined by ‖A‖p = (

∑n
j=1 sp

j (A))1/p where p ≥ 1 and
the spectral norm defined by ‖A‖ = s1(A). For the general theory of unitarily invariant
norms, we refer the reader to [13], [16], and [23]. It follows easily from the basic properties
of unitarily invariant norms that

∣
∣
∣
∣
∣
∣A∗A

∣
∣
∣
∣
∣
∣ =

∣
∣
∣
∣
∣
∣AA∗∣∣∣∣∣∣. (8)

Bhatia and Davis proved in [13] that if A, X, B ∈Mn, then

2
∣
∣
∣
∣
∣
∣AXB∗∣∣∣∣∣∣ ≤ ∣

∣
∣
∣
∣
∣A∗AX + XB∗B

∣
∣
∣
∣
∣
∣. (9)

This is a generalization of the arithmetic–geometric mean inequality for unitarily invari-
ant norms. In this paper, we provide a considerable generalization of inequality (9). Hou
and Du proved in [19] that if A ∈Mn, then

‖A‖ ≤ ∥
∥
(‖Aij‖

)

1≤i,j≤n

∥
∥. (10)



Audeh et al. Journal of Inequalities and Applications        (2024) 2024:114 Page 3 of 17

Popovici and Sebestyen showed in [22] the following inequalities:
1. If A1, A2, . . . , An ∈Mn are positive, then

∥
∥
∥
∥
∥

n
∑

k=1

Ak

∥
∥
∥
∥
∥

≤ ∥
∥
(∥
∥A1/2

i A1/2
j

∥
∥
)

1≤i,j≤n

∥
∥. (11)

2. If A1, A2, . . . , An ∈Mn are positive, then

∥
∥
∥
∥
∥

n
∑

k=1

AkA∗
k

∥
∥
∥
∥
∥

≤ ∥
∥
(∥
∥A∗

i Aj
∥
∥
)

1≤i,j≤n

∥
∥. (12)

We provide inequalities that are more general and sharper than inequalities (11) and
(12).

Zou in [26] demonstrated the following generalization of arithmetic–geometric mean
inequality: Let A, X, B ∈Mn such that X is positive semidefinite Then

2
∣
∣
∣
∣
∣
∣AXB∗∣∣∣∣∣∣ ≤ ∣

∣
∣
∣
∣
∣
(

A∗A + B∗B
)1/2X

(

A∗A + B∗B
)1/2∣

∣
∣
∣
∣
∣. (13)

Among our results, we obtain a generalization of inequality (13).

2 Singular value inequalities
The following lemmas are essential for supporting our conclusions. The first lemma is an
immediate consequence of the min-max principle (see, e.g., [2, p. 75]). The second and
third lemmas were shown in [11].

Lemma 1 Let A, B, X ∈Mn(C). Then

sj(AXB) ≤ ‖A‖‖B‖sj(X) (14)

for j = 1, 2, . . . , n.

Lemma 2 Let A ∈ Mn(C) and let f be a nonnegative increasing function on an interval I .
Then

f
(

sj(A)
)

= sj
(

f
(|A|))

for j = 1, 2, . . . , n. If A is Hermitian and f is increasing on an interval I , then

f
(

λj(A)
)

= λj
(

f (A)
)

for j = 1, 2, . . . , n.

Lemma 3 Let f be a monotone convex function on an interval I such that 0 ∈ I and f (0) ≤ 0,
and let A, X ∈Mn(C) such that A is Hermitian and X is a contraction. Then

λj
(

f
(

X∗AX
)) ≤ λj

(

X∗f (A)X
)

for j = 1, 2, . . . , n.
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The first result in this paper is now ready to be presented.

