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Abstract
This paper studies the existence of radial solutions of the boundary value problem of
p-Laplace equation with gradient term

⎧
⎪⎨

⎪⎩

–�pu = K (|x|)f (|x|,u, |∇u|), x ∈ �,
∂u
∂n = 0, x ∈ ∂�,

lim|x|→∞ u(x) = 0,

where � = {x ∈R
N : |x| > r0}, N ≥ 3, 1 < p ≤ 2, K : [r0,∞) →R

+, and
f : [r0,∞)×R×R

+ →R are continuous. Under certain inequality conditions of f , the
existence results of radial solutions are obtained.
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1 Introduction
The boundary value problems of p-Laplace operator �pu = div(|∇u|p–2∇u) have impor-
tant application background. These problems have been raised in many different fields
of applied mathematics and mechanics, such as diffusion problems, nonlinear elasticity,
non-Newtonian fluids, etc. For the Laplace operator case (p = 2), these problems have been
extensively and deeply studied, and a large number of research results have been achieved.
But for the p-Laplace operator cases (p �= 2), the problems are still being explored, and re-
search results are very limited. In this paper, we consider the existence of radial solution
for the boundary value problem(BVP) of p-Laplace equation with gradient term

⎧
⎪⎪⎨

⎪⎪⎩

–�pu = K(|x|)f (|x|, u, |∇u|), x ∈ �,
∂u
∂n = 0, x ∈ ∂�,

lim|x|→∞ u(x) = 0

(1.1)

in the exterior domain � = {x ∈ R
N : |x| > r0}, where N ∈ N and ≥ 3, r0 > 0, and p > 1 are

positive constants, ∂u
∂n is the outward normal derivative of u on ∂�, K : [r0,∞) → R

+ and
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f : [r0,∞) × R × R
+ → R are continuous functions, R+ = [0,∞). Set J = [0,∞), q = p

p–1 .
For the convenience, we make the following assumptions:

(A1) K : J →R
+ is continuous and rq(N–1)K(r) is bounded on J ;

(A2) f : J ×R×R
+ →R is continuous, and for ∀M > 0, f (r, u,η) is uniformly

continuous on J × [–M, M] × [0, M]; for every (u,η) ∈R×R
+, f (·, u,η) is

bounded on J .
For the special case BVP(1.1) of p = 2 and the nonlinearity f without gradient terms,

namely for the boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

–�u = K(|x|)f (u), x ∈ �,
∂u
∂n = 0, x ∈ ∂�,

lim|x|→∞ u(x) = 0,

(1.2)

the existence of radial solutions has been considered by many authors, see [1–7]. The au-
thors of references[1–7] obtained some existence results by using various nonlinear anal-
ysis methods, such as upper and lower solutions method, priori estimates technique, fixed
point index theory, etc. In [7], Li and Zhang built an eigenvalue criterion for the existence
of positive radial solutions of BVP(1.2), see [7, Theorem 1.1]. The eigenvalue criterion is
related to the principle eigenvalue λ1 of the corresponding linear eigenvalue problem, and
it is an effective method to obtain positive solutions. Recently, Li and Wei [8] partially
extended the result of [7] to the p-Laplace boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

–�pu = K(|x|)f (u), x ∈ �,
∂u
∂n = 0, x ∈ ∂�,

lim|x|→∞ u(x) = 0

(1.3)

in the case of 1 < p < N , see [8, Theorem 1.1]. BVP(1.3) has a variational structure, and
the existence of its solution can be obtained by using critical point theory. For the case of
bounded domains, see references [9–12].

This paper aims to study the existence of radial solutions for the general BVP(1.1) with
gradient term. For the case of p = 2, the existence of radial solutions has been studied by
some authors, see [13–17]. These authors discussed the existence of radial solutions by
using upper and lower solutions method and fixed point index theory in cones. For the
case of p �= 2, since the p-Laplace operator �pu = div(|∇u|p–2∇u) is nonlinear, BVP(1.1) is
difficult to discuss and the approach of p = 2 is not applicable. In this paper, we consider
the case of 1 < p ≤ 2 and obtain an existence result of radial solutions. We introduce two
positive constants:

H0 =
supr∈J rq(N–1)K(r)

(q – 1)p(N – p)pr0q(N–p) , H1 =
(q – 1)p(N – p)p

r0p H0. (1.4)

The main result of our paper is as follows.

