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1 Introduction

C. Hermite and J. Hadamard introduced Hermite—Hadamard-type inequalities for convex
functions. Let us consider that § : I/ — R is a convex function on the interval I of real
numbers and ¢,8 € I with o < 8. Then, the following double inequality holds:

o8 L3001 56)
3( : )_8_ f& 1)

If § is concave, then both inequalities in (1) are valid in the reverse direction. Many papers
have been considered in order to obtain midpoint- and trapezoid-type inequalities, which
give bounds for the left- and right-hand side of the inequality (1), respectively. For example,
Dragomir and Agarwal first proved trapezoid-type inequalities for the case of convex func-
tions in [12] and Kirmaci first obtained midpoint-type inequalities for convex functions
in [18]. Igbal et al. [16] investigated some fractional midpoint-type inequalities for convex
functions. Sarikaya et al. generalized (1) for fractional integrals. The authors also investi-
gated some corresponding trapezoid-type inequalities in [35]. Moreover, in [11] Dragomir
proved Hermite—Hadamard-type inequalities for the case of coordinated convex func-
tions. In addition to this, trapezoid- and midpoint-type inequalities for coordinated con-
vex functions were established in [34] and [19], respectively. Furthermore, in [37], sev-
eral fractional midpoint-type inequalities were established for coordinated convex func-
tions. In addition, they proved Hermite—Hadamard inequalities and several trapezoid-
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and midpoint-type inequalities for the case of generalized fractional integrals. We refer to
[8, 10, 27] for further information about these kinds of inequalities.

Some Hermite—Hadamard and Simpson-type inequalities were established for func-
tions whose absolute values of derivatives are convex in [31]. Barani et al. [6] proved
Hermite—Hadamard-type inequalities for the case of twice-differentiable convex func-
tions. In [28], ]. Park considered new estimates in generalizations of Hadamard, Ostrowski,
and Simpson-type inequalities for functions whose second derivatives in absolute value at
certain powers are convex and quasiconvex functions. Moreover, some new generalized
fractional integral inequalities of midpoint- and trapezoid-type for twice-differentiable
convex functions are obtained in [24]. Furthermore, in [7], Budak et al. established some
midpoint- and trapezoid-type inequalities for functions whose second derivatives in ab-
solute value are convex. See [15, 32, 33] for results related to these types of inequalities
involving twice-differentiable functions.

Numerous authors have considered fractional integral inequalities and applications
by using Riemann-Liouville fractional integrals. For example, a variant of Hermite—
Hadamard inequalities in Riemann—-Liouville fractional integral forms was investigated
in [30]. Moreover, in [14], some left Hermite—Hadamard-type inequalities were estab-
lished for the case of Riemann—-Liouville fractional integrals. See [13, 17, 23] and the ref-
erences therein for further information and properties of Riemann-Liouville fractional in-
tegrals. While a considerable number of mathematicians has studied Hermite—Hadamard
inequalities for Riemann-Liouville fractional integrals, some authors have also considered
Hermite—Hadamard inequalities for the case of other types of fractional integrals such as
k-fractional integrals, Hadamard fractional integrals, tempered fractional integrals, con-
formable fractional integrals, etc. For example, we refer the reader to [1-5, 26] and the
references cited therein.

Tempered fractional calculus is a branch of mathematics that extends the concept of
fractional calculus. In [9], the definitions of fractional integration with exponential ker-
nels and weak singular were firstly reported in Buschman’s earlier work. For the other
different definitions of the tempered fractional integration, see the books [22, 29, 36] and
references therein. In [25], several Hermite—Hadamard-type inequalities were established
associated with tempered fractional integrals for the case of convex functions which cover
the previously published result for Riemann integrals and Riemann-Liouville fractional
integrals.

The primary goal of this article is to present and prove left Hermite—Hadamard-type
inequalities for tempered fractional integrals. The entire research structure takes four sec-
tions, including the introduction. In Sect. 2, we provide the basic definitions and facts from
the fractional calculus theory. In Sect. 3, we establish an equality involving tempered frac-
tional integrals for the case of twice-differentiable functions. By utilizing this equality, we
prove midpoint-type inequalities for functions whose second derivatives are convex. We
also present some remarks. Some conclusions and further directions of research are dis-

cussed in Sect. 4.

