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1 Introduction
The stability problem of functional equations has been stimulated by Ulam [28]. In fact, he
was the first to raise the stability problem of homomorphisms between groups. The first
answer to Ulam’s question was given by Hyers [16]. The hyperstability and stability issues
for many functional equations have been considered by several mathematicians. For more
information and further references in this research area, we refer the reader to references
[1, 2, 6, 10, 17–20, 22, 27].

Let us recall one of the classic theorems about the stability of Cauchy functional equation
ϕ(x + y) = ϕ(x) + ϕ(y).

Theorem 1.1 [4, 7, 15, 16, 25, 26] Suppose that X is a normed space and Y is a Banach
space. Let ε ≥ 0 and p �= 1 be a real number. If a function f : X → Y satisfies

∥
∥f (x + y) – f (x) – f (y)

∥
∥ ≤ ε

(‖x‖p + ‖y‖p), x, y ∈ X \ {0},

then there exists a unique additive function A : X → Y such that

∥
∥f (x) – A(x)

∥
∥ ≤ 2ε

|2 – 2p| ‖x‖p, x ∈ X \ {0}.

The inequality ‖f (x + y) – f (x) – f (y)‖ ≤ ε‖x‖p‖y‖q, where p, q are real numbers with
p + q ∈ [0, 1), was investigated by J. M. Rassias [23, 24]. Brzdȩk [8] provided a complement
for this result in the case p + q < 0 by using a fixed point theorem. A short and simple proof
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was provided in [21] for Brzdȩk’s result. Additionally, some further results concerning
hyperstability of the Cauchy and Jensen functional equations can be found in [21]. Brzdȩk
[9] presented two possible extensions of the results in [8] to the case of n-normed spaces.
The main tool in his proof [9, Theorem 3] is a fixed point theorem.

In this paper, we investigate some results of [3, 8, 9, 21] to the case of 2-normed spaces
with simple proofs. In addition, we obtain more results regarding the hyperstability of
functional equations in 2-normed spaces.

Now, we summarize some facts about 2-normed spaces from [12]. Concepts of 2-metric
spaces and 2-normed spaces were introduced by Gähler [13, 14].

Definition 1.2 Let Y be a real linear space with dimY ≥ 2. A function ‖., .‖ : Y ×Y →R

is said to be a 2-norm on Y provided ‖., .‖ satisfies the following four conditions:
(i) ‖x, y‖ = 0 if and only if x and y are linearly dependent;

(ii) ‖αx, y‖ = |α|‖x, y‖;
(iii) ‖x, y‖ = ‖y, x‖;
(iv) ‖x, y + z‖ ≤ ‖x, y‖ + ‖x, z‖;

for all x, y, z ∈ Y and α ∈R. In this case (Y ,‖., .‖) is called a 2-normed space. Obviously, it
follows from (ii) – (iv) that ‖x, y‖ ≥ 0 for each x, y ∈ Y .

Definition 1.3 A sequence {yn} in a 2-normed space (Y ,‖., .‖) is called a convergent se-
quence if there exists y ∈ Y such that

lim
n→∞‖yn – y, z‖ = 0

for all z ∈ Y .

We refer the readers to [5, 11], which provide a survey of the existing literature on Ulam
stability concerning functional equations in 2-normed spaces.

2 Superstability results in 2-normed spaces
In this section, we present certain superstability findings related to Cauchy and Jensen
functional equations within 2-normed spaces. It is worth mentioning that some stability
findings regarding these equations in such spaces are documented in [5].

We start this section with the following key lemmas.

Lemma 2.1 Suppose that Y is a 2-normed space and u, v ∈ Y are linearly independent
elements. If x ∈ Y and ‖x, u‖ = ‖x, v‖ = 0, then x = 0.

Proof Since ‖x, u‖ = ‖x, v‖ = 0, there exist scalars λ,μ such that x = λu and x = μv. Then
λu – μv = 0, and consequently, λ = μ = 0. This yields x = 0. �

Lemma 2.2 Let Y be a 2-normed space and ϕ : Y × Y → Y be a function such that
‖ϕ(x, y), z‖ = 0 for all x, y, z ∈ Y with ‖x, z‖‖y, z‖ �= 0. Then ϕ(x, y) = 0 for all x, y ∈ Y \ {0}.

