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Strongly convex functions as a subclass of convex functions, still equipped with
stronger properties, are employed through several generalizations and improvements
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1 Introduction
One of the extended approaches to convexity developed in the last century includes
strongly convex functions as a subclass of convex functions (see [20] and for more recent
contributions, [10, 11, 18]).

Let us recall that a function f : [a, b] ⊆R →R is strongly convex with modulus c > 0 if

f (λx + (1 – λ)y) ≤ λf (x) + (1 – λ)f (y) – cλ(1 – λ)(x – y)2 (1.1)

for all x, y ∈ [a, b] and λ ∈ [0, 1].
A function f that satisfies (1.1) with c = 0, i.e.,

f (λx + (1 – λ)y) ≤ λf (x) + (1 – λ)f (y), (1.2)

is convex in the usual sense. Obviously, strong convexity implies convexity, but the re-
verse implication is not true in general. For example, a linear function is convex but is not
strongly convex.
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Comparing with convex functions, the strongly convex ones possess stronger versions
of the analogous properties. One of their useful characterizations is given in the following
lemma (see [23, p. 268], [11, 20], and the references therein).

Lemma 1 A function f : [a, b] → R is strongly convex with modulus c > 0 iff the function
g : [a, b] →R defined by g(x) = f (x) – cx2 is convex.

We further use the well-known theorem proved by Stolz [19, p. 25].

Theorem 1 (Stolz) Let f : [a, b] → R be a convex function. Then f is continuous on (a, b)

and has finite left and right derivatives at each point of (a, b). Both f ′
– and f ′

+ are nonde-
creasing on (a, b). Moreover, for all x, y ∈ (a, b), x < y, we have

f ′
–(x) ≤ f ′

+(x) ≤ f ′
–(y) ≤ f ′

+(y).

Strongly convex functions are accompanied by the corresponding Jensen inequality,
which was proved in [20].

Theorem 2 Let a function f : (a, b) → R be strongly convex with modulus c > 0. Sup-
pose x = (x1, . . . , xn) ∈ (a, b)n and a = (a1, . . . , an) is a nonnegative n-tuple such that An =
∑n

i=1ai > 0 with x̄ = 1
An

∑n
i=1aixi. Then

f (x̄) ≤ 1
An

n∑

i=1

aif (xi) –
c

An

n∑

i=1

ai(xi – x̄)2. (1.3)

It is easily seen that for c = 0, inequality (1.3) becomes the Jensen inequality for convex
functions:

f (x̄) ≤ 1
An

n∑

i=1

aif (xi) . (1.4)

Inequality (1.3) provides a better upper bound for f (x̄) because of the nonnegativity of
the term c

An

∑n
i=1ai(xi – x̄)2. Thus (1.3) is an improvement of (1.4) and is considered as its

stronger variant.
Another Jensen-type inequality was established by Mercer [17]. Given a convex function

f : (a, b) → R with m, M ∈ (a, b), m < M, for x = (x1, . . . , xn) ∈ [m, M]n and a nonnegative
n-tuple a = (a1, . . . , an) such that An =

∑n
i=1ai > 0 with x̄ = 1

An

∑n
i=1aixi, the Jensen–Mercer

inequality states that

f (m + M – x̄) ≤ f (m) + f (M) –
1

An

n∑

i=1

aif (xi). (1.5)

Numerous improvements and generalizations of (1.5) have been obtained since. Here
we accentuate two such results. In [15] the authors proved that for a convex function
f : (a, b) → R, x = (x1, . . . , xn) ∈ [m, M]n, where m, M ∈ (a, b), m < M, and a nonnegative
n-tuple a = (a1, . . . , an) such that An =

∑n
i=1ai > 0, we have the inequalities

f (c) + f ′(c)

(

m + M – c –
1

An

n∑

i=1

aixi

)

(1.6)



Ivelić Bradanović and Lovričević Journal of Inequalities and Applications        (2024) 2024:112 Page 3 of 19

≤ f (m) + f (M) –
1

An

n∑

i=1

aif (xi)

≤ f (d) + f ′(m)(m – d) + f ′(M)(M – d) –
1

An

n∑

i=1

aif ′(xi)(xi – d)

for all c, d ∈ [m, M].
Furthermore, the following variant of the Jensen–Mercer inequality was proved in [18]

for strongly convex functions.

Theorem 3 Let f : (a, b) → R be a strongly convex function, and let m, M ∈ (a, b), m < M.
Let x = (x1, . . . , xn) ∈ [m, M]n, and let a = (a1, . . . , an) be a nonnegative n-tuple such that
∑n

i=1ai = 1 with x̄ =
∑n

i=1aixi. Let λi ∈ [0, 1], i ∈ {1, . . . , n}. Then

f (m + M – x̄) ≤ f (m) + f (M) –
n∑

i=1

aif (xi) (1.7)

– c

[

2(M – m)2
n∑

i=1

aiλi(1 – λi) +
n∑

i=1

ai(x̄ – xi)
2

]

.

For some recent results on the Jensen–Mercer inequality, see [1–3, 9, 12–14, 16, 24].
With the aim of new improvements and elaborating the existing results, the paper is

divided into five sections. In Section 1, we recall a few results needed further: some on
strongly convex functions and some well-known ones, concerning convex functions. Sec-
tions 2 and 3 deal with the Jensen and Jensen–Mercer inequalities, both generalized by
means of strongly convex functions. In Sect. 4, we discuss applications to Csiszár strong
f -divergences introduced in [10], for which we provide new estimates and their partic-
ular types in the same manner. We also derive new estimates for the Shannon entropy.
Section 5 deals with new Chebyshev-type inequalities.

2 The Jensen-type inequalities
We start this section with important properties of strongly convex functions, which are
direct consequences of the characterizations given in Lemma 1 and Theorem 1.