Theorem 1 Let A, B, X, Y ∈ Mn(C) such that max{‖X‖,‖Y‖} ≤ 1, and let f be a nonnega-
tive increasing convex function on [0,∞) satisfying f (0) = 0. Then

sj
(

f
(∣
∣XAB∗Y ∗∣∣)) ≤ max

{‖X‖2,‖Y‖2}sj
(

f
(

AA∗) ⊕ f
(

BB∗)) (15)

for j = 1, 2, . . . , n.

Proof Consider the operator matrix Q = [(XA)∗ (YB)∗] ∈ Mn,2n(C).

P = Q∗Q =

[

XAA∗X∗ XAB∗Y ∗

YBA∗X∗ YBB∗Y ∗

]

≥ 0

for any A, B, X, Y ∈ M2n,2n(C).
By making use of inequality (4) and by letting

R =

[

AA∗ 0
0 BB∗

]

gives

sj
(

f
(∣
∣XAB∗Y ∗∣∣)) = f

(

sj
(

XAB∗Y ∗))

≤ f
(

sj
(

XAA∗X∗ ⊕ YBB∗Y ∗))

= f

(

sj

([

X 0
0 Y

]

R

[

X∗ 0
0 Y ∗

]))

= f

(

λj

([

X 0
0 Y

]

R

[

X∗ 0
0 Y ∗

]))

= λj

(

f

([

X 0
0 Y

]

R

[

X∗ 0
0 Y ∗

]))

,

(by Lemma 2)

≤ λj

(([

X 0
0 Y

]

f (R)

[

X∗ 0
0 Y ∗

]))

,

(by Lemma 3)

= sj

(([

X 0
0 Y

]

f (R)

[

X∗ 0
0 Y ∗

]))

≤
∥
∥
∥
∥
∥

[

X 0
0 Y

]∥
∥
∥
∥
∥

∥
∥
∥
∥
∥

[

X∗ 0
0 Y ∗

]∥
∥
∥
∥
∥

sj
(

f (R)
)

,

(by Lemma 1)

=

∥
∥
∥
∥
∥

[

X 0
0 Y

]∥
∥
∥
∥
∥

2

sj
(

f (R)
)
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= max
{‖X‖2,‖Y‖2}sj

[

f (R)
]

= max
{‖X‖2,‖Y‖2}sj

(

f
(

AA∗) ⊕ f
(

BB∗)). �

Corollary 1 Let A, B, X, Y ∈ Mn(C) such that max{‖X‖,‖Y‖} ≤ 1. Then, for r ≥ 1,

sj
(

XAB∗Y ∗)r ≤ max
{‖X‖2,‖Y‖2}sj

((

AA∗)r ⊕ (

BB∗)r) (16)

and

sj
(

e|XAB∗Y∗| – I
) ≤ max

{‖X‖2,‖Y‖2}sj
[(

eAA∗
– I

) ⊕ (

eBB∗
– I

)]

(17)

for j = 1, 2, . . . , n.

Proof Letting f (t) = tr , r ≥ 1, and f (t) = et – 1 in Theorem 1 gives inequalities (16) and
(17), respectively. �

By using Theorem 1, we here by present the following theorem.

Theorem 2 Let A, B, C, X, Y ∈Mn(C) such that P =
[ A B

B∗ C

] ≥ 0, max{‖X‖2,‖Y‖2} ≤ 1, and
let f be a nonnegative increasing convex function on [0,∞) satisfying f (0) = 0. Then

sj
(

f
(∣
∣XBY ∗∣∣)) ≤ max

{‖X‖2,‖Y‖2}sj
(

f (A) ⊕ f (C)
)

(18)

for j = 1, 2, . . . , n.

Proof Let P =
[ A B

B∗ C

] ≥ 0. Then there exists a matrix Q = [(H)∗(L)∗] ∈ Mn,2n(C) such that
P = Q∗Q for some H , L ∈ Mn(C). Then A = HH∗, C = LL∗ and B = HL∗. Applying inequality
(4) gives

sj
(

f
(∣
∣XBY ∗∣∣)) = sj

(

f
(∣
∣XHL∗Y ∗∣∣))

≤ max
{‖X‖2,‖Y‖2}sj

(

f
(

HH∗) ⊕ f
(

LL∗)), (by Theorem 1)

= max
{‖X‖2,‖Y‖2}sj

(

f (A) ⊕ f (C)
)

.