Proof Let x, y ∈ Y \ {0}. We can choose linearly independent elements v, w ∈ Y such that
‖x, v‖‖y, v‖‖x, w‖‖y, w‖ �= 0. Then

∥
∥ϕ(x, y), v

∥
∥ = 0 and

∥
∥ϕ(x, y), w

∥
∥ = 0.
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Thus there exist scalars λ,μ such that ϕ(x, y) = λv and ϕ(x, y) = μw. So, λv – μw = 0, and
we conclude that λ = μ = 0. Therefore ϕ(x, y) = 0, and this completes the proof. �

Now we present the main results of this section. Throughout this section δ, ε ≥ 0 and
p, q, r, s are real numbers whose restrictions are specified in theorems.

Theorem 2.3 Suppose that Y is a 2-normed space and E ⊆ Y \ {0} is a nonempty set. Let
p + q �= 1 and ϕ : Y ×Y → Y satisfy

∥
∥ϕ(x, y), z

∥
∥ ≤

⎧

⎨

⎩

δ + ε‖x, z‖p‖y, z‖q, p+q<1;

ε‖x, z‖p‖y, z‖q, p+q>1,
(2.1)

for all x, y ∈ E and z ∈ Y with ‖x, z‖‖y, z‖ �= 0. Then

ϕ(x, y) = 0, x, y ∈ E.

Proof Two cases arise according to whether p + q < 1 or p + q > 1.
Case I: p + q < 1. Replacing z by nz in (2.1), we infer that

∥
∥ϕ(x, y), z

∥
∥ ≤ δ

n
+

np+q

n
ε‖x, z‖p‖y, z‖q

for all x, y ∈ E and z ∈ Y with ‖x, z‖‖y, z‖ �= 0. Allowing n tend to infinity in the last inequal-
ity, one obtains ‖ϕ(x, y), z‖ = 0 for all x, y ∈ E and z ∈ Y with ‖x, z‖‖y, z‖ �= 0. By Lemma 2.2,
we conclude ϕ(x, y) = 0, as desired.

Case II: p + q > 1. Replacing z by z
n in (2.1), we infer that

∥
∥ϕ(x, y), z

∥
∥ ≤ n

np+q ε‖x, z‖p‖y, z‖q

for all x, y ∈ E and z ∈ Y with ‖x, z‖‖y, z‖ �= 0. Now, with an argument similar to the previ-
ous case, the proof is complete. �

Corollary 2.4 Suppose that Y is a 2-normed space and E ⊆ Y \ {0} is a nonempty set. Let
p + q �= 1 and f , g, h : E → Y be functions satisfying

∥
∥f (x + y) – g(x) – h(y), z

∥
∥ ≤

⎧

⎨

⎩

δ + ε‖x, z‖p‖y, z‖q, p+q<1;

ε‖x, z‖p‖y, z‖q, p+q>1,

for every z ∈ Y and x, y ∈ E with x + y ∈ E and ‖x, z‖‖y, z‖ �= 0. Then

f (x + y) = g(x) + h(y), x, y ∈ E, x + y ∈ E.

Theorems 2.1 and 2.2 of [3] can be easily obtained from the following corollary.

Corollary 2.5 Suppose that Y is a 2-normed space and E ⊆ Y \ {0} is a nonempty set. Let
p + q �= 1 and f : E → Y satisfy

∥
∥
∥
∥

2f
(

x + y
2

)

– f (x) – f (y), z
∥
∥
∥
∥

≤
⎧

⎨

⎩

δ + ε‖x, z‖p‖y, z‖q, p+q<1;

ε‖x, z‖p‖y, z‖q, p+q>1,
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for every z ∈ Y and x, y ∈ E with x+y
2 ∈ E and ‖x, z‖‖y, z‖ �= 0. Then

2f
(

x + y
2

)

= f (x) + f (y), x, y ∈ E,
x + y

2
∈ E.

Remark 2.6 It should be noted that in the case of p + q = 1, none of the conditions C1 and
C2 in Theorem 2.2 of [3] are fulfilled.

Brzdȩk [9, Theorem 3] proved a version of the following theorem by using a fixed point
theorem. Here we present, without using the fixed point theorem, a short and simple
proof.

Theorem 2.7 Suppose that (X,‖.‖∗) is a normed space and Y is a 2-normed space. Let
u, v ∈ Y be linearly independent elements and μ : Y0 → (0, +∞), where Y0 := Y \ {0}. As-
sume that E ⊆ X \ {0} is a nonempty with this property: for every x ∈ E, there is an integer
mx > 0 such that nx ∈ E for each integer n ≥ mx. Let p + q < 0. Then a function f : X → Y
fulfills

∥
∥f (x + y) – f (x) – f (y), z

∥
∥ ≤ ‖x‖p

∗‖y‖q
∗μ(z), x, y, x + y ∈ E, z ∈ {u, v}, (2.2)

if and only if f (x + y) = f (x) + f (y) for all x, y ∈ E with x + y ∈ E.