Lemma 2 Let f : [a, b] → R be a strongly convex function with modulus c > 0. Then it is
continuous on (a, b) and has finite left and right derivatives at each point of (a, b). Both f ′

–

and f ′
+ are nondecreasing on (a, b). Moreover, for all x, y ∈ (a, b), x < y, we have

f ′
–(x) – 2cx ≤ f ′

+(x) – 2cx ≤ f ′
–(y) – 2cy ≤ f ′

+(y) – 2cy. (2.1)

If f is differentiable, then f ′ is strongly increasing on (a, b), i.e., for all x, y ∈ (a, b), x < y,

f ′(x) + 2c(y – x) ≤ f ′(y). (2.2)

Proof Let id denote the identity function, i.e., id(t) = t for all t ∈ [a, b]. Since f is strongly
convex with modulus c > 0, the function g = f – c · id2 is convex. Now, as an easy conse-
quence of Theorem 1 applied to the convex function g = f – c · id2, we get the first part of
the statement.
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If f is differentiable, then f ′(x) = f ′
–(x) = f ′

+(x) and f ′(y) = f ′
–(y) = f+(y), and (2.1) implies

(2.2). �

Bearing in mind the statement of the previous lemma, for a strongly convex function
f : [a, b] → R, by f ′(x), x ∈ (a, b), we mean that f ′(x) is any element from the interval
[f ′

–(x), f ′
+(x)]. If f is differentiable, then f ′(x) = f ′

–(x) = f ′
+(x).

Furthermore, for a strongly convex function f : [a, b] →R with modulus c > 0, we have

f (x) ≥ f (y) + f ′(y)(x – y) + c(x – y)2 (2.3)

for all x, y ∈ (a, b). This inequality is as an easy consequence of the characterization of
convex functions via support lines (see [21, Theorem 1.6]) applied to the convex function
g = f – c · id2.

A generalization and an improvement of Jensen’s inequality (1.3) for strongly convex
functions is included in the following theorem.

Theorem 4 Let f : (a, b) → R be a strongly convex function with modulus c > 0. Suppose
x = (x1, . . . , xn) ∈ (a, b)n and a = (a1, . . . , an) is a nonnegative n-tuple with An =

∑n
i=1 ai > 0.

Let x̄ = 1
An

∑n
i=1 aixi and x̂i = (1 – λi)x̄ + λixi, λi ∈ [0, 1], i ∈ {1, . . . , n}. Then

0 ≤
∣
∣
∣
∣
∣

1
An

n∑

i=1

ai
∣
∣f (xi) – f (x̂i) – c(1 – λi)

2(x̄ – xi)
2∣∣ –

1
An

n∑

i=1

ai(1 – λi)
∣
∣f ′(x̂i)

∣
∣ |x̄ – xi|

∣
∣
∣
∣
∣

≤ 1
An

n∑

i=1

aif (xi) –
1

An

n∑

i=1

aif (x̂i)

–
1

An

n∑

i=1

ai(1 – λi)f ′(x̂i)(x̄ – xi) –
c

An

n∑

i=1

ai(1 – λi)
2(x̄ – xi)

2. (2.4)

Proof Applying the triangle inequality ||u| – |v|| ≤ |u – v| to (2.3), we get

∣
∣
∣
∣f (x) – f (y) – c(x – y)2∣∣ –

∣
∣f ′(y)

∣
∣
∣
∣(x – y)

∣
∣
∣
∣

≤ ∣
∣f (x) – f (y) – c(x – y)2 – f ′(y)(x – y)

∣
∣

= f (x) – f (y) – c(x – y)2 – f ′(y)(x – y). (2.5)

Setting y = x̂i and x = xi, i ∈ {1, . . . , n}, from (2.5) we have

∣
∣
∣
∣f (xi) – f (x̂i) – c(1 – λi)

2(x̄ – xi)
2∣∣ – (1 – λi)

∣
∣f ′(x̂i)

∣
∣ |x̄ – xi|

∣
∣

≤ ∣
∣f (xi) – f (x̂i) – (1 – λi)f ′(x̂i)(x̄ – xi) – c(1 – λi)

2(x̄ – xi)
2∣∣

= f (xi) – f (x̂i) – (1 – λi)f ′(x̂i)(x̄ – xi) – c(1 – λi)
2(x̄ – xi)

2.

Now multiplying by ai, summing over i, i = 1, . . . , n, and then dividing by An =
∑n

i=1 ai > 0,
we get

1
An

n∑

i=1

ai
∣
∣
∣
∣f (xi) – f (x̂i) – c(1 – λi)

2(x̄ – xi)
2∣∣ – (1 – λi)

∣
∣f ′(x̂i)

∣
∣ |x̄ – xi|

∣
∣
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≤ 1
An

n∑

i=1

ai
∣
∣f (xi) – f (x̂i) – (1 – λi)f ′(x̂i)(x̄ – xi) – c(1 – λi)

2(x̄ – xi)
2∣∣

=
1

An

n∑

i=1

aif (xi) –
1

An

n∑

i=1

aif (x̂i)

–
1

An

n∑

i=1

ai(1 – λi)f ′(x̂i)(x̄ – xi) –
c

An

n∑

i=1

ai(1 – λi)
2(x̄ – xi)

2. (2.6)

By the triangle inequality (
∣
∣∑n

i=1 aizi
∣
∣ ≤ ∑n

i=1 ai |zi|), we also have

∣
∣
∣
∣
∣

1
An

n∑

i=1

ai
∣
∣f (xi) – f (x̂i) – c(1 – λi)

2(x̄ – xi)
2∣∣ –

1
An

n∑

i=1

ai(1 – λi)
∣
∣f ′(x̂i)

∣
∣ |x̄ – xi|

∣
∣
∣
∣
∣

≤ 1
An

n∑

i=1

ai
∣
∣
∣
∣f (xi) – f (x̂i) – c(1 – λi)

2(x̄ – xi)
2∣∣ – (1 – λi)

∣
∣f ′(x̂i)

∣
∣ |x̄ – xi|

∣
∣ . (2.7)

Now combining (2.6) and (2.7), we get (2.4). �

The following corollary is a direct consequence of Theorem 4.