Inequality (18) has thus been proved. �

Remark 1 Letting X = Y = I and f (t) = t in inequality (18) gives inequality (4). In that
sense, inequality (18) is certainly a generalization of inequality (4).

Corollary 2 Let A, B, C, X, Y ∈Mn(C) such that P =
[ A B

B∗ C

] ≥ 0 and max{‖X‖2,‖Y‖2} ≤ 1.
Then, for r ≥ 1,

sj
(

XBY ∗)r
) ≤ max

{‖X‖2,‖Y‖2}sj
(

Ar ⊕ Cr) (19)

and

sj
(

e|XBY∗| – I
) ≤ max

{‖X‖2,‖Y‖2}sj
((

eA – I
) ⊕ (

eC – I
))

(20)

for j = 1, 2, . . . , n.
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Proof Letting f (t) = tr , r ≥ 1, and f (t) = et – 1 in Theorem 2 gives inequalities (19) and
(20), respectively. �

Using the proper incites of Theorem 2 gives the following inequality, which is a gener-
alization of inequality (1).

Theorem 3 Let A, B, X, Y ∈ Mn(C) such that A is self-adjoint, B ≥ 0, ±A ≤ B, max{‖X‖2,
‖Y‖2} ≤ 1, and let f be a nonnegative increasing convex function on [0,∞) satisfying f (0) =
0. Then

sj
(

f
(∣
∣XAY ∗∣∣)) ≤ max

{‖X‖2,‖Y‖2}sj
(

f (B) ⊕ f (B)
)

(21)

for j = 1, 2, . . . , n.

Proof Let P =
[ B A

A B

]

. Since
[ B A

A B

]

is unitarily equivalent to
[ B+A 0

0 B–A

]

and since ±A ≤ B, it
follows that P is a positive matrix. Applying inequality (18) to the operator matrix P gives
inequality (21). �

Remark 2 Letting f (t) = t and X = Y = I in inequality (21) gives inequality (1). In that
sense, inequality (21) is a generalization of inequality (1).

Corollary 3 Let A, B, X, Y ∈ Mn(C) such that A is self-adjoint, B ≥ 0, ±A ≤ B, and
max{‖X‖2,‖Y‖2} ≤ 1. Then

sj
(

XAY ∗)r
) ≤ max

{‖X‖2,‖Y‖2}sj
(

Br ⊕ Br) (22)

and

sj
(

e|XAY∗| – I
) ≤ max

{‖X‖2,‖Y‖2}sj
((

eB – I
) ⊕ (

eB – I
))

(23)

for j = 1, 2, . . . , n.

Proof Letting f (t) = tr , r ≥ 1, and f (t) = et – 1 in Theorem 3 gives inequalities (22) and
(23), respectively. �

The following lemma, which was proved in [12], is necessary to prove the next result.

Lemma 4 Let A ∈Mn(C). Then

[

|A| ±A∗

±A |A∗|

]

≥ 0. (24)

Theorem 4 Let A, B, X, Y ∈Mn(C) such that max{‖X‖2,‖Y‖2} ≤ 1, and let f be a nonneg-
ative increasing convex function on [0,∞) satisfying f (0) = 0 and

P = A|C|A∗ + B
∣
∣C∗∣∣B∗.
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Then

sj
(

f
(∣
∣X

(

AC∗B∗ + BCA∗)Y ∗∣∣)) ≤ max
{‖X‖2,‖Y‖2}sj

(

f (P) ⊕ f (P)
)

(25)

for j = 1, 2, . . . , n.