Theorem 1.1 Let 1 < p ≤ 2 and assumptions (A1) and (A2) hold. If the nonlinear function
f satisfies the following conditions:
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(F1) There exist constants α,β ≥ 0 and C > 0 with H0α + H1β < 1 such that

f (r, ξ ,η)ξ ≤ α|ξ |p + βηp + C, (r, ξ ,η) ∈ J ×R×R
+;

(F2) For every given M > 0, there is a continuous monotone increasing function
GM : R+ → (0,∞) satisfying

∫ ∞

0

ρdρ

GM(ρ)
= ∞ (1.5)

such that

∣
∣f (r, ξ ,η)

∣
∣ ≤ GM

(
ηp–1) for all (r, ξ ,η) ∈ J × [–M, M] ×R

+, (1.6)

then BVP(1.1) has at least one radial solution.

In Theorem 1.1, condition (F1) is a growth condition of f (r, ξ ,η) on ξ and η, and it allows
f (r, ξ ,η) to have downward superlinear growth on ξ and η, and upward (p – 1)-power
growth. Condition (F2) is a Nagumo-type growth condition, and it restricts f (r, ξ ,η) to
have at most 2(p – 1)-power growth on η.

The proof of Theorem 1.1 is presented in Sect. 3. Some preliminaries to discuss BVP(1.1)
are given in Sect. 2. At the end of Sect. 3, an example to illustrate the applicability of The-
orem 1.1 is presented.

2 Preliminaries
Let u = u(|x|) be a radially symmetric solution of BVP (1.1) and r = |x|. By direct compu-
tation, we have

–�pu = div
(|∇u|p–2∇u

)
= –

(∣
∣u′(r)

∣
∣p–2u′(r)

)′ –
N – 1

r
∣
∣u′(r)

∣
∣p–2u′(r).

Hence u is a solution of the ordinary differential equation BVP in [r0,∞)

⎧
⎨

⎩

–(|u′(r)|p–2u′(r))′ – N–1
r |u′(r)|p–2u′(r) = K(r)f (r, u(r), |u′(r)|), r ∈ J ,

u′(r0) = 0, u(∞) = 0,
(2.1)

where u(∞) = limr→∞ u(r). Conversely, if u(r) is a solution of BVP(2.1), then u(|x|) is a
radial solution of BVP(1.1). Hence, to discuss the radial solutions of BVP(1.1) just consider
BVP (2.1).

For BVP(2.1), we make the variable transformation by

t =
(

r0

r

)(q–1)(N–p)

i.e. r = r0t–1/(q–1)(N–p), (2.2)

and set

v(t) = u
(
r(t)

)
, t ∈ [0, 1],
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then BVP(2.1) is changed into the BVP in (0, 1]

⎧
⎨

⎩

–(|v′(t)|p–2v′(t))′ = a(t)f (r(t), v(t), b(t)|v′(t)|), t ∈ (0, 1],

v(0) = 0, v′(1) = 0,
(2.3)

where

a(t) =
rq(N–1)(t)K(r(t))

(q – 1)p(N – p)pr0q(N–p) , t ∈ (0, 1], (2.4)

b(t) =
(q – 1)(N – p)

r0
t

N–1
N–p , t ∈ (0, 1]. (2.5)

BVP (2.3) is a boundary value problem of quasilinear ordinary differential equation with
nonlinear derivative term and singularity at t = 0. A solution v of BVP(2.3) means that
v ∈ C1[0, 1] such that |v′|p–2v′ ∈ C1(0, 1], and it satisfies equation (2.3). Hence, the solution
of BVP(2.3) belongs to the subset of C1(I)

D :=
{

v ∈ C1(I)|v(0) = 0, v′(1) = 0,
∣
∣v′∣∣p–2v′ ∈ C1(0, 1]

}
. (2.6)

If v ∈ D is a solution of BVP(2.3), then we easily verify that u(r) = v(t(r)) is a solution of
BVP (2.1) and u(|x|) is a classical radial solution of BVP(1.1). Hence we discuss BVP(2.3) to
obtain radial solutions of BVP (1.1). We will use the Leray–Schauder fixed point theorem
on the completely continuous mapping to obtain the existence of BVP (2.3).