Proof It is clear that if f is additive on E, then f satisfies (2.2). For the converse implication,
we can assume that p < 0. Let x, y ∈ E with x + y ∈ E. By hypothesis, we can find an integer
m > 0 such that nx, ny, n(x + y) ∈ E for each n ≥ m. By (2.2), we have

∥
∥f (nx + x) – f (nx) – f (x), z

∥
∥ ≤ np‖x‖p+q

∗ μ(z),
∥
∥f (ny + y) – f (ny) – f (y), z

∥
∥ ≤ np‖y‖p+q

∗ μ(z),
∥
∥f

(

n(x + y) + (x + y)
)

– f
(

n(x + y)
)

– f (x + y), z
∥
∥ ≤ np‖x + y‖p+q

∗ μ(z)

for all z ∈ {u, v}. Allowing n tend to infinity in the above three inequalities, we get

lim
n→∞

∥
∥f (nx + x) – f (nx) – f (x), z

∥
∥ = 0,

lim
n→∞

∥
∥f (ny + y) – f (ny) – f (y), z

∥
∥ = 0,

lim
n→∞

∥
∥f

(

n(x + y) + (x + y)
)

– f
(

n(x + y)
)

– f (x + y), z
∥
∥ = 0.

Then

∥
∥f (x + y) – f (x) – f (y), z

∥
∥

≤ lim
n→∞

∥
∥f (x + y) + f

(

n(x + y)
)

– f
(

n(x + y) + (x + y)
)

, z
∥
∥

+ lim
n→∞

∥
∥f (nx + x) – f (nx) – f (x), z

∥
∥

+ lim
n→∞

∥
∥f (ny + y) – f (ny) – f (y), z

∥
∥

+ lim
n→∞

∥
∥f

(

n(x + y) + (x + y)
)

– f (nx + x) – f (ny + y), z
∥
∥
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+ lim
n→∞

∥
∥f (nx) + f (ny) – f

(

n(x + y)
)

, z
∥
∥

≤ lim
n→∞

[

(n + 1)p+q + np+q]‖x‖p
∗‖y‖q

∗μ(z) = 0

for all z ∈ {u, v}. This ends the proof. �

Theorem 2.8 Let (X,‖.‖∗) be a normed space, Y be a 2-normed space, X0 := X \ {0}, Y0 :=
Y \ {0}, and μ : Y0 :→ (0, +∞). Suppose that u, v ∈ Y are linearly independent elements
and a function f : X → Y fulfills

∥
∥
∥
∥

rf
(

x + y
r

)

– f (x) – f (y), z
∥
∥
∥
∥

≤ ε‖x‖p
∗‖y‖q

∗μ(z) (2.3)

for all z ∈ {u, v} and x, y ∈ X0, where min{p, q} < 0 and r �= 0, 1. Then

rf
(

x + y
r

)

= f (x) + (r – 1)f
(

y
r – 1

)

, x, y ∈ X0, x + y ∈ X0.

Proof We may assume that p < 0. Let x, y ∈ X0 and x + y ∈ X0. Then there is an integer
m > 0 such that for all n ≥ m, (2.3) yields

∥
∥
∥
∥

rf
(

nx + x
r

)

– f (nx) – f (x), z
∥
∥
∥
∥

≤ εnp‖x‖p+q
∗ μ(z),

∥
∥
∥
∥

rf
( y

r–1 + nx + (x + y)
r2

)

– f
( y

r–1 + nx
r

)

– f
(

x + y
r

)

, z
∥
∥
∥
∥

≤ ε

∥
∥
∥
∥

y
r–1 + nx

r

∥
∥
∥
∥

p

∗

∥
∥
∥
∥

x + y
r

∥
∥
∥
∥

q

∗
μ(z)

for all z ∈ {u, v}. Allowing n → ∞ in the above inequalities, one obtains

f (x) = lim
n→∞

[

rf
(

nx + x
r

)

– f (nx)
]

,

f
(

x + y
r

)

= lim
n→∞

[

rf
( y

r–1 + nx + (x + y)
r2

)

– f
( y

r–1 + nx
r

)]

.