Proof Let Z =
[ A B

0 0

]

and Y =
[ |C| ±C∗

±C |C∗|
]

. Then Y ≥ 0 and

ZYZ∗ =

[

A|C|A∗ ± BCA∗ ± AC∗B∗ + B|C∗|B∗ 0
0 0

]

≥ 0,

this implies that

A|C|A∗ + B
∣
∣C∗∣∣B∗ ≥ ±(

AC∗B∗ + BCA∗). (26)

Applying the conclusion of inequality (21) to the operator matrix ZYZ∗ gives

sj
(

f
(∣
∣X

(

AC∗B∗ + BCA∗)Y ∗∣∣)) ≤ max
{‖X‖2,‖Y‖2}sj

(

f (P) ⊕ f (P)
)

which is precisely (25). �

Remark 3 Substituting f (t) = t, X, Y , C = I , and R = (AA∗ + BB∗) in Theorem 4 gives the
following inequality, which is a generalization of inequality (2):

sj
(

f
(∣
∣AB∗ + BA∗∣∣)) ≤ sj

(

f (R) ⊕ f (R)
)

(27)

for j = 1, 2, . . . , n.

Remark 4 Letting f (t) = t in inequality (27), we give inequality (2). In that sense, inequality
(27) is certainly a generalization of inequality (2).

The following result is a direct consequence of Theorem 2.

Corollary 4 Let A, B, X, Y ∈Mn(C) where max{‖X‖2,‖Y‖2} ≤ 1, and let f be a nonnegative
increasing convex function on [0,∞) satisfying f (0) = 0 and K = M ⊕ N , where

M = |A| + |B| and N =
∣
∣A∗∣∣ +

∣
∣B∗∣∣.

Then

sj
(

f
(∣
∣X(A + B)Y ∗∣∣)) ≤ max

{‖X‖2,‖Y‖2}sj
(

f (M) ⊕ f (N)
)

(28)

for j = 1, 2, . . . , n.

Proof It was shown in [15] that the matrix

K =

[

|A| + |B| A + B
A∗ + B∗ |A∗| + |B∗|

]

is positive semidefinite. Now, inequality (28) is a direct consequence of Theorem 2. �
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Remark 5 Substituting X = Y = I in inequality (28) leads to inequality (5). In that sense,
inequality (28) is certainly a generalization of inequality (5).

The following inequality is a generalization of inequality (6).

Theorem 5 Let A, B, C, X, Y ∈ Mn(C) such that
[ A B

B∗ C

] ≥ 0, max{‖X‖2,‖Y‖2} ≤ 1, and let
f be a nonnegative increasing convex function on [0,∞) satisfying f (0) = 0. Then

2sj
(

f
(∣
∣XBY ∗∣∣)) ≤ max

{‖X‖2,‖Y‖2}sj

(

f

([

A B
B∗ C

]))

(29)

for j = 1, 2, . . . , n.

Proof Let P =
[ A B

B∗ C

] ≥ 0. Then there exist H , L ∈ Mn(C) such that P = Q∗Q, where Q =
[(H)∗(L)∗]. This means that A = HH∗, C = LL∗, and B = HL∗.

2sj
(

f
(∣
∣XBY ∗∣∣)) = 2sj

(

f
(∣
∣XHL∗Y ∗∣∣))

= 2f
(

sj
(

XHL∗Y ∗))

≤ f
(

sj(W )
)

for j = 1, 2, . . . , n, where W = H∗X∗XH + L∗Y ∗YL. Now, letting Z =
[ X∗X 0

0 Y∗Y

]

gives

f
(

sj(W )
)

= f

(

sj

([

H∗ L∗

0 0

]

Z

[

H 0
L 0

]))

= f

(

λj

([

H∗ L∗

0 0

]

Z

[

H 0
L 0

]))

= f

(

λj

(

Z1/2

[

H 0
L 0

][

H∗ L∗

0 0

]

Z1/2

))

= f

(

λj

(

Z1/2

[

A B
B∗ C

]

Z1/2

))

= λj

(

f

(

Z1/2

[

A B
B∗ C

]

Z1/2

))

≤ λj

(

Z1/2f

([

A B
B∗ C

])

Z1/2

)

= sj

(

Z1/2f

([

A B
B∗ C

])

Z1/2

)

≤ ‖Z‖sj

(

f

([

A B
B∗ C

]))

= max
{‖X‖2,‖Y‖2}sj

(

f

([

A B
B∗ C

]))

.