Corollary 1 Let f : (a, b) → R be a strongly convex function with modulus c > 0. Suppose
x = (x1, . . . , xn) ∈ (a, b)n and a = (a1, . . . , an) is a nonnegative n-tuple with An =

∑n
i=1 ai > 0

and x̄ = 1
An

∑n
i=1 aixi. Then

0 ≤
∣
∣
∣
∣
∣

1
An

n∑

i=1

ai
∣
∣f (xi) – f (x̄) – c(xi – x̄)2∣∣ –

∣
∣f ′(x̄)

∣
∣ · 1

An

n∑

i=1

ai |xi – x̄|
∣
∣
∣
∣
∣

≤ 1
An

n∑

i=1

aif (xi) – f (x̄) –
c

An

n∑

i=1

ai(xi – x̄)2. (2.8)

Proof Setting λi = 0, i = 1, . . . , n, from (2.4) we get

0 ≤
∣
∣
∣
∣
∣

1
An

n∑

i=1

ai
∣
∣f (xi) – f (x̄) – c(x̄ – xi)

2∣∣ –
1

An

n∑

i=1

ai
∣
∣f ′(x̄)

∣
∣ |x̄ – xi|

∣
∣
∣
∣
∣

(2.9)

≤ 1
An

n∑

i=1

aif (xi) –
1

An

n∑

i=1

aif (x̄)

–
1

An

n∑

i=1

aif ′(x̄)(x̄ – xi) –
c

An

n∑

i=1

ai(x̄ – xi)
2.

Note that

1
An

n∑

i=1

aif ′(x̄)(xi – x̄) = f ′(x̄)
1

An

n∑

i=1

ai(xi – x̄) = 0. (2.10)

Now combining (2.9) and (2.10), we get (2.8). �

Finally, in a similar manner, we get an inequality, which counterparts the Jensen inequal-
ity (1.3).
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Theorem 5 Let f : (a, b) → R be a strongly convex function with modulus c > 0. Suppose
x = (x1, . . . , xn) ∈ (a, b)n and a = (a1, . . . , an) is a nonnegative n-tuple with An =

∑n
i=1 ai > 0

and x̄ = 1
An

∑n
i=1 aixi. Let λi ∈ [0, 1], i ∈ {1, . . . , n}. Then

1
An

n∑

i=1

aif (xi) –
1

An

n∑

i=1

aif ((1 – λi)x̄ + λixi) (2.11)

≤ 1
An

n∑

i=1

ai(1 – λi)f ′(xi)(xi – x̄) –
c

An

n∑

i=1

ai(1 – λi)
2(x̄ – xi)

2.

Proof With (2.3) slightly modified, for x = (1 – λi)x̄ + λixi and y = yi, i ∈ {1, . . . , n}, we have

f ((1 – λi)x̄ + λixi) – f (xi) ≥ f ′(xi)(1 – λi)(x̄ – xi) + c(1 – λi)
2(x̄ – xi)

2.

Now multiplying by ai, summing over i, i = 1, . . . , n, and then dividing by An > 0, we get

1
An

n∑

i=1

aif ((1 – λi)x̄ + λixi) –
1

An

n∑

i=1

aif (xi)

≥ 1
An

n∑

i=1

ai(1 – λi)f ′(xi)(x̄ – xi) +
c

An

n∑

i=1

ai(1 – λi)
2(x̄ – xi)

2,

which is equivalent to (2.11). �

Again, a direct consequence of Theorem 5 follows by setting λi = 0 for i = 1, . . . , n.

Corollary 2 Let f : (a, b) → R be a strongly convex function with modulus c > 0. Suppose
x = (x1, . . . , xn) ∈ (a, b)n and a = (a1, . . . , an) is a nonnegative n-tuple with An =

∑n
i=1 ai > 0

and x̄ = 1
An

∑n
i=1 aixi. Then

0 ≤ 1
An

n∑

i=1

aif (xi) – f (x̄) (2.12)

≤ 1
An

n∑

i=1

aif ′(xi)xi –
1

A2
n

n∑

i=1

aixi

n∑

i=1

aif ′(xi) –
c

An

n∑

i=1

ai(x̄ – xi)
2.

Remark 1 Our results generalize and improve the main results obtained in [7, 8], which
were related to convex functions.

3 The Jensen–Mercer-type inequalities
We embark on further investigation of the Jensen–Mercer inequality (1.5). Along the way,
we generalize and improve results (1.6) from [15] and (1.7) from [18].

Theorem 6 Let a function f : (a, b) → R be strongly convex with modulus c > 0, and let
m, M ∈ (a, b), m < M, and λi ∈ [0, 1], i ∈ {1, . . . , n}. Suppose x = (x1, . . . , xn) ∈ [m, M]n and
a = (a1, . . . , an) is a nonnegative n-tuple with An =

∑n
i=1ai > 0 and x̄ = 1

An

∑n
i=1 aixi Then

f (d) + f ′(d) (m + M – d – x̄) +
c

An

n∑

i=1

ai(m + M – d – xi)
2
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+
2c(M – m)2

An

n∑

i=1

aiλi(1 – λi) (3.1)

≤ f (m) + f (M) –
1

An

n∑

i=1

aif (xi)

≤ f (e) + f ′(m)(m – e) + f ′(M)(M – e) –
1

An

n∑

i=1

aif ′(xi)(xi – e)

–
c

An

n∑

i=1

ai(M – xi)(3xi – 2e – M) + c(m – e)2

for all d, e ∈ [m, M].

Proof Let λi ∈ [0, 1], xi ∈ [m, M], and yi = m + M – xi, i ∈ {1, . . . , n}. Then we can write as
convex combinations:

xi = λim + (1 – λi)M,

yi = (1 – λi)m + λiM, i ∈ {1, . . . , n}.

Applying (1.1) twice, we have

f (m + M – xi) = f ((1 – λi)m + λiM)

≤ (1 – λi)f (m) + λif (M) – cλi(1 – λi)(M – m)2

= f (m) + f (M) – λif (m) + λif (M) – f (M) – cλi(1 – λi)(M – m)2

= f (m) + f (M) –
[
λif (m) + (1 – λi)f (M)

]
– cλi(1 – λi)(M – m)2

≤ f (m) + f (M) – f (λim + (1 – λi)M) – 2cλi(1 – λi)(M – m)2

= f (m) + f (M) – f (xi) – 2cλi(1 – λi)(M – m)2.

Further, applying (2.3), we get

f (d) + f ′(d)(m + M – xi – d) + c(m + M – xi – d)2 ≤ f (m + M – xi),

which, combined with the previous inequality, implies

f (d) + f ′(d)(m + M – xi – d) + c(m + M – xi – d)2 (3.2)

≤ f (m + M – xi)

≤ f (m) + f (M) – f (xi) – 2cλi(1 – λi)(M – m)2.