Then
∥
∥
∥
∥

rf
(

x + y
r

)

– f (x) – (r – 1)f
(

y
r – 1

)

, z
∥
∥
∥
∥

= lim
n→∞

∥
∥
∥
∥

[

r2f
( y

r–1 + nx + (x + y)
r2

)

– rf
( y

r–1 + nx
r

)]

–
[

rf
(

nx + x
r

)

– f (nx)
]

– (r – 1)f
(

y
r – 1

)

, z
∥
∥
∥
∥

≤ |r| lim sup
n→∞

∥
∥
∥
∥

rf
( y

r–1 + nx + x + y
r2

)

– f
(

nx + x
r

)

– f
(

y
r – 1

)

, z
∥
∥
∥
∥

+ lim sup
n→∞

∥
∥
∥
∥

rf
( y

r–1 + nx
r

)

– f (nx) – f
(

y
r – 1

)

, z
∥
∥
∥
∥

(by (2.3))

≤ lim sup
n→∞

ε

[

|r|
(

n + 1
r

)p

+ np
]

‖x‖p
∗

∥
∥
∥
∥

y
r – 1

∥
∥
∥
∥

q

∗
μ(z) = 0
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for all z ∈ {u, v}. Therefore

rf
(

x + y
r

)

= f (x) + (r – 1)f
(

y
r – 1

)

for all x, y ∈ X0 with x + y ∈ X0. �

By using the idea of proving Theorem 2.8, one can obtain the following result.

Theorem 2.9 Let (X,‖.‖∗) be a normed space, Y be a 2-normed space, X0 := X \ {0}, Y0 :=
Y \ {0}, and μ : Y0 :→ (0, +∞). Suppose that u, v ∈ Y are linearly independent elements
and a function f : X → Y fulfills

∥
∥
∥
∥

rf
(

x + y
r

)

– f (x) – f (y), z
∥
∥
∥
∥

≤ ‖x‖p
∗‖y‖q

∗
(

ε‖x + y‖s
∗ + δ‖x – y‖s

∗
)

μ(z) (2.4)

for all z ∈ {u, v} and x, y ∈ X0 with x ± y ∈ X0, where min{p + s, q + s} < 0 and r �= 0, 1. Then

rf
(

x + y
r

)

= f (x) + (r – 1)f
(

y
r – 1

)

, x, y ∈ X0, x + y ∈ X0.

The following gives a result on hyperstability of the Jensen function defined on a re-
stricted domain.

Corollary 2.10 Let (X,‖.‖∗) be a normed space, Y be a 2-normed space, E ⊆ X \ {0} be
a nonempty set with E + E ⊆ E ∩ 2E, and μ : Y0 := Y \ {0} → (0, +∞). Let u, v ∈ Y be
linearly independent elements. Assume that a function f : E → Y fulfills one of the following
inequalities:

(i) min{p, q} < 0 and ‖Jf (x, y), z‖ ≤ ε‖x‖p
∗‖y‖q

∗μ(z), z ∈ {u, v} and x, y ∈ E;
(ii) min{p + s, q + s} < 0 and ‖Jf (x, y), z‖ ≤ ‖x‖p

∗‖y‖q
∗(ε‖x + y‖s∗ + δ‖x – y‖s∗)μ(z)

for all z ∈ {u, v} and x, y ∈ E with x ± y ∈ X0, where Jf (x, y) = 2f ( x+y
2 ) – f (x) – f (y). Then f is

Jensen on E, i.e.,

2f
(

x + y
2

)

= f (x) + f (y), x, y ∈ E.

Proof Applying the proof of Theorem 2.8 for the case r = 2, one obtains the desired re-
sult. �

For the case r = 1, we have the following.

Theorem 2.11 Let X be a linear space, Y be a 2-normed space, E ⊆ X \ {0} be a nonempty
set with E + E ⊆ E, and μ : Y \ {0} → (0, +∞). Let u, v ∈ Y be linearly independent elements
and ϕ : X × X → [0, +∞) be a function satisfying

lim
m→∞ϕ(mx, y) = 0

(

resp. lim
m→∞ϕ(x, my) = 0

)

, x, y ∈ E.

Assume that a function f : X → Y fulfills the inequality

∥
∥f (x + y) – f (x) – f (y), z

∥
∥ ≤ ϕ(x, y)μ(z) (2.5)
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for all z ∈ {u, v} and x, y ∈ E. Then

f (x + y) = f (x) + f (y), x, y ∈ E.