2 Preliminaries
We will now introduce the necessary mathematical preliminaries from fractional calculus

theory, which will be utilized in the rest of this paper.
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Definition 1 Let § € Li[0,§]. The Riemann-Liouville integrals /¢, § and J§' § of order
a >0 with o > 0 are defined by

7 3() = f (- Fdt, x>0, @)

1
I'a)
and

T 3 = / (h-0"FWds, x<s, 3)

(@)

respectively. Here, I'(«) is the Gamma function defined as

F(a):/ e “u*du.
0

Remark 1 In the case of o = 1, the fractional integral becomes the classical integral.

The following are the fundamental definitions and new notations of tempered fractional
operators that we will be using.

Definition 2 The incomplete gamma function and A-incomplete gamma function are de-
fined by

X
Y (o, %) = / u*tetdt
0

and
X
Y (o, %) = f us e dr,
0

respectively. Here, 0 < @ < 0o and A > 0.
Remark 2 (See [25]) For the real numbers @ > 0, x,A > 0, and o < §, we have

(1) Y, 50 (@, 1) = [ pete M dr = (207 v, (@,8 - o),

(2) fo Y 50 (0ts %) dx = 5“;5) o) _ Y?a(i;)lailo-)‘

Definition 3 (See [20,21]) The fractional tempered integral operators J,f‘i’k)% and j(s(f’MS
of order « > 0 and A > O are given by

TN F () / (o= W) e PF)dE, x € [o,6], @)

" T()

and

TE§e) = 5 f(u W e M B IF ) de, x e [0,5], (5)

respectively, for § € L1[o, §].
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If we choose X = 0, then the fractional integrals in (4) and (5) equal to the Riemann—

Liouville fractional integral in (2) and (3), respectively.

3 Main results
In this section, we give several tempered fractional midpoint-type inequalities for the case
of twice-differentiable functions. Let us first prove an identity in order to build midpoint-

type inequalities.

Lemma 1 If§:[o0,8] — R is absolutely continuous on (0,8) and §" € Li([0,3]), then we

have
(o) () (@) ~ (0 + 8)
2(8 - 0)* Yi-0) (0, 1) [7:278(0) + T2V 5O)] -3 )
(6 -0)?
2\()\5 -0) (O{ 1) Zlk (6)
Here,

I = fo% 0o )T (th + (1 - o) dt, I = f%l Ve, ) (th + (1 - w)o) dt,
L= [i2 0y )T (ta + (1= p)8)dt, Iy = f%l Vo O ) (ta + (1 — w)8) dt,

with

0a(A 1) = 1 Y o) (0, 0) = Y-y (o + 1, 1),
Yo (A 1) = 1 Y -0y (06 1) = Y=oy (o + 1, 1) — (b Yos—s) (@, 1) + Y0y ( + 1,1).

Proof With the help of integration by parts, we obtain

1

L = /: [/L Y-0) (@ 1) = Y50y (0t + LM)]SH(ﬂ? +(1- M)U) dt (7)

§(th+ (1= o) 1

= [u Y a(5-0) (o, ) — Yk(a—a)(a + LM)] S_o lo

1 3
S-o

0
1 1 1 A STEAT
"l e (03) (o3 (557)

_ 1 Y)»(é—a)(a’ M)S(tb + (1 - /’L)U) %
§—o

Y a(s-0) (0t WF (8 + (1 - w)o ) dt

§—0 o
1 3
~5 M“_le_’\(‘s_“)“g(tb +(1- M)O‘) dt]
1

0
1 1 11 (0 +6
gl v (od) oo D (5)

1

YA(S—G)(a:l) o+6 1 2 1 o
) (3_0)223< 2 )*(3_0)2/0 e O (th + (1~ o) dt
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Then, similarly we have

; Loq1 N, A
=z V-0 (¥ 5 ) = Vi @+ 1, 2
2 6-0)|2 A(8-0) 5 A(6-0) 5

Yi@-0) (&) 1 ) 1 %
AL 2)§<U + ) / LM (1 4 (1 - w)8) d,
0

(6—0) 2 )T 6-o)

I 1 1 v 1 v 1 1
=] = _ o, — | — _ o+ 1, -
3 ((S—O’) 9 As—0o) 9 AS-0) 2

1 o+
-3 Yis-0) (@, 1) + Y-y (o + 1, 1)]3’( ) )