Let I = [0, 1]. We use C(I) to denote the Banach space of all continuous function v(t) on
I with the maximal module norm ‖v‖C = maxt∈I |v(t)|, C1(I) denotes the Banach space of
all continuous differentiable function on I with the norm ‖v‖C1 = max{‖v‖C ,‖v′‖C}. Let
CB(0, 1] be the Banach space of all bounded continuous function w(t) on (0, 1] with the
norm ‖w‖∞ = supt∈(0,1] |w(t)|.

Given h ∈ CB(0, 1], we consider the simple boundary value problem corresponding to
BVP(2.3)

⎧
⎨

⎩

–(|v′(t)|p–2v′(t))′ = a(t)h(t), t ∈ (0, 1],

v(0) = 0, v′(1) = 0.
(2.7)

Define a function � by

�(v) = |v|p–2v = |v|p–1 sgn v, v ∈R. (2.8)

Clearly, w = �(v) is a strictly monotone increasing continuous function on R and its in-
verse function is given by

�(w) := �–1(w) = |w|q–1 sgn w, w ∈ R. (2.9)

v = �(w) is also a strictly monotone increasing continuous function on R.
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Lemma 2.1 For any given h ∈ CB(0, 1], BVP (2.7) has a unique solution v := Sh ∈ D. More-
over, the solution operator S : CB(0, 1] → C1(I) is compact continuous and satisfies

S(νh) = νq–1Sh, h ∈ CB(0, 1],ν ≥ 0. (2.10)

Proof By (2.4) and assumption (A1), the function a(t) is nonnegative, bounded, and con-
tinuous on (0, 1], and

‖a‖∞ = sup
r∈J

rq(N–1)K(r)
(q – 1)p(N – p)pr0q(N–p) = H0 (2.11)

for every s ∈ (0, 1],

∫ 1

s
a(t) dt =

1
[(q – 1)(N – p)]p–1r0q(N–p)

∫ r(s)

r0

rN–1K(r) dr > 0. (2.12)

For any given h ∈ CB(0, 1], we verify that

v(t) =
∫ t

0
�

(∫ 1

s
a(τ )h(τ ) dτ

)

ds := Sh(t), t ∈ I, (2.13)

is a solution of BVP(2.7). By (2.12), the function defined by

H(s) =
∫ 1

s
a(τ )h(τ ) dτ , s ∈ I,

is continuous on I . Hence, �(H(s)) is continuous on I , and

v(t) =
∫ t

0
�

(
H(s)

)
ds, t ∈ I,

is continuously differentiable on H . This means that v ∈ C1(I) and v′(t) = �(H(t)) for t ∈ I ,
so we have

v′(t) = �

(∫ 1

t
a(τ )h(τ ) dτ

)

, t ∈ I. (2.14)

Using � to act on both sides of this equation, we obtain that

∣
∣v′(t)

∣
∣p–2v′(t) = �

(
v′(t)

)
=

∫ 1

t
a(τ )h(τ ) dτ , t ∈ I.

This implies that (|v′(t)|p–2v′(t) ∈ C1(0, 1] and

(∣
∣v′(t)

∣
∣p–2v′(t)

)′ = –a(t)h(t), t ∈ (0, 1].

Hence, v ∈D, and it is a solution of BVP(2.7).
Conversely, if v ∈D is a solution of BVP(2.7), we show that v can be expressed by (2.13).

Integrating equation (2.13) on (t, 1], we have

∣
∣v′(t)

∣
∣p–2v′(t) = H(t), t ∈ [0, 1].
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Using � to act on both sides of this equation, we obtain that

v′(t) = �
(
H(t)

)
, t ∈ [0, 1].