Proof We may assume that limm→∞ ϕ(mx, y) = 0 for all x, y ∈ E. Let x, y ∈ E. Then (2.5)
yields

∥
∥f (nx + x) – f (nx) – f (x), z

∥
∥ ≤ ϕ(nx, x)μ(z),

∥
∥f

(

nx + (x + y)
)

– f (nx) – f (x + y), z
∥
∥ ≤ ϕ(nx, x + y)μ(z)

for all z ∈ {u, v} and positive integers n. Allowing n → ∞ in the above inequalities, one
obtains

lim
n→∞

∥
∥f (nx + x) – f (nx) – f (x), z

∥
∥ = 0,

lim
n→∞

∥
∥f (x + y) – f (nx + x + y) + f (nx), z

∥
∥ = 0

for all z ∈ {u, v}. Then

∥
∥f (x + y) – f (x) – f (y), z

∥
∥ ≤ lim

n→∞
∥
∥f (x + y) – f (nx + x + y) + f (nx), z

∥
∥

+ lim
n→∞

∥
∥f (nx + x) – f (nx) – f (x), z

∥
∥

+ lim
n→∞

∥
∥f (nx + x + y) – f (nx + x) – f (y), z

∥
∥

≤ lim
n→∞ϕ

(

(n + 1)x, y
)

μ(z) = 0

for all z ∈ {u, v}. Therefore f (x + y) = f (x) + f (y) for all x, y ∈ E. �

Corollary 2.12 Let (X,‖.‖∗) be a normed space, Y be a 2-normed space, E ⊆ X \ {0} be a
nonempty set with E + E ⊆ E, and μ : Y \ {0} → (0, +∞). Take δ, ε ≥ 0 and let p, q, s be real
numbers. Assume that u, v ∈ Y are linearly independent elements and a function f : X → Y
fulfills one of the following inequalities:

(i) ‖Df (x, y), z‖ ≤ ε‖x‖p
∗‖y‖q

∗μ(z), min{p, q} < 0,
(ii) ‖Df (x, y), z‖ ≤ ‖x‖p

∗‖y‖q
∗(ε‖x + y‖s + δ‖x – y‖s)μ(z), min{p + s, q + s} < 0

for all z ∈ {u, v} and x, y ∈ E, where Df (x, y) = f (x + y) – f (x) – f (y). Then f is additive on E.

Theorem 2.13 Let Y be a 2-normed space and f : Y → Y . Suppose that r �= 0 and

∥
∥
∥
∥

rf
(

x + y
r

)

– f (x) – f (y), z
∥
∥
∥
∥

≤ ε‖x, z‖p‖y, z‖q (2.6)

for all x, y, z ∈ Y with ‖x, z‖‖y, z‖ �= 0. Then we have the following assertions:
(i) if min{p, q} < 0 and r �= 1, then

rf
(

x + y
r

)

= f (x) + (r – 1)f
(

y
r – 1

)

, x, y, x + y �= 0;
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(ii) if p + q �= 1, then

rf
(

x + y
r

)

= f (x) + f (y), x, y �= 0;

2f
(

x + y
2

)

= f (x) + f (y), x, y, x + y �= 0.

Proof We may assume that p < 0. Let x, y, z ∈ Y with ‖x, z‖‖y, z‖‖x + y, z‖ �= 0. We can
choose m such that ‖ y

r–1 + nx, z‖ �= 0 for all n ≥ m. Then (2.6) yields

∥
∥
∥
∥

rf
(

nx + x
r

)

– f (nx) – f (x), z
∥
∥
∥
∥

≤ εnp‖x, z‖p+q,

∥
∥
∥
∥

rf
( y

r–1 + nx + (x + y)
r2

)

– f
( y

r–1 + nx
r

)

– f
(

x + y
r

)

, z
∥
∥
∥
∥

≤ ε

∥
∥
∥
∥

y
r–1 + nx

r
, z

∥
∥
∥
∥

p∥
∥
∥
∥

x + y
r

, z
∥
∥
∥
∥

q

.

Allowing n tend to infinity in the above inequalities, one obtains

lim
n→∞

∥
∥
∥
∥

rf
(

nx + x
r

)

– f (nx) – f (x), z
∥
∥
∥
∥

= 0,

lim
n→∞

∥
∥
∥
∥

rf
( y

r–1 + nx + (x + y)
r2

)

– f
( y

r–1 + nx
r

)

– f
(

x + y
r

)

, z
∥
∥
∥
∥

= 0.