Y- (@ 3) = Yooy, 1) (o +8
+ S
6-0) 2

1
T E-op

1
/1 Ma—le—k(é—a)ﬂg(tb +(1- M)J) dt,
2

and

I 1 1Y 1 v 1 1
=—]| = I e _la+1, =
4 (5_0_) 9 A(é-0) 2 A(é-0) )

1 o+
-3 Y6-0) (@ 1) + Yooy + 1, 1)}3/( 5 )

Y6-0)(@ 3) = Ya-oy (@, 1) [0 +8
6-0)? 2

1

1
— a-lo= b= Z (1 4+ (1 — 1)) dit.
+(5_a)2/%/t e F(ta+(1-p)s)

Adding (7)—(10), we get

4 1

1
E Li=—— [/ M"“le‘)‘(’s‘”“g(tb +(1- ,u)a) dt
P (6-0)*LJo

1
+ / Ma—le—k(s—fr)ug(m +(1- M)S) dt]
0

2 Y (-0) (a,l)g(cf +5)
T (6-0)2 2

8
_ F(Ol) [ﬁ/ﬂ (x_ O)a—le—k(u—x)g(x) dx

- (5 _ O—)a+2

1 ’ a-1_—A(x—p)
+ m L ((S —x) e " S(x) dxi|

2 Y r(s-0) (a’l)S(O + 5)
 (5-o) 2

I'(x)

2 Y -0) (0, 1)

= s [ (0) + TEVF0)] -

(6 —o)e+2

(0-0)

8)

)

(10)

(11)
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If we multiply both sides of (11) by wwfo)mw

ishes the proof of Lemma 1. O

then we have (6) simultaneously. This fin-

Theorem 1 Assume that the assumptions of Lemma 1 hold. If |§"| is convex on [0, 8], then

we have the following midpoint-type inequality:

')
2(8 —0)* Yi5-0) (1)
(6-0)?

= m[gl(k»a) + 92()\:“)][’3”(0)’ + ’3"/,(5)’]

)
[TV F(0) + TEeVFS)] - s(“ 2* ) ‘

Here,

{Ql(x,a) = [ lpao )l dt, )

() = [1 1Wal, )l dt.

Proof 1f we take modulus in equation (6) and apply the triangle inequality, then we have

(o) (o) (@) _ (‘7 + 5)‘
e s s -5 13
(6 y
ETU((XI)[/ |<ﬂo:()L M)H@ (fb+(1 M)0)|dt

1
2

o0, 0|3 (e + (1= 05)

1
/mmug"(m(l o )!dt+/1 ]wa(k,u)|]3/’(ta+(l—pc)S)]dt}.

By using the convexity of |§”|, we have

F(C\!) (o, 1) (a,)) _ (O' + 5)‘
‘2(8 —0)* Yi(-0) (@, 1) [7:278(0) + T3] -5 5
(8 ) 1" //

= Waal)[/ |0a (s W |[1]F"(8)| + (1 = )| T (0)]] dt

1
2

Iwa(k W|[1]F (@) + @ - w)|F ()] de
+/; [V O )| [ 1] (8)] + (1 = w)|§"(0)|] dt

1
. [ |¢a<x,m|[u|s"<a>|+<1-m|s”<a>|]dt}

(6-0)

= m[/ }‘pa()\ M)|dt+/ |1/fa()\ M)|dt:|“3'//(0)| |SN(5 |]

This ends the proof of Theorem 1. d

Page 6 of 12
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Remark 3 If we choose A = 0 in Theorem 1, then the following midpoint-type inequality
holds:

‘ [Na+1)
2

)
e s+ ) -5( 55

1

-0/ 1 a-3 .
S2e+D\a+2’ 8 [[3"@)[ + )
which is presented in [14, Theorem 2.2].

Remark 4 1f we let « =1 and A = 0 in Theorem 1, then we obtain the midpoint-type in-
equality

8
ot [wa-s(52) <E el

which is given in [33, Theorem 5].