Furthermore, for xi, e ∈ [m, M], i ∈ {1, . . . , n}, by (2.3) we have

f (m) – f (e) ≤ f ′(m)(m – e) + c(m – e)2, (3.3)

f (M) – f (xi) ≤ f ′(M)(M – xi) + c(M – xi)
2.
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Using (3.3), we have

f (m) + f (M) – f (xi) – 2cλi(1 – λi)(M – m)2 (3.4)

= f (e) + f (m) – f (e) + f (M) – f (xi) – 2cλi(1 – λi)(M – m)2

≤ f (e) + f ′(m)(m – e) + f ′(M)(M – xi)

+ c(m – e)2 + c(M – xi)
2 – 2cλi(1 – λi)(M – m)2

= f (e) + f ′(m)(m – e) + f ′(M)(M – e) – f ′(M)(xi – e)

+ c(m – e)2 + c(M – xi)
2 – 2cλi(1 – λi)(M – m)2.

Since f ′ is strongly increasing and xi ≤ M, by (2.2) we have –f ′(M) ≤ –f ′(xi) – 2c(M – xi),
i.e.,

f (e) + f ′(m)(m – e) + f ′(M)(M – e) – f ′(M)(xi – e) (3.5)

+ c(m – e)2 + c(M – xi)
2 – 2cλi(1 – λi)(M – m)2

≤ f (e) + f ′(m)(m – e) + f ′(M)(M – e) –
[
f ′(xi) + 2c(M – xi)

]
(xi – e)

+ c(m – e)2 + c(M – xi)
2 – 2cλi(1 – λi)(M – m)2.

Combining (3.4) and (3.5), we get

f (m) + f (M) – f (xi) – 2cλi(1 – λi)(M – m)2 (3.6)

≤ f (e) + f ′(m)(m – e) + f ′(M)(M – e) –
[
f ′(xi) + 2c(M – xi)

]
(xi – e)

+ c(m – e)2 + c(M – xi)
2 – 2cλi(1 – λi)(M – m)2

= f (e) + f ′(m)(m – e) + f ′(M)(M – e)

– f ′(xi)(xi – e) – 2c(M – xi)(xi – e)

+ c(m – e)2 + c(M – xi)
2 – 2cλi(1 – λi)(M – m)2.

Finally, from (3.2) and (3.6) we have

f (d) + f ′(d)(m + M – xi – d) + c(m + M – xi – d)2

≤ f (m) + f (M) – f (xi) – 2cλi(1 – λi)(M – m)2

≤ f (e) + f ′(m)(m – e) + f ′(M)(M – e)

– f ′(xi)(xi – e) – 2c(M – xi)(xi – e)

+ c(m – e)2 + c(M – xi)
2 – 2cλi(1 – λi)(M – m)2.

Multiplying it by ai, summing over i, i = 1, . . . , n, and then dividing by An > 0, we get (3.1).
�

Remark 2 In particular, if we set An = 1 and d = m + M – x̄, then the first inequality in (3.1)
becomes (1.7) from [18], which makes it a generalization. Furthermore, our result (3.1)
improves (1.6) from [15].
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As an easy consequence of the previous theorem, we get the following inequality of the
Jensen–Mercer type.

Corollary 3 Let the assumptions of Theorem 6 hold. Then

f (m + M – x̄) +
c

An

n∑

i=1

ai(x̄ – xi)
2 +

2c(M – m)2

An

n∑

i=1

aiλi(1 – λi) (3.7)

≤ f (m) + f (M) –
1

An

n∑

i=1

aif (xi)

≤ f (x̄) + f ′(m)(m – x̄) + f ′(M)(M – x̄) –
1

An

n∑

i=1

aif ′(xi)(xi – x̄)

–
c

An

n∑

i=1

ai(M – xi)(3xi – 2x̄ – M) + c(m – x̄)2.

Proof Choosing e = x̄ = 1
An

∑n
i=1 aixi and d = m + M – x̄, from (3.1) we get (3.7). �

4 Applications to strong f -divergences and the Shannon entropy
Let Pn =

{
p = (p1, . . . , pn) : p1, . . . , pn > 0,

∑n
i=1pi = 1

}
be the set of all complete finite dis-

crete probability distributions. The restriction to positive distributions is only for con-
venience. If we take pi = 0 for some i ∈ {1, . . . , n}, then in the following results, we
need to interpret undefined expressions as f (0) = limt→0+ f (t), 0f

( 0
0
)

= 0, and 0f
( e

0
)

=
limε→0+ f

( e
ε

)
= e limt→∞ f (t)

t , e > 0.
I. Csiszár [5] introduced an important class of statistical divergences by means of convex

functions.

Definition 1 Let f : (0,∞) → R be a convex function, and let p, q ∈ Pn. The Csiszár f -
divergence is defined as

Df (q, p) =
n∑

i=1

pif
(

qi

pi

)

. (4.1)

It has deep and fruitful applications in various branches of science (see, e.g., [4, 22] with
references therein) and is involved in the following Csiszár–Körner inequality (see [6]).

Theorem 7 Let p, q ∈Pn. If f : (0,∞) →R is a convex function, then

0 ≤ Df (q, p) – f (1) . (4.2)

Remark 3 If f is normalized, i.e., f (1) = 0, then from (4.2) it follows that

0 ≤ Df (q, p) with Df (q, p) = 0 if and only if q = p. (4.3)

Two distributions q and p are very similar if Df (q, p) is very close to zero.

Recently, in [10] a new concept of f -divergences was introduced: when (4.1) is defined
for a strongly convex function f , it is denoted with D̃f (q, p) and is referred to as strong
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f -divergence. Accordingly, in [10] the following improvement of the Csiszár–Körner in-
equality for strong f -divergences was obtained.

Theorem 8 Let p, q ∈ Pn. If f : (0,∞) → R is a strongly convex function with modulus
c > 0, then

0 ≤ D̃f (q, p) – f (1) – cD̃
κ

2 (q, p), (4.4)

where D̃
κ

2 (q, p) =
n∑

i=1
pi

(
qi
pi

)2
– 1.

Remark 4 Here D̃
κ

2 (q, p) =
n∑

i=1
pi

(
qi
pi

)2
– 1 denotes the strong chi-squared distance ob-

tained for the strongly convex function f (x) = (x – 1)2 with modulus c = 1.
Additionally, if f (1) = 0, then from (4.4) we have

0 ≤ cD̃
κ

2 (q, p) ≤ D̃f (q, p). (4.5)

Inequalities (4.4) and (4.5) improve (4.2) and (4.3).