Then
∥
∥
∥
∥

rf
(

x + y
r

)

– f (x) – (r – 1)f
(

y
r – 1

)

, z
∥
∥
∥
∥

≤ lim
n→∞|r|

∥
∥
∥
∥

–rf
( y

r–1 + nx + (x + y)
r2

)

+ f
( y

r–1 + nx
r

)

+ f
(

x + y
r

)

, z
∥
∥
∥
∥

+ lim
n→∞

∥
∥
∥
∥

rf
(

nx + x
r

)

– f (nx) – f (x), z
∥
∥
∥
∥

+ |r| lim sup
n→∞

∥
∥
∥
∥

rf
( y

r–1 + nx + x + y
r2

)

– f
(

nx + x
r

)

– f
(

y
r – 1

)

, z
∥
∥
∥
∥

+ lim sup
n→∞

∥
∥
∥
∥

–rf
( y

r–1 + nx
r

)

+ f (nx) + f
(

y
r – 1

)

, z
∥
∥
∥
∥

(by (2.6))

≤ lim sup
n→∞

ε

[

|r|
(

n + 1
r

)p

+ np
]

‖x, z‖p
∥
∥
∥
∥

y
r – 1

, z
∥
∥
∥
∥

q

= 0.

Therefore
∥
∥
∥
∥

rf
(

x + y
r

)

– f (x) – (r – 1)f
(

y
r – 1

)

, z
∥
∥
∥
∥

= 0

for all x, y, z ∈ Y with ‖x, z‖‖y, z‖‖x + y, z‖ �= 0.
Let x, y ∈ Y such that x, y, x + y �= 0. Since dimY ≥ 2, there exist linearly independent

elements z, w ∈ Y such that ‖x, z‖‖y, z‖‖x + y, z‖‖x, w‖‖y, w‖‖x + y, w‖ �= 0. Indeed, if x, y
are linearly independent, we let z = 2x + y and w = x + 2y. If x, y are not linearly inde-
pendent, there exists z ∈ Y such that x, z are linearly independent, and we put w = x + z.
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Consequently,

∥
∥
∥
∥

rf
(

x + y
r

)

– f (x) – (r – 1)f
(

y
r – 1

)

, z
∥
∥
∥
∥

= 0,
∥
∥
∥
∥

rf
(

x + y
r

)

– f (x) – (r – 1)f
(

y
r – 1

)

, w
∥
∥
∥
∥

= 0.

Thus, we infer

rf
(

x + y
r

)

= f (x) + (r – 1)f
(

y
r – 1

)

for all x, y ∈ Y such that x, y, x + y �= 0. This proves (i).
The claims in (ii) are derived from Theorem 2.3. �

In Theorem 2.13, the case r = 1 is left out. So we now consider the case r = 1.

Theorem 2.14 Let Y be a 2-normed space and f : Y → Y . Suppose that min{p, q} < 0 and

∥
∥f (x + y) – f (x) – f (y), z

∥
∥ ≤ ε‖x, z‖p‖y, z‖q (2.7)

for all x, y, z ∈ Y with ‖x, z‖‖y, z‖ �= 0. Then f is additive on Y .

Proof We may assume that p < 0. Let x, y, z ∈ Y with ‖x, z‖‖y, z‖‖x + y, z‖ �= 0. Then (2.7)
yields

∥
∥f (nx + x) – f (nx) – f (x), z

∥
∥ ≤ npε‖x, z‖p‖y, z‖q,

∥
∥f

(

nx + (x + y)
)

– f (nx) – f (x + y), z
∥
∥ ≤ npε‖x, z‖p‖x + y, z‖q.

Allowing n tending to infinity in the above inequalities, one gets

lim
n→∞

∥
∥f (nx + x) – f (nx) – f (x), z

∥
∥ = 0,

lim
n→∞

∥
∥f

(

nx + (x + y)
)

– f (nx) – f (x + y), z
∥
∥ = 0.

Then

∥
∥f (x + y) – f (x) – f (y), z

∥
∥ ≤ lim

n→∞
∥
∥f (x + y) – f

(

nx + (x + y)
)

+ f (nx), z
∥
∥

+ lim
n→∞

∥
∥f (nx + x) – f (nx) – f (x), z

∥
∥

+ lim
n→∞

∥
∥f

(

nx + (x + y)
)

– f (nx + x) – f (y), z
∥
∥

≤ lim
n→∞(n + 1)pε‖x, z‖p‖y, z‖q = 0.