)

Theorem 2 Let us consider that the assumptions of Lemma 1 hold. If, moreover, |§"9,q > 1
is convex on [0,8], then

’ I'a)
2(8 = 0)* Yi-0) (@, 1)

2
= 2Y(;Sa . [(/ a1 ’pdt> (f [, M)’pdt> }

x [(BW(W ' IS”(G)I")}’ \ (SIs"(anq ' IS”(é)Iq)q]

[7M (o) + TeVF6)] - &(" 2+ 5) ’

8 8

<— 0o O, )P dt Yo O, )| dt
247 Y 1 65m0) (@, 1) / | wf '/ | I

x[[§" @]+ [5" @],

Zz

where L + 1 =1.
' q

Proof Let us first apply Holder’s inequality in (13). Then, we get

’ ')
208 - 0)* Yi@-o) (@, 1)

L b ;
2 Yii Gzot D |:(/ |(pa(k,u)|pdt> (/ |S”(tb+ (1 —M)0)|th>
(/ |0a (2, ,u)|pdt> (/ |5 (ta + (1 - u)5)|th)

(f !%Au)y"dt) (/ 5 (tb+ (1~ M)o)rzdt)
(/ [V (2, “)|pdt> (f 1§ (a+ (1 u)6)|th) }

)
[TE95(0) + T E6)] - s(" ; ) ’

Page 7 of 12
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By using the convexity of |§”|7, we get

‘ IM'(c)

(@) (@) [0S
2(5_0)%{“6_0)(0{,1)[\75_ Fo) + T9MF©®)] 3( : )‘

(6-0)?

< e 1)[( / 1¢a<x,u)|”dt> ( /0 [u|3”<5>|"+(1—m|s”(o>|"]dt)
(/ ol mr’dt) ( @)+ Q-5 0 )
(/ Valup)|d ) ( [ Tuls el + 0 -wls o>|]dt)

(/ |¥a O, M)I"dt> ( (13" ()] (1—M)|S”(8)|q]dt>§]

(6-0)

, ! Y
EEEIZTK/’%A“‘W>+(AWMMMdO]
i [(%/(‘”"’ + IS”(G)I"); + (3|&”(a)|q + |3”(8)|");]

8 .

8

Letoy = [3"(0)|, 61 = 3|37 (8)I%, 02

=3[§"(0)|%,and 8, = |
inequality. Using the facts that

7 (8)] for the proof of the second

n n n
Z(Uk+5k)s§ Za,§+28,i, 0<s<1,
k=1 k=1 k-1

and 1+ 3% <4, the desired result of Theorem 2 can be obtained straightforwardly. 0

Remark5 Letus consider A = 0 in Theorem 2. Then, the following midpoint-type inequal-

ity holds:
Ma+1) -, o o+4
U0 5] -5( 75 )|

(3-0) 1 , L. Y
S2(a+1)[(2@(”““1)([9(1+a)+1)) +</§ |M —(1+o¢),u+a| dt) ]

J(Emor mo)lq)é (e |&“(6)w)%}
8

8

- ((3—0)2 1 117
= s T piaD)

(/ = (1 + o)+ aff dt) ](|g~ |+ 5

which is presented in [14, Theorem 2.5].

)))s
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Remark 6 1f we assign & = 1 and A = 0 in Theorem 2, then we have

1 8 o+6
‘(5_6)/63(“)0”_@( 2 )‘

<(5-o)2< 1 );[<3|3”(5)|q+IS//(U)I”I)‘I’+<3|S”(o)|q+|8”(5)lq)‘lf}
- 16 \2p+1 4 4

2
_6-9)
16

( * )’;(|3”(5)| +[3))),

2p+1
which are given in [7, Corollary 4.8].

Theorem 3 Suppose that the assumptions of Lemma 1 hold. If |§"11, g > 1 is convex on

lo,8], then
F(Ol) (a,2) (,)) _ (O’ + 5) ’
2(8 - 0)* Y5-0) (cr, 1) [%_ §(0) + T5% 3(8)] § )
(-0)*

S e —
2 Y(s-0) (0, 1)

Q=

X [(m(x,o{))l‘é [(|8"®)]" 2 ) + [§7(0)]" (1%, @) — Q3(1, @)))
+ (|37(0)] Qs a) + [3(6)| /(1 () — 2300 0))) 7] + ()7
% [(|37(8)" 200 ) + [3(0)] (2200 ) — Ru (1, @))) 7

+ (|37(0)]"Qa(h @) + [37(8)| (00 ) — ulh0))) 7]

Here, Q1 (M, «) and Q(\, &) are defined in (12) and

Q0 a) = i lgao ],
(k) = [i ula(h, pl dt.