We further use the results from the previous sections to prove new estimates for strong
f -divergences.

Corollary 4 Let p, q ∈Pn, ri = 1–λi

(
1 – qi

pi

)
, and λi ∈ [0, 1], i ∈ {1, . . . , n}. Let f : (0,∞) →

R be a strongly convex function with modulus c > 0. Then

0 ≤
∣
∣
∣
∣
∣

n∑

i=1

pi

∣
∣
∣
∣
∣
f
(

qi

pi

)

– f (ri) – c(1 – λi)

(

1 –
qi

pi

)2
∣
∣
∣
∣
∣

–
n∑

i=1

(1 – λi)
∣
∣f ′ (ri)

∣
∣ |pi – qi|

∣
∣
∣
∣
∣

≤ D̃f (q, p) –
n∑

i=1

pif (ri)

–
n∑

i=1

(1 – λi)f ′(ri) (pi – qi) – c
n∑

i=1

(1 – λi)
2 (pi – qi)

2 . (4.6)

In particular, we have

0 ≤
∣
∣
∣
∣
∣

n∑

i=1

pi

∣
∣
∣
∣
∣
f
(

qi

pi

)

– f (1) – c
(

qi

pi
– 1

)2
∣
∣
∣
∣
∣

–
∣
∣f ′(1)

∣
∣ ·

n∑

i=1

|pi – qi|
∣
∣
∣
∣
∣

≤ D̃f (q, p) – f (1) – cD̃χ2 (q, p), (4.7)

where D̃
κ

2 (q, p) =
∑n

i=1pi

(
qi
pi

)2
– 1.

If, in addition, f is normalized, then

0 ≤
n∑

i=1

pi

∣
∣
∣
∣
∣
f
(

qi

pi

)

– c
(

qi

pi
– 1

)2
∣
∣
∣
∣
∣
≤ D̃f (q, p) – cD̃χ2 (q, p). (4.8)
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Proof Applying (2.4) to xi = qi
pi

, ai = pi with x̄ = 1
An

∑n
i=1 aixi =

∑n
i=1 qi = 1 and x̂i = (1 –

λi)x̄ + λixi = (1 – λi) + λi
qi
pi

= 1 – λi

(
1 – qi

pi

)
= ri, i ∈ {1, . . . , n}, we get

0 ≤
∣
∣
∣
∣
∣

n∑

i=1

pi

∣
∣
∣
∣
∣
f
(

qi

pi

)

– f (ri) – c(1 – λi)

(

1 –
qi

pi

)2
∣
∣
∣
∣
∣

–
n∑

i=1

pi(1 – λi)
∣
∣f ′ (ri)

∣
∣
∣
∣
∣
∣1 –

qi

pi

∣
∣
∣
∣

∣
∣
∣
∣
∣

≤
n∑

i=1

pif
(

qi

pi

)

–
n∑

i=1

pif (ri)

–
n∑

i=1

pi(1 – λi)f ′ (ri)

(

1 –
qi

pi

)

– c
n∑

i=1

pi(1 – λi)
2
(

1 –
qi

pi

)2

,

which is equivalent to (4.6).
If λi = 0, i = 1, . . . , n, then ri = 1, i = 1, . . . , n, and from (4.6) we get (4.7). If, in addition, f

is normalized, i.e., f (1) = 0, then (4.7) implies (4.8). �

Corollary 5 Let λi ∈ [0, 1], i ∈ {1, . . . , n}, and let p, q ∈ Pn. Suppose f : (0,∞) → R is a
strongly convex function with modulus c > 0. Then

D̃f (q, p) –
n∑

i=1

pif
(

1 – λi

(

1 –
qi

pi

))

(4.9)

≤
n∑

i=1

(1 – λi)f ′
(

qi

pi

)

(qi – pi) – c
n∑

i=1

pi(1 – λi)
2
(

1 –
qi

pi

)2

.

In particular,

D̃f (q, p) – f (1) ≤
n∑

i=1

f ′
(

qi

pi

)

(qi – pi) – cD̃χ2 (q, p). (4.10)

If, in addition, f is normalized, then

0 ≤ D̃f (q, p) ≤
n∑

i=1

f ′
(

qi

pi

)

(qi – pi) – cD̃χ2 (q, p). (4.11)

Proof Applying (2.11) to xi = qi
pi

and ai = pi with x̄ =
∑n

i=1 aixi =
∑n

i=1 qi = 1, we get

n∑

i=1

pif
(

qi

pi

)

–
n∑

i=1

pif
(

1 – λi + λi
qi

pi

)

≤
n∑

i=1

pi(1 – λi)f ′
(

qi

pi

)(
qi

pi
– 1

)

– c
n∑

i=1

pi(1 – λi)
2
(

1 –
qi

pi

)2

,

which is equivalent to (4.9).
Choosing λi = 0, i = 1, . . . , n, from (4.9) we get (4.10). Further, for a normalized function

f , (4.10) implies (4.11). �
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Corollary 6 Let f : (0,∞) →R be a strongly convex function with modulus c > 0. Let p, q ∈
Pn with qi

pi
∈ [m, M], 0 < m < M, and λi ∈ [0, 1], i ∈ {1, . . . , n}. Then

f (d) + f ′(d) (m + M – d – 1) + c
n∑

i=1

pi

(

m + M – d –
qi

pi

)2

+ 2c(M – m)2
n∑

i=1

λi(1 – λi) (4.12)

≤ f (m) + f (M) – D̃f (q, p)

≤ f (e) + f ′(m)(m – e) + f ′(M)(M – e) –
n∑

i=1

pif ′
(

qi

pi

)(
qi

pi
– e

)

– c
n∑

i=1

pi

(

M –
qi

pi

)(

3
qi

pi
– 2e – M

)

+ c(m – e)2

for all d, e ∈ [m, M].
In particular,

f (m + M – 1) + cD̃
κ

2 (q, p) + 2c(M – m)2
n∑

i=1

λi(1 – λi) (4.13)

≤ f (m) + f (M) – D̃f (q, p)

≤ f (1) + f ′(m)(m – 1) + f ′(M)(M – 1) –
n∑

i=1

f ′
(

qi

pi

)

(qi – pi)

– c
n∑

i=1

pi

(

M –
qi

pi

)(

3
qi

pi
– 2 – M

)

+ c(m – 1)2.