Integrating this equation on [0, t], we have

v(t) =
∫ t

0
�

(
H(s)

)
ds, t ∈ [0, 1].

That is, v is expressed by (2.13). Hence, BVP(2.7) has a unique solution v = Sh.
Finally, we prove that the operator S : CB(0, 1] → C1(I) is compact continuous. By (2.13)

and (2.14) and the continuity of � , we easily see that S : CB(0, 1] → C1(I) is continuous. For
any bounded set D ⊂ CB(0, 1], by (2.13) and (2.14) we can show that S(D) and its derivative
set {v′|v ∈ S(D)} are bounded equicontinuous sets in C(I). By the Ascoli–Arzéla theorem,
S(D) is a precompact subset of C1(I). Thus, S : CB(0, 1] → C1(I) is compact continuous.

By expression (2.13) of the solution operator S, we can directly verify that S satisfies
(2.10). �

Lemma 2.2 Let 1 < p ≤ 2, [a, b] ⊂ R
+, w ∈ C+[a, b]. Then

∫ b

a
�

(
w(t)

)
dt ≤ (b – a)2–p�

(∫ b

a
w(t) dt

)

. (2.15)

Proof Since �′′(v) < 0 in (0, +∞), it follows that �(v) is an upper convex function on R
+.

Hence, �(v) satisfies Jensen’s inequality on R
+. That is, for any v1, v2, . . . , vn ∈ R

+, and
μ1,μ2, . . . ,μn ∈R

+ with μ1 + μ2 + · · · + μn = 1, �(v) satisfies the inequality

n∑

k=1

μk�(vk) ≤ �

( n∑

k=1

μkvk

)

. (2.16)

For any partition of [a, b],

� : a = t0 < t1 < · < tn = b,

setting �tk = tk – tk–1, k = 1, 2, . . . , n, by Jensen’s inequality (2.16), we have

1
b – a

n∑

k=1

�
(
w(tk)

)
�ti ≤ �

(
1

b – a

n∑

k=1

w(tk)�ti

)

.

Letting ‖�‖ := max1≤k≤n → 0, by the definition of Riemann integral, we have

1
b – a

∫ b

a
�

(
w(t)

)
dt ≤ �

(
1

b – a

∫ b

a
w(t) dt

)

.

Hence, (2.15) holds. �

Now we consider BVP(2.3). Let f : J × R × R
+ → R satisfy assumption (A1). Define a

mapping F : C1(I) → CB(0, 1] by

F(v)(t) := f
(
r(t), v(t), b(t)

∣
∣v(t)

∣
∣
)
, t ∈ I. (2.17)
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By assumption (A2), we easily verify that F : C1(I) → CB(0, 1] is continuous and maps
every bounded subset of C1(I) into a bounded subset of CB(0, 1]. Hence, by the compact
continuity of the operator S : CB(0, 1] → C1(I), the composite mapping

A = S ◦ F : C1(I) → C1(I) (2.18)

is compact continuous. By the definitions of S, the solution of BVP(2.3) is equivalent to the
fixed point of A. We will find the fixed point of A by using the following Leray–Schauder
fixed point theorem of compact continuous mapping[18].

Lemma 2.3 Let X be a Banach space, A : X → X be a compact continuous mapping. If the
set of solutions of the equation family

v = μAv, 0 < μ < 1,

is a bounded subset of X, then A has a fixed point.

3 Proof of the main result

Proof of Theorem 1.1 Let A : C1(I) → C1(I) be the mapping defined by (2.18). Then A
is compact continuous and the solution of BVP(2.3) is equivalent to the fixed point of
A. Hence, if v ∈ C1(I) is a fixed point of A, then v(t) is a solution of BVP (2.3), and u =
v((r0/|x|)(q–1)(N–p)) is a classical positive radial solution of BVP (1.1). We use Lemma 2.3 to
show that A has a fixed point. For this, we consider the family of equations

v = μAv, 0 < μ < 1. (3.1)

We need to prove that the set of solutions of (3.1) is bounded in C1(I).
Let v0 ∈ C1(I) be a solution of (3.1) for μ0 ∈ (0, 1). By (2.10), v0 = μ0Av0 = μ0S(F(v0)) =