Proof By applying the power-mean inequality in (13), we have

()

‘ 2(8 =) Yi5-0) (1, 1)
(8_0)2 % - % 1/ q )Zli
< o @D (tx,l)[</o |¢a(k,u)|dt> (/0 |0a (M )| [ (B + (1 — o) | dt
1 1-1 1 1
’ o (b )| d “([° (A, " 1- )8 qd)q
+</0 |0a (0 )| t) (/0 |00, )| | (2 + (1 = 11)8) |* dit

1 1—% 1 %
+(/ |wa<x,m|dt) (/ |1/fa(x,m||s”(tb+(1—u)o)|th>

1 1—% 1 %
(o) ([l s - s)ar) |

)
[TV F(0) + TEeVFS)] - s(“ 2+ ) ‘

Q-
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It is known that |§”|? is convex. Then, we obtain

I'(x)
| ;

2(8 - 0)a YA(S—G) (Ol) 1)

-0 ([
_ W=-o) ol
= 2 Y 6-0) (@, 1) |:(f0 |‘P (A ,u,)’ t)

< ( / o[ O + (1= w5 @)|'] dt)”’

[T4PF(0) + TEVF6)] - s(" - 5) ’

% o ;
(/ |%(x,u)|dt> (/ |¢au,m|[u|s”<a>|‘f+<1—u>|s”<s><q]dt)
0 0

1

1 1—% 1 :
([ |wa<x,m|dt) ( / |wa<x,m|[u|s~<a>|q+(1-m|s"<a>|q]dt)

1

1 -1/ 01 .
( / |wa<x,m|dt) ( / |%(A,u)|[ulé§”(o)lq+(l—M)IS”@)Iq]dt) }

(8-0)*
2 Y -0 (0, 1)

% [(Q100) T [(|30)] "0 ) + |§(0)] (21 (0 @) - Qs(k,0)))
+ (37072300 @) + |36)]7 (21 (b @) - a(ha))) ] + ()70
% [(13"0)] Q400 0) + [3(0)] (Rl @) - ()

+(|3"(@)]" Q@) + |[F7(0)) (R a) — Qu(h, @) 7]]. O

Remark 7 Consider A =0 in Theorem 3. Then, the following midpoint-type inequality
holds:

Mo +1)
| :

o a o+6
2<8—a)a[’“+3(5)+fa-3<0>]—3( )l

_ -0y [( 1 ){((an)w(snh (o +4)|@”<o)|q)%
T 2+ 1) [\ 29%2(a + 2) 2(a +3)

(o + 213" ()7 + (a +4)[F(B)|7\ 4 o
L Lo

x [[(2(0))[3"®)]" + (¢1(e) - $2(@))[F"(0) ‘]%
+[(#20@) [§"©@)|" + ($1(0) - 2l )I@/(a)!]ﬂ}

where

8
20+3_1 20-7
$2(e) = 30,3 * Tn -

20%2.1  a-3
{4’1(01) 20 2gr2) T 8’

This result coincides with [14, Theorem 2.7].
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Remark 8 Let us consider @ = 1 and A = 0 in Theorem 3. Then, we have the midpoint-type
inequality

1 3 o+8
‘(a—o)/gg(“)dt‘g( 2 )‘

_(6-0) [(smsw + 5|3’/(a)|‘1>% . (BIs”(o)w +5|&”(6)|@)%]

- 48 8 8

which is given in [31, Proposition 5].

4 Conclusion

In this paper, we proved an equality involving tempered fractional integrals for the case
of twice-differentiable functions. By using this equality, we established midpoint-type in-
equalities for tempered fractional integrals. Moreover, our results generalize known re-
sults from the literature.

In a future research, exploring the ideas and results related to midpoint-type inequalities
using tempered fractional integrals could pave the way for new directions in this field
of mathematics. Moreover, one can try to generalize our results by utilizing a different
version of convex function classes or another type fractional integral operators. Finally,
this suggests that using tempered fractional integrals with quantum calculus may lead to
similar inequalities for convex functions.
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