Inequality (29) has thus been substantiated. �
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Remark 6 Letting f (t) = t and X = Y = I in Theorem 5 gives inequality (6). In that sense
inequality (29) is a generalization of inequality (6).

At this stage of our discussion, we provide a considerable generalization of inequality
(3).

Theorem 6 Let A, B, X, Y ∈ Mn(C) such that A is self-adjoint, B ≥ 0, ±A ≤ B, max{‖X‖2,
‖Y‖2} ≤ 1, and let f be a nonnegative increasing convex function on [0,∞) satisfying f (0) =
0. Then

2sj
(

f
(∣
∣XAY ∗∣∣)) ≤ max

{‖X‖2,‖Y‖2}sj
(

f
(

(B + A) ⊕ f (B – A)
))

(30)

for j = 1, 2, . . . , n.

Proof Since ±A ≤ B, it follows that

P =

[

B + A 0
0 B – A

]

≥ 0.

If U = 1√
2

[ I –I
I I

]

, then

Q =

[

B A
A B

]

= UPU∗,

which is equivalent to stating that Q ≥ 0. Now applying Theorem 5 to the operator matrix
Q leads to

2sj
(

f
(∣
∣XAY ∗∣∣)) ≤ max

{‖X‖2,‖Y‖2}sj

(

f

([

B A
A B

]))

= max
{‖X‖2,‖Y‖2}sj

(

f

([

B + A 0
0 B – A

]))

= max
{‖X‖2,‖Y‖2}sj

(

f
(

(B + A) ⊕ f (B – A)
))

.

Inequality (30) has thus been substantiated. �

Corollary 5 Let A, B, X, Y ∈ Mn(C) such that A is self-adjoint, B ≥ 0, ±A ≤ B, and
max{‖X‖2,‖Y‖2} ≤ 1. Then

2sj
(

XAY ∗)r ≤ max
{‖X‖2,‖Y‖2}sj

(

(B + A)r ⊕ (B – A)r) (31)

and

2sj
(

e|XAY∗| – I
) ≤ max

{‖X‖2,‖Y‖2}sj
((

eB+A – I
) ⊕ (

eB–A – I
))

(32)

for j = 1, 2, . . . , n.

Proof Letting f (t) = tr , r ≥ 1, and f (t) = et – 1 in Theorem 6 gives inequalities (31) and
(32), respectively. �
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3 Norm inequalities
We begin this section by the following lemmas that are essential in our study. The first
lemma is folk lemma, the second lemma was introduced in [22], and the third lemma was
obtained in [3].

Lemma 5 Let A, B ∈Mn, then

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[

A B
B A

]∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[

A + B 0
0 A – B

]∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
. (33)

Lemma 6 Let A, B ∈Mn, where AB is Hermitian. Then

|||AB||| ≤ ∣
∣
∣
∣
∣
∣Re(BA)

∣
∣
∣
∣
∣
∣. (34)

Let A, B, X ∈ B(H) such that X is positive. Then

2
∣
∣
∣
∣
∣
∣AXB∗∣∣∣∣∣∣ ≤ ∣

∣
∣
∣
∣
∣X1/2|A|2X1/2 + X1/2|B|2X1/2∣∣

∣
∣
∣
∣. (35)

The following theorem can be obtained from norm inequality (13).