If, in addition, f is normalized, then

f (m + M – 1) + cD̃f (q, p) + 2c(M – m)2
n∑

i=1

λi(1 – λi) (4.14)

≤ f (m) + f (M) – D̃f (q, p)

≤ f ′(m)(m – 1) + f ′(M)(M – 1) –
n∑

i=1

f ′
(

qi

pi

)

(qi – pi)

– c
n∑

i=1

pi

(

M –
qi

pi

)(

3
qi

pi
– 2 – M

)

+ c(m – 1)2.

Proof Applying (3.1) to xi = qi
pi

and ai = pi with x̄ = 1
An

∑n
i=1 aixi =

∑n
i=1 qi = 1, we get (4.12).

In a particular case, for e = 1 and d = m + M – 1, from (4.12) we get (4.13). If, in addition,
f (1) = 0, then (4.13) implies (4.14). �

Applying the previous corollaries to the corresponding generating strongly convex func-
tion f , we derive new estimates for some well-known divergences, which are particular
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cases of the strong f -divergence. Here we consider a few of the most commonly used di-
vergences.

Example 1 The strong Kullback–Leibler divergence of p, q ∈Pn is defined by

D̃KL(q, p) =
n∑

i=1

qi ln

(
qi

pi

)

, (4.15)

where the generating function is f (t) = t ln t for t ∈ (0,∞). Fix l > 0. Since f ′′(t) = 1
t , we

have f ′′ ≥ 1
l on [m, l], 0 < m < l, and the function f |[m,l] is strongly convex with modulus

c = 1
2l .

Applying inequalities (4.6), (4.8), (4.9), (4.11), (4.12), and (4.14) to f (t) = t ln t with c = 1
2l ,

we may derive new estimates for the strong Kullback–Leibler divergence D̃KL(q, p).

Example 2 The strong squared Hellinger divergence of p, q ∈Pn is defined by

D̃h2 (q, p) =
n∑

i=1

(
√

pi –
√

qi)
2,

where the generating function is f (t) =
(√

t – 1
)2 for t ∈ (0,∞). Fix l > 0. Since f ′′(t) =

1
2
√

l3
, we have f ′′ ≥ 1

2
√

l3
on [m, l], 0 < m < l, and the function f |[m,l] is strongly convex with

modulus c = 1
4
√

l3
.

Applying inequalities (4.6), (4.8), (4.9), (4.11), (4.12), and (4.14) to f (t) =
(√

t – 1
)2

with c = 1
4
√

l3
, we may derive new estimates for the strong squared Hellinger divergence

D̃h2 (q, p).

Example 3 The strong Bhattacharya distance of p, q ∈Pn is defined by

D̃B(q, p) = –
n∑

i=1

√
piqi,

where the generating function is f (t) = –
√

t for t ∈ (0,∞). Fix l > 0. Since f ′′(t) = 1
4
√

l3
, we

have f ′′ ≥ 1
4
√

l3
on [m, l], 0 < m < l, and the function f |[m,l] is strongly convex with modulus

c = 1
8
√

l3
.

Applying inequalities (4.6), (4.7), (4.8), (4.9), (4.10), (4.11), and (4.12) to f (t) = –
√

t with
c = 1

8
√

l3
, we may derive new estimates for the strong Bhattacharya distance D̃B(q, p).

Example 4 The strong Jeffreys distance of p, q ∈Pn is defined by

D̃J (q, p) =
n∑

i=1

(qi – pi) ln
qi

pi
= D̃KL(q, p) + D̃KL(p, q),

where the generating function is f (t) = (t – 1) ln t for t ∈ (0,∞). Fix l > 0. Since f ′′(t) =
t+1
t2 , we have f ′′ ≥ l+1

l2 on [m, l], 0 < m < l, and the function f |[m,l] is strongly convex with
modulus c = l+1

2l2 .
Applying inequalities (4.6), (4.8), (4.9), (4.11), (4.12), and (4.14) to f (t) = (t – 1) ln t with

c = l+1
2l2 , we may derive new estimates for the strong Jeffreys distance D̃J (q, p).
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Example 5 The strong Jensen–Shannon divergence of p, q ∈Pn is defined by

D̃JS(q, p) =
1
2

[ n∑

i=1

qi ln
2qi

pi + qi
+

n∑

i=1

pi
2pi

pi + qi

]

=
1
2

[
D̃KL

(
q,

p + q
2

)
+ D̃KL

(
p,

p + q
2

)]
,

where the generating function is f (t) = 1
2
(
t ln 2t

1+t + ln 2
1+t

)
for t ∈ (0,∞). Fix l > 0. Since

f ′′(t) = 1
2t(1+t) , we have f ′′ ≥ 1

2l(1+l) on [m, l], 0 < m < l, and the function f |[m,l] is strongly
convex with modulus c = 1

4l(1+l) .
Applying inequalities (4.6)), (4.8), (4.9), (4.11), (4.12), and (4.14) to f (t) = 1

2
(
t ln 2t

1+t +
ln 2

1+t
)

with c = 1
4l(1+l) , we may derive new estimates for the strong Jensen–Shannon diver-

gence D̃JS(q, p).

We now consider the Shannon entropy [25], defined for a random variable X in terms
of its probability distribution p as

S(p) =
n∑

i=1

pi ln
1
pi

= –
n∑

i=1

pi ln pi. (4.16)

It quantifies the unevenness in p and satisfies the relation

0 ≤ S(p) ≤ ln n.

Using the results from the previous sections, we obtain new estimates for the Shannon
entropy.