Therefore

∥
∥f (x + y) – f (x) – f (y), z

∥
∥ = 0



Najati et al. Journal of Inequalities and Applications         (2024) 2024:49 Page 10 of 13

for all x, y, z ∈ Y with ‖x, z‖‖y, z‖‖x + y, z‖ �= 0. With a proof similar to the argument of
Theorem 2.13, we conclude that f is additive on Y . So the proof is complete. �

3 Hyperstability of the general linear functional equation
In this section, (X,‖.‖∗) denotes a normed space over the field F, Y is a 2-normed space
over the field K, and μ : Y \ {0} → (0, +∞). We also assume that A, B ∈ K, a, b ∈ F \ {0},
and C ∈ Y are fixed.

Theorem 3.1 Let d > 0 and u, v ∈ Y be linearly independent elements. Let ϕ : X × X →
[0, +∞) and f : X → Y be functions such that

lim
m→∞ϕ(mx, my) = 0, lim

m→∞ϕ
(

a–1(m + 1)x, –b–1mx
)

= 0, x, y ∈ X \ {0}, (3.1)

and

∥
∥f (ax + by) – Af (x) – Bf (y) – C, z

∥
∥ ≤ ϕ(x, y)μ(z) (3.2)

for all x, y ∈ Ed := {w ∈ X : ‖w‖∗ ≥ d} and z ∈ {u, v}. Then f satisfies

Af (x) + Bf
(

–ab–1x
)

= (A + B)f (0), x ∈ X,

f (ax + by) = Af (x) + Bf (y) + C, (1 – A – B)f (0) = C, x, y ∈ X \ {0}.
(3.3)

Proof Replacing y by –b–1mx and x by a–1(m + 1)x in (3.2), we have

∥
∥f (x) – Af

(

a–1(m + 1)x
)

– Bf
(

–b–1mx
)

– C, z
∥
∥ ≤ ϕ

(

a–1(m + 1)x, –b–1mx
)

μ(z) (3.4)

for all x ∈ X \ {0}, z ∈ {u, v} and positive integer m ≥ n, where a–1(n + 1)x, b–1nx ∈ Ed .
Allowing m → ∞ in (3.4) and using (3.1), one obtains

lim
m→∞

∥
∥f (x) – Af

(

a–1(m + 1)x
)

– Bf
(

–b–1mx
)

– C, z
∥
∥ = 0 (3.5)

for all x ∈ X \ {0} and z ∈ {u, v}. Let x ∈ X \ {0}, then (3.1) and (3.5) yield

∥
∥Af (x) + Bf

(

–ab–1x
)

– (A + B)f (0), z
∥
∥

≤ lim
m→∞

∥
∥Af (x) – A2f

(

a–1(m + 1)x
)

– ABf
(

–b–1mx
)

– AC, z
∥
∥

+ lim
m→∞

∥
∥Bf

(

–ab–1x
)

– ABf
(

–b–1(m + 1)x
)

– B2f
(

ab–2mx
)

– BC, z
∥
∥

+ lim
m→∞

∥
∥A2f

(

a–1(m + 1)x
)

+ ABf
(

–b–1(m + 1)x
)

+ AC – Af (0), z
∥
∥

+ lim
m→∞

∥
∥ABf

(

–b–1mx
)

+ B2f
(

ab–2mx
)

+ BC – Bf (0), z
∥
∥

≤ |A| lim
m→∞ ϕ

(

a–1(m + 1)x, –b–1(m + 1)x
)

μ(z)

+ |B| lim
m→∞ϕ

(

–b–1mx, ab–2mx
)

μ(z) = 0
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for all z ∈ {u, v}. Then

Af (x) + Bf
(

–ab–1x
)

= (A + B)f (0), x ∈ X. (3.6)

Replace y by –amx and x by bmx in (3.2) to obtain

∥
∥f (0) – Af (bmx) – Bf (–amx) – C, z

∥
∥ ≤ ϕ(bmx, –amx)μ(z) (3.7)

for all x ∈ X \ {0}, z ∈ {u, v} and positive integer m ≥ n, where anx, bnx ∈ Ed . On the other
hand, replacing x by bmx in (3.6), we get

(A + B)f (0) = Af (bmx) + Bf (–amx), x ∈ X.

Therefore, (3.7) becomes as follows:

∥
∥f (0) – (A + B)f (0) – C, z

∥
∥ ≤ ϕ(bmx, –amx)μ(z), z ∈ {u, v}.

Letting m → ∞ in the inequality above, we get

(1 – A – B)f (0) = C.