Theorem 7 Let Ai, Bi, Xi ∈Mn, i = 1, 2, . . . , n, such that every Xi is positive,

C =

⎡

⎢
⎢
⎢
⎢
⎣

A∗
1A1 + B∗

1B1 · · · A∗
1An + B∗

1Bn

A∗
2A1 + B∗

2B1 · · · A∗
2An + B∗

2Bn
...

. . .
...

A∗
nA1 + B∗

nB1 · · · A∗
nAn + B∗

nBn

⎤

⎥
⎥
⎥
⎥
⎦

,

and

X =

⎡

⎢
⎢
⎢
⎢
⎣

X1 0 . . . 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · Xn

⎤

⎥
⎥
⎥
⎥
⎦

,

then

2

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

( n
∑

i=1

AiXiB∗
i

)∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤ ∣

∣
∣
∣
∣
∣C1/2XC1/2∣∣

∣
∣
∣
∣. (36)

Proof On ⊕Mn, define

A =

⎡

⎢
⎢
⎢
⎢
⎣

A1 A2 . . . An

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎢
⎣

B1 B2 . . . Bn

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎦

.
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Then

AXB∗ =

⎡

⎢
⎢
⎢
⎢
⎣

∑n
i=1 AiXiB∗

i 0 . . . 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎦

,

and

X1/2|A|2X1/2 + X1/2|B|2X1/2 = X1/2(|A|2 + |B|2)X1/2

= X1/2CX1/2

=

⎡

⎢
⎢
⎢
⎢
⎣

V11 V12 . . . V1n

V21 V22 · · · V2n
...

...
. . .

...
Vn1 Vn2 · · · Vnn

⎤

⎥
⎥
⎥
⎥
⎦

,

where

Vi,j = X1/2
i A∗

i AjX1/2
j + X1/2

i B∗
i BjX1/2

j .

Applying inequality (35) gives

2

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

( n
∑

i=1

AiXiB∗
i

)∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤ ∣

∣
∣
∣
∣
∣X1/2CX1/2∣∣

∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣X1/2C1/2C1/2X1/2∣∣

∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣C1/2XC1/2∣∣

∣
∣
∣
∣,

(

by applying inequality (8)
)

.

Thus, inequality (36) has been substantiated. �

Remark 7 Inequality (36) is a general norm inequality that involves inequality (13). To see
this, substitute Ai = Xi = Bi = 0 for i = 2, . . . , n in inequality (36), which leads to inequality
(13).

Theorem 8 Let Ai, Xi, Bi ∈Mn, i = 1, 2, . . . , n. Then

2

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n
∑

i=1

AiXiB∗
i

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤ ∣

∣
∣
∣
∣
∣A∗AX + XB∗B

∣
∣
∣
∣
∣
∣, (37)

where

A =

⎡

⎢
⎢
⎢
⎢
⎣

A1 A2 . . . An

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎢
⎣

B1 B2 . . . Bn

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎦
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and

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

X1 0 · · · 0

0 X2 · · · ...
...

...
. . . 0

0 · · · 0 Xn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Proof Replacing the operator matrices A, B, and X in inequality (9) gives inequality (37).
�

The next special case of Theorem 8 was proved by Bhatia and Davis in [13].

Corollary 6 Let A, X, B ∈Mn. Then

2
∣
∣
∣
∣
∣
∣AXB∗∣∣∣∣∣∣ ≤ ∣

∣
∣
∣
∣
∣A∗AX + XB∗B

∣
∣
∣
∣
∣
∣. (38)

Proof Inequality (38) follows from inequality (37) by substituting Ai = Bi = Xi = 0 for i =
2, 3, . . . , n. �

Another conclusion of Theorem 8 is a generalization of arithmetic–geometric mean
inequality for unitarily invariant norms.

Corollary 7 Let Ai, Bi ∈Mn, i = 1, 2, . . . , n, such that

A =

⎡

⎢
⎢
⎢
⎢
⎣

A1 A2 . . . An

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎢
⎣

B1 B2 . . . Bn

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎦

.