Corollary 7 Let l > 0, and let p ∈Pn be such that 1
p1

, . . . , 1
pn

∈ (0, l]. Let p̄i = n – λi

(
n – 1

pi

)
,

λi ∈ [0, 1], i ∈ {1, . . . , n}. Then

S(p) ≤ S(p) +

∣
∣
∣
∣
∣

n∑

i=1

pi

∣
∣
∣
∣
∣
ln pip̄i –

1 – λi

2l2

(

n –
1
pi

)2
∣
∣
∣
∣
∣

–
n∑

i=1

pi

p̄i
(1 – λi)

∣
∣
∣
∣n –

1
pi

∣
∣
∣
∣

∣
∣
∣
∣
∣

≤
n∑

i=1

pi ln p̄i +
n∑

i=1

pi

p̄i
(1 – λi)

(

n –
1
pi

)

–
1

2l2

n∑

i=1

pi(1 – λi)
2
(

n –
1
pi

)2

. (4.17)

In particular, we have

S(p) ≤ S(p) +

∣
∣
∣
∣
∣

n∑

i=1

pi

∣
∣
∣
∣
∣
ln pip̄i –

1
2l2

(

n –
1
pi

)2
∣
∣
∣
∣
∣

–
n∑

i=1

pi

p̄i

∣
∣
∣
∣n –

1
pi

∣
∣
∣
∣

∣
∣
∣
∣
∣

≤
n∑

i=1

pi ln p̄i +
n∑

i=1

pi

p̄i

(

n –
1
pi

)

–
1

2l2

n∑

i=1

pi

(

n –
1
pi

)2

. (4.18)

Proof Applying (2.4) to the function f (t) = – ln t, t ∈ (0, l], strongly convex with modulus
c = 1

2l2 , and xi = 1
pi

and ai = pi with x̄ = 1
An

∑n
i=1 aixi =

∑n
i=1 pi

1
pi

= n and x̂i = (1–λi)x̄+λixi =
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(1 – λi)n + λi
1
pi

= n – λi

(
n – 1

pi

)
= p̄i, i ∈ {1, . . . , n}, we get

0 ≤
∣
∣
∣
∣
∣

n∑

i=1

pi

∣
∣
∣
∣
∣
– ln

1
pi

+ ln p̄i –
1 – λi

2l2

(

n –
1
pi

)2
∣
∣
∣
∣
∣

–
n∑

i=1

pi(1 – λi)

∣
∣
∣
∣

1
p̄i

∣
∣
∣
∣

∣
∣
∣
∣n –

1
pi

∣
∣
∣
∣

∣
∣
∣
∣
∣

≤ –
n∑

i=1

pi ln
1
pi

+
n∑

i=1

pi ln p̄i +
n∑

i=1

pi

p̄i
(1 – λi)

(

n –
1
pi

)

–
1

2l2

n∑

i=1

pi(1 – λi)
2
(

n –
1
pi

)2

,

which is equivalent to (4.17).
Choosing λi = 0, i = 1, . . . , n, from (4.17) we get (4.18). �

Corollary 8 Let l > 0, let p ∈ Pn be such that 1
p1

, . . . , 1
pn

∈ (0, l], and let λi ∈ [0, 1], i ∈
{1, . . . , n}. Then

n∑

i=1

p2
i (1 – λi)

(
1
pi

– n
)

+
1

2l2

n∑

i=1

pi(1 – λi)
2
(

1
pi

– n
)2

+
n∑

i=1

pi ln

(

(1 – λi)n +
λi

pi

)

≤ S(p). (4.19)

In particular, we have

ln n + 1 – n
n∑

i=1

p2
i +

1
2l2

n∑

i=1

pi

(
1
pi

– n
)2

≤ S(p). (4.20)

Proof Applying (2.11) to the strongly convex function f (t) = – ln t, t ∈ (0, l], with modulus
c = 1

2l2 , and to xi = 1
pi

and ai = pi with x̄ = 1
An

∑n
i=1 aixi =

∑n
i=1 pi

1
pi

= n, we get

–
n∑

i=1

pi ln
1
pi

+
n∑

i=1

pi ln

(

(1 – λi)n +
λi

pi

)

≤ –
n∑

i=1

pi(1 – λi)

(
1
pi

)–1 (
1
pi

– n
)

–
1

2l2

n∑

i=1

pi(1 – λi)
2
(

1
pi

– n
)2

,

which is equivalent to (4.19). If we choose λi = 0, i = 1, . . . , n, then (4.19) implies (4.20). �

Corollary 9 Let 0 < m < l, let p ∈ Pn be such that 1
p1

, . . . , 1
pn

∈ [m, l], and let λi ∈ [0, 1],
i ∈ {1, . . . , n}. Then

1
2l2

n∑

i=1

pi

(

m + l – d –
1
pi

)2

–
1
d

(m + l – d – n) (4.21)

+
(l – m)2

l2

n∑

i=1

λi(1 – λi) + ln
ml
d
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≤ S(p)

≤ 1
m

(e – m) +
1
l

(e – l) +
n∑

i=1

p2
i

(

e –
1
pi

)

+ ln
ml
e

–
1

2l2

n∑

i=1

pi

(

l –
1
pi

)(
3
pi

– 2e – l
)

+
(m – e)2

2l2

for all d, e ∈ [m, l].
In particular, we have

1
2l2

n∑

i=1

pi

(

n –
1
pi

)2

+
(l – m)2

l2

n∑

i=1

λi(1 – λi) + ln
ml

m + l – n
(4.22)

≤ S(p)

≤ 1
m

(n – m) +
1
l

(n – l) +
n∑

i=1

p2
i

(

n –
1
pi

)

+ ln
ml
n

–
1

2l2

n∑

i=1

pi

(

l –
1
pi

)(
3
pi

– 2n – l
)

+
(m – n)2

2l2 .

Proof Applying (3.1) to the strongly convex function f (t) = – ln t, t ∈ (0, l], with modulus
c = 1

2l2 and to xi = 1
pi

and ai = pi with x̄ = 1
An

∑n
i=1 aixi =

∑n
i=1 pi

1
pi

= n, we get

– ln d –
1
d

(m + l – d – n) +
1

2l2

n∑

i=1

pi

(

m + l – d –
1
pi

)2

+
(l – m)2

l2

n∑

i=1

λi(1 – λi)

≤ – ln m – ln l +
n∑

i=1

pi ln
1
pi

≤ – ln e –
1
m

(m – e) –
1
l

(l – e) +
n∑

i=1

pi

(
1
pi

)–1 (
1
pi

– e
)

–
1

2l2

n∑

i=1

pi

(

l –
1
pi

)(

l –
3
pi

+ 2e
)

+
(m – e)2

2l2 ,

which is equivalent to (4.21). Choosing e = n and d = m + l – n, from (4.21) we get (4.22).
�

5 New bounds for the Chebyshev functional
One of the fundamental inequalities in probability is the discrete Chebyshev inequality,
which we quote in the following form (see [21]).
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Theorem 9 Let a = (a1, . . . , an) be a nonnegative n-tuple with An =
∑n

i=1 ai > 0, and let
p = (p1, . . . , pn) and q = (q1, . . . , qn) be monotonic real n-tuples in the same direction. Then

1
An

n∑

i=1

aipiqi –
1

A2
n

n∑

i=1

aipi

n∑

i=1

aiqi ≥ 0. (5.1)

If p and q are monotonic in the opposite direction, then we have the reverse inequality of
(5.1).