This shows that (3.5) holds true for all x ∈ X. To prove (3.3), let x, y ∈ X \ {0}. By applying
(3.5), we have

∥
∥f (ax + by) – Af (x) – Bf (y) – C, z

∥
∥

≤ lim
m→∞

∥
∥f (ax + by) – Af

(

a–1(m + 1)(ax + by)
)

– Bf
(

–b–1m(ax + by)
)

– C, z
∥
∥

+ lim
m→∞

∥
∥–Af (x) + A2f

(

a–1(m + 1)x
)

+ ABf
(

–b–1mx
)

+ AC, z
∥
∥

+ lim
m→∞

∥
∥–Bf (y) + ABf

(

a–1(m + 1)y
)

+ B2f
(

–b–1my
)

+ BC, z
∥
∥

+ lim
m→∞

∥
∥Af

(

a–1(m + 1)(ax + by)
)

– A2f
(

a–1(m + 1)x
)

– ABf
(

a–1(m + 1)y
)

– AC, z
∥
∥

+ lim
m→∞

∥
∥Bf

(

–b–1m(ax + by)
)

– ABf
(

–b–1mx
)

– B2f
(

–b–1my
)

– BC, z
∥
∥

≤ |A| lim
m→∞ ϕ

(

a–1(m + 1)x, –a–1(m + 1)y
)

μ(z)

+ |B| lim
m→∞ϕ

(

–b–1mx, –b–1my
)

μ(z) = 0, z ∈ {u, v}.

Thus f satisfies (3.3) for all x, y ∈ X \ {0}. �

Corollary 3.2 Let d > 0, ε, δ ≥ 0 and p, q, s be real numbers. Put Gf (x, y) := f (ax + by) –
Af (x) – Bf (y) – C for a given function f : X → Y . Suppose that u, v ∈ Y are linearly inde-
pendent elements. Then we have the following assertions:

(i) if p, q < 0 and ‖Gf (x, y), z‖ ≤ ε(‖x‖p
∗ + ‖y‖q

∗)μ(z) for all x, y ∈ Ed and z ∈ {u, v}, then

f (ax + by) = Af (x) + Bf (y) + C, x, y ∈ X \ {0},
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Af (x) + Bf
(

–ab–1x
)

= (A + B)f (0), x ∈ X.

If a ± b �= 0 and f satisfies one of the following inequalities:
(ii) p + s, q + s < 0 and

∥
∥Gf (x, y), z

∥
∥ ≤ (‖x‖p

∗ + ‖y‖q
∗
)(

ε‖x + y‖s
∗ + δ‖x – y‖s

∗
)

μ(z),

x, y ∈ Ed, x ± y �= 0, z ∈ {u, v};

(iii) p + q + s < 0 and

∥
∥Gf (x, y), z

∥
∥ ≤ ‖x‖p

∗‖y‖q
∗
(

ε‖x + y‖s
∗ + δ‖x – y‖s

∗
)

μ(z), x, y ∈ Ed, x± y �= 0, z ∈ {u, v},

then f satisfies

f (ax + by) = Af (x) + Bf (y) + C, x, y ∈ X \ {0}, x ± y �= 0.

Corollary 3.3 Let u, v ∈ Y be linearly independent elements. Then each function f : X → Y
fulfills one of the following statements:

(i) f (ax + by) = Af (x) + Bf (y) + C, x, y ∈ X \ {0}.
(ii) lim supmin{‖x‖∗ ,‖y‖∗}→∞ ‖f (ax + by) – Af (x) – Bf (y) – C, u‖‖x‖p

∗‖y‖q
∗ = +∞, or

lim supmin{‖x‖∗ ,‖y‖∗}→∞ ‖f (ax + by) – Af (x) – Bf (y) – C, v‖‖x‖p
∗‖y‖q

∗ = +∞ for all real
numbers p, q with p + q > 0.

Corollary 3.4 Let u, v ∈ Y be linearly independent elements. Then each function f : X → Y
fulfills one of the following statements:

(i) f (ax + by) = Af (x) + Bf (y) + C, x, y ∈ X \ {0};
(ii) lim supmin{‖x‖∗ ,‖y‖∗}→∞

‖x‖p∗‖y‖q∗
‖x‖p∗+‖y‖q∗

‖f (ax + by) – Af (x) – Bf (y) – C, u‖ = +∞, or

lim supmin{‖x‖∗ ,‖y‖∗}→∞
‖x‖p∗‖y‖q∗
‖x‖p∗+‖y‖q∗

‖f (ax + by) – Af (x) – Bf (y) – C, v‖ = +∞, for all real
positive numbers p, q.
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