Then

2

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

( n
∑

i=1

AiB∗
i

)∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤ ∣

∣
∣
∣
∣
∣A∗A + B∗B

∣
∣
∣
∣
∣
∣. (39)

Proof Substituting X = I in inequality (37) gives inequality (39). �

Remark 8 Letting Ai = Bi = 0 for i = 2, 3, . . . , n in inequality (39) gives

2
∣
∣
∣
∣
∣
∣A1B∗

1
∣
∣
∣
∣
∣
∣ ≤ ∣

∣
∣
∣
∣
∣A∗

1A1 + B∗
1B1

∣
∣
∣
∣
∣
∣,

which is the arithmetic–geometric mean inequality for unitarily invariant norms.

The following inequality is a generalization and more general than inequality (24).
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Corollary 8 Let Ai ∈Mn, i = 1, 2, . . . , n, where

A =

⎡

⎢
⎢
⎢
⎢
⎣

A1 A2 . . . An

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎦

.

Then

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

( n
∑

i=1

AiA∗
i

)∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤ ∣

∣
∣
∣
∣
∣A∗A

∣
∣
∣
∣
∣
∣. (40)

Proof Substituting Bi = Ai in inequality (39) gives inequality (40). �

Remark 9 By making use of inequality (10), we note that when we specify inequality (40)
to the usual spectral norm, it is sharper than inequality (12).

The following inequality is a generalization and more general than inequality (11).

Corollary 9 Let Ai ∈Mn, i = 1, 2, . . . , n. Then

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n
∑

i=1

Ai

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤ ∣

∣
∣
∣
∣
∣
(

A1/2
i A1/2

j
)

1≤i,j≤n

∣
∣
∣
∣
∣
∣. (41)

Proof Replacing A by A1/2 in inequality (40) gives inequality (41). �

Remark 10 By using inequality (27), we note that when we specify inequality (41) to the
spectral norm, it is sharper than inequality (21).

Because of the large number of papers that discuss unitarily invariant norms for 2 × 2
operator matrices, we specialize inequality (37) for n = 2. This special case contains several
remarkable inequalities.

Corollary 10 Let Ai, Xi, Bi ∈Mn, i = 1, 2. Then

2
∣
∣
∣
∣
∣
∣A1X1B∗

1 + A2X2B∗
2
∣
∣
∣
∣
∣
∣ ≤ |||Z|||, (42)

where

Z =

[

A∗
1A1X1 + X1B∗

1B1 A∗
1A2X2 + X1B∗

1B2

A∗
2A1X1 + X2B∗

2B1 A∗
2A2X2 + X2B∗

2B2

]

.

Proof Substituting Ai = Xi = Bi = 0 for i = 3, 4, . . . , n in inequality (37) gives inequality (42).
�

By making use of inequality (42), we provide the following inequality.
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Corollary 11 Let Ai, Bi ∈Mn, i = 1, 2. Then

2
∣
∣
∣
∣
∣
∣A1B∗

1 + A2B∗
2
∣
∣
∣
∣
∣
∣ ≤ |||L ⊕ M|||, (43)

where

L = A∗
1A1 + B∗

1B1 +
∣
∣A∗

2A1 + B∗
2B1

∣
∣

and

M = A∗
2A2 + B∗

2B2 +
∣
∣A∗

1A2 + B∗
1B2

∣
∣.

Proof Throughout the proof of this theorem, let

S =

[

A∗
1A1 + B∗

1B1 0
0 A∗

2A2 + B∗
2B2

]

,

T =

[

0 A∗
1A2 + B∗

1B2

A∗
2A1 + B∗

2B1 0

]

.