We can find many papers that study the Chebyshev functional T(a; p, q) derived from
the Chebyshev inequality (5.1) by subtracting its right side from its left one:

T(a; p, q) = An

n∑

i=1

aipiqi –
n∑

i=1

aipi

n∑

i=1

aiqi, (5.2)

and in the normalized form as

T̄(p, q) =
1
n

n∑

i=1

piqi –
1
n2

n∑

i=1

pi

n∑

i=1

qi. (5.3)

By (5.1) we have

T(a; p, q) ≥ 0 and T̄(p, q) ≥ 0.

Using the results from Sect. 2, we obtain improvements of the Chebyshev inequality
(5.1), i.e., we get new bounds for the Chebishev functional of types (5.2) and (5.3) without
the assumption of monotonicity.

Corollary 10 Let a = (a1, . . . , an) be a nonnegative n-tuple with An =
∑n

i=1 ai > 0, and let
p = (p1, . . . , pn) and q = (q1, . . . , qn) be real n-tuples with p̄ = 1

An

∑n
i=1 aipi and Pn =

∑n
i=1 pi.

Then

0 ≤ c
An

n∑

i=1

ai(pi – p̄)2 (5.4)

≤
∣
∣
∣
∣
∣

1
An

n∑

i=1

ai
∣
∣f (pi) – f (p̄) – c(pi – p̄)2∣∣ –

∣
∣f ′(p̄)

∣
∣ · 1

An

n∑

i=1

ai |(pi – p̄)|
∣
∣
∣
∣
∣

+
c

An

n∑

i=1

ai(pi – p̄)2

≤ 1
An

n∑

i=1

aif (pi) – f (p̄)

≤ T(a; p, q) –
c

An

n∑

i=1

ai(p̄ – pi)
2 ≤ T(a; p, q).
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In particular, we have

0 ≤ c
n

n∑

i=1

(

pi –
Pn

n

)2

(5.5)

≤
∣
∣
∣
∣
∣

1
An

n∑

i=1

ai

∣
∣
∣
∣
∣
f (pi) – f

(
Pn

n

)

– c
(

pi –
Pn

n

)2
∣
∣
∣
∣
∣

–
∣
∣
∣
∣f

′
(

Pn

n

)∣
∣
∣
∣ · 1

n

n∑

i=1

∣
∣
∣
∣

(

pi –
Pn

n

)∣
∣
∣
∣

∣
∣
∣
∣
∣

+
c
n

n∑

i=1

(

pi –
Pn

n

)2

≤ 1
n

n∑

i=1

f (pi) – f
(

Pn

n

)

≤ T(p, q) –
c
n

n∑

i=1

(

pi –
Pn

n

)2

≤ T(p, q).

Proof Combining inequalities (2.8) and (2.12), we have

0 ≤ c
An

n∑

i=1

ai(xi – x̄)2 (5.6)

≤
∣
∣
∣
∣
∣

1
An

n∑

i=1

ai
∣
∣f (xi) – f (x̄) – c(xi – x̄)2∣∣ –

∣
∣f ′(x̄)

∣
∣ · 1

An

n∑

i=1

ai |(xi – x̄)|
∣
∣
∣
∣
∣

+
c

An

n∑

i=1

ai(xi – x̄)2

≤ 1
An

n∑

i=1

aif (xi) – f (x̄)

≤ 1
An

n∑

i=1

aif ′(xi)xi –
1

A2
n

n∑

i=1

aixi

n∑

i=1

aif ′(xi) –
c

An

n∑

i=1

ai(x̄ – xi)
2

≤ 1
An

n∑

i=1

aif ′(xi)xi –
1

A2
n

n∑

i=1

aixi

n∑

i=1

aif ′(xi).

Setting f ′(xi) = qi and xi = pi, i ∈ {1, . . . , n} and using (5.6), we get (5.4).
If we set ai = 1

n , i = 1, . . . , n, then p̄ = 1
n
∑n

i=1 pi = Pn
n , where Pn =

∑n
i=1 pi. Now inequality

(5.5) immediately follows from (5.4). �
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Ivelić Bradanović and Lovričević Journal of Inequalities and Applications        (2024) 2024:112 Page 19 of 19

Declarations

Competing interests
The authors declare no competing interests.

Received: 20 March 2024 Accepted: 13 August 2024

References
1. Adil Khan, M., Husain, Z., Chu, Y.-M.: New estimates for Csiszár divergence and Zipf–Mandelbrot entropy via

Jensen–Mercer’s inequality. Complexity 2020, 1–8 (2020)
2. Butt, S.I., Agarwal, P., Yousaf, S., Guirao, J.L.G.: Generalized fractal Jensen and Jensen–Mercer inequalities for harmonic

convex function with applications. J. Inequal. Appl. 2022, 1 (2022)
3. Butt, S.I., Sayyari, Y., Agarwal, P., Nieto, J.J., Umar, M.: On some inequalities for uniformly convex mapping with

estimations to normal distributions. J. Inequal. Appl. 2023, 89 (2023)
4. Crooks, G.E.: On measures of entropy and information. Tech. Note 009 v0.8 (2021)
5. Csiszár, I.: Information-type measures of difference of probability functions and indirect observations. Studia Sci.

Math. Hung. 2, 299–318 (1967)
6. Csiszár, I., Körner, J.: Information Theory: Coding Theorem for Discrete Memoryless Systems. Academic Press, New

York (1981)
7. Dragomir, S.S., Ionescu, N.M.: Some converse of Jensen’s inequality and applications. Rev. Anal. Numér. Théor. Approx.

23, 71–78 (1994)
8. Dragomir, S.S., Scarmozzino, F.P.: A Refinement of Jensen’s discrete inequality for differentiable convex functions.

RGMIA Res. Rep. Collect. 5(4) (2002)
9. Horváth, L.: Some notes on Jensen–Mercer’s type inequalities; extensions and refinements with applications. Math.

Inequal. Appl. 24(4), 1093–1111 (2021)
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