S(μp–1
0 F(v0)). By the definition of S, v0 is the unique solution of BVP(2.7) for h =

μ
p–1
0 F(v0) ∈ CB(0, 1]. Hence v0 ∈D satisfies the differential equation

⎧
⎨

⎩

–(|v′
0(t)|p–2v′

0(t))′ = μ
p–1
0 a(t)f (r(t), v0(t), b(t)|v0(t)|), t ∈ (0, 1],

v(0) = 0, v′(1) = 0.
(3.2)

By the boundary condition of v0, we easily see that

‖v0‖p ≤ ∥
∥v′

0
∥
∥

p. (3.3)

Multiplying equation (3.2) by v0(t), by condition (F1) we have

–
(∣
∣v′

0(t)
∣
∣p–2v′

0(t)
)′v0(t) = μ

p–1
0 a(t)f

(
r(t), v0(t), b(t)

∣
∣v0(t)

∣
∣
)
v0(t)

≤ μ
p–1
0 a(t)

(
α
∣
∣v0(t)

∣
∣p + βbp(t)

∣
∣v′

0(t)
∣
∣p + C

)

≤ ‖a‖∞
(
α
∣
∣v0(t)

∣
∣p + βbp(1)

∣
∣v′

0(t)
∣
∣p + C

)

= H0α
∣
∣v0(t)

∣
∣p + H1β

∣
∣v′

0(t)
∣
∣p + H0C, t ∈ (0, 1].
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Integrating this inequality on (0, 1], then using integration by parts for the left-hand side
and (3.3), we obtain that

∥
∥v′

0
∥
∥p

p ≤ H0α‖v0‖p
p + H1β

∥
∥v′

0
∥
∥p

p + H0C

≤ (H0α + H1β)
∥
∥v′

0
∥
∥p

p + H0C.

From this inequality it follows that

∥
∥v′

0
∥
∥

p ≤
(

H0C
1 – (H0α + H1β)

)1/p

:= M. (3.4)

Hence, for every t ∈ I , we have

∣
∣v0(t)

∣
∣ =

∣
∣v0(t) – v0(0)

∣
∣

=
∣
∣
∣
∣

∫ t

0
v′

0(s) ds
∣
∣
∣
∣

≤
∫ t

0

∣
∣v′

0(s)
∣
∣ds ≤

∫ 1

0

∣
∣v′

0(s)
∣
∣ds ≤ ∥

∥v′
0
∥
∥

p ≤ M.

This means that

‖v0‖C ≤ M. (3.5)

For this M > 0, by assumption (F2), there is a monotone increasing function GM : R+ →
(0,∞) satisfying (1.5) such that (1.6) holds. From (1.6) and (3.5) it follows that

∣
∣f

(
r(t), v0(t), b(t)

∣
∣v′

0(t)
∣
∣
)∣
∣ ≤ GM

(∣
∣b(t)v′

0(t)
∣
∣p–1)

≤ GM
(∣
∣b(1)v′

0(t)
∣
∣p–1), t ∈ (0, 1].

By this and equation (3.2), we have

–
(∣
∣v′

0(t)
∣
∣p–2v′

0(t)
)′ ≤ a(t)GM

(∣
∣b(1)v′

0(t)
∣
∣p–1), t ∈ (0, 1]. (3.6)

By (1.5), there exists a constant M1 > 0 such that

∫ M1

0

ρdρ

GM(ρ)
> ‖a‖∞b2(p–1)(1)�(2M). (3.7)

Choosing the positive constant

M2 := max
{

M, Mq–1
1 /b(1)

}
, (3.8)

we show that

∥
∥v′

0
∥
∥

C ≤ M2. (3.9)
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It may be set ‖v′
0‖C > 0. Since v′

0(1) = 0, by the maximum theorem of continuous functions,
there exists t1 ∈ [0, 1) such that

∥
∥v′

0
∥
∥

C = max
t∈I

∣
∣v′

0(t)
∣
∣ = v′

0(t1). (3.10)

There are two cases: v′
0(t1) > 0 or v′

0(t1) < 0. We only consider the case v′
0(t1) > 0, and the

other case can be treated in the same way. Set

s1 = inf
{

s ∈ (t1, 1]|v′
0(s) = 0

}
.

Then t1 < s1 ≤ 1, and on [t1, s1], v′
0(t) satisfies

v′
0(t) > 0, t ∈ [t1, s1); v′

0(s1) = 0. (3.11)

Hence, by inequality (3.6), we have

–
((b(1)v′

0(t))p–1)′(b(1)v′
2(t))p–1

GM((b(1)v′
0(t))p–1)

≤ a(t)b2(p–1)(1)
(
v′

2(t)
)p–1

≤ ‖a‖∞b2(p–1)(1)�
(
v′

0(t)
)
, t ∈ [t1, s1].

Integrating both sides of this inequality on [t1, s1] and making the variable transformation
ρ = (b(1)v0

′(t))p–1 for the left-hand side, using (2.8) and (3.11) for the right-hand side, we
have

∫ (b(1)v′
0(t1))p–1

0

ρdρ

GM(ρ)
≤ ‖a‖∞b2(p–1)(1)

∫ s1

t1

�
(
v′

0(t)
)

dt. (3.12)

By (3.11), v′
0 ∈ C+[t1, s1]. Hence v0(t) is increasing on [t1, s1] and 0 ≤ v0(s1) – v0(t1) ≤ 2M.

By Lemma 2.2, we have

∫ s1

t1

�
(
v′

0(t)
)

dt ≤ (s1 – t1)2–p�

(∫ s1

t1

v′
0(t) dt

)

= (s1 – t1)2–p�
(
v0(s1) – v0(t1)

) ≤ �(2M).

Hence from (3.12) it follows that

∫ (b(1)v′
0(t1))p–1

0

ρdρ

GM(ρ)
≤ ‖a‖∞b2(p–1)(1)�(2M). (3.13)

Combining this inequality and (3.7), we obtain that

(
b(1)v′

0(t1)
)p–1 ≤ M1. (3.14)

From this inequality it follows that

∥
∥v′

0
∥
∥

C = v′
0(t1) ≤ Mq–1

1 /b(1) ≤ M2.
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Hence, (3.9) holds. By (3.9) and (3.3), we have

‖v0‖C1 = max
{‖v0‖C ,

∥
∥v′

0
∥
∥

C

} ≤ M2. (3.15)

Hence, the set of solutions of equation family (3.1) is bounded in C1(I). By Lemma 2.3, A
has a fixed point in C1(I), which is a solution of BVP(2.3).

The proof of Theorem 1.1 is complete. �

Example 3.1 Consider the boundary value problem of p-Laplace operator on the exterior
of unit ball � = {x ∈R

N : |x| > 1}
⎧
⎪⎪⎨

⎪⎪⎩

–�pu = K(|x|)(c0 + c1|u|α–2u – c2|∇u|βu), x ∈ �,
∂u
∂n = 0, x ∈ ∂�,

lim|x|→∞ u(x) = 0,

(3.16)

where N ≥ 3, 1 < p ≤ 2, K : [1, +∞) →R
+ is continuous and satisfies assumption (A1), c0,

c1, c2, α, β are positive constants. Corresponding to BVP(1.1), the nonlinearity is

f (r, ξ ,η) = c0 + c1|ξ |α–2ξ – c2η
βξ , r ≥ 1, ξ ∈R,η ∈R

+. (3.17)

From this it follows that

f (r, ξ ,η)ξ ≤ c0|ξ | + c1|ξ |α , r ≥ 1, ξ ∈R,η ∈R
+. (3.18)

By this and Young’s inequality, it is easy to prove that, when 1 < α < p, f (r, ξ ,η) satisfies
condition (F1). By (3.17), when 0 < β ≤ 2(p – 1), f (r, ξ ,η) satisfies condition (F2). Hence,
by Theorem 1.1, when 1 < α < p, f (r, ξ ,η) and 0 < β ≤ 2(p – 1), BVP(3.16) has at least one
radial solution.
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