Substituting X1 = X2 = I in inequality (42) gives

2
∣
∣
∣
∣
∣
∣A1B∗

1 + A2B∗
2
∣
∣
∣
∣
∣
∣ ≤

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[

A∗
1A1 + B∗

1B1 A∗
1A2 + B∗

1B2

A∗
2A1 + B∗

2B1 A∗
2A2 + B∗

2B2

]∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣(S + T)

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣
(|S + T |)∣∣∣∣∣∣

≤ ∣
∣
∣
∣
∣
∣
(|S| + |T |)∣∣∣∣∣∣

=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
S +

[

|A∗
2A1 + B∗

2B1| 0
0 |A∗

1A2 + B∗
1B2|

]∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[

L 0
0 M

]∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
.

Inequality (43) has thus been substantiated. �

In turn, inequality (43) gives us the following finding.

Corollary 12 Let A, B ∈Mn. Then

2
∣
∣
∣
∣
∣
∣AB∗ + BA∗∣∣∣∣∣∣ ≤ |||X ⊕ X|||, (44)

where

X = A∗A + B∗B +
∣
∣B∗A + A∗B

∣
∣.

Proof Substituting A1 = B2 = A and A2 = B1 = B in inequality (43) gives inequality (44). �
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Another attractive special case of inequality (43) is the following result, which was
shown in [21].

Corollary 13 Let A, B ∈Mn be positive. Then

|||A + B||| ≤ ∣
∣
∣
∣
∣
∣
(

A +
∣
∣B1/2A1/2∣∣

) ⊕ (

B +
∣
∣A1/2B1/2∣∣

)∣
∣
∣
∣
∣
∣. (45)

Proof Substituting A1 = B1 = A1/2 and A2 = B2 = B1/2 in inequality (43) gives inequality
(45). �

If we look at inequality (42) from another side, we obtain the following inequality, which
was proven in [20].

Corollary 14 Let A, B ∈Mn. Then

2
∣
∣
∣
∣
∣
∣AB∗ + BA∗∣∣∣∣∣∣ ≤ ∣

∣
∣
∣
∣
∣(A + B)∗(A + B) ⊕ (A – B)∗(A – B)

∣
∣
∣
∣
∣
∣. (46)

Proof Throughout this proof, let

P = A∗A + B∗B + A∗B + B∗A

and

Q = A∗A + B∗B – A∗B – B∗A.

Substituting A1 = B2 = A and A2 = B1 = B in inequality (42) gives

2
∣
∣
∣
∣
∣
∣AB∗ + BA∗∣∣∣∣∣∣ ≤

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[

A∗A + B∗B A∗B + B∗A
B∗A + A∗B A∗A + B∗B

]∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[

P 0
0 Q

]∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(

by applying equation (33)
)

=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[

(A + B)∗(A + B) 0
0 (A – B)∗(A – B)

]∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
,

which is precisely inequality (46). �

The next inequality is a special case of inequality (42), which was shown in [18].

Corollary 15 Let X1, X2 ∈Mn. Then

|||X1 + X2||| ≤ 2|||X1 ⊕ X2|||. (47)

Proof Substituting A1 = A2 = B1 = B2 = I in inequality (42) gives

2|||X1 + X2||| ≤
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[

2X1 X1 + X2

X1 + X2 2X2

]∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
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≤ 2

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[

X1 0
0 X2

]∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[

0 X1 + X2

X1 + X2 0

]∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

= 2|||X1 ⊕ X2||| + |||X1 + X2|||.

This is equivalent to saying that

|||X1 + X2||| ≤ 2|||X1 ⊕ X2|||. �

Another special case of inequality (42) has been established by using a completely dif-
ferent technique in [25].

Corollary 16 Let A, B ∈Mn be positive. Then

|||A – B||| ≤ |||A ⊕ B|||. (48)

Proof Letting A1 = B1 = A1/2, A2 = –B2 = B1/2 in inequality (42) gives

2|||A – B||| ≤
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[

2A 0
0 2B

]∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

= 2|||A ⊕ B|||,

which is inequality (48